Using Computers to Teach
Series and Differential Equations

by Emily H. Moore
Grinnell College

At Grinnell College we teach “Series and Differential Equations™ to our second semester sopho-
mores. In this course we study notions of convergence and approximation — topics that are in-
herently geometric. Traditionally these topics are taught with the aid of rough sketches on a
blackboard. Some beautiful but static graphs appear in the texts. But students — especially those
who are weak on the concepts — cannot produce correct sketches on their own. Computers have
been used to teach isolated topics. But the computer programs have not generally been available
for student use.

Computers, with their ability to perform numerical calculations and produce high-resolution
graphics, can be used to present ideas of convergence and approximation. The problem is to choose
software that is both powerful and easy to use. A general graphics package will graph any function
you choose. But to graph, say, the partial sum of a Fourier series would require entering a very
ugly function. On the other hand, special-purpose educational software often limits the functions
that can be graphed. In some instances, the canned examples are little better than static drawings.

In the fall of 1987, I started work on a project to use the computer to teach concepts of
convergence and approximation. My main goal was to provide an environment in which the student
could experiment with a wide variety of functions. I wished to use the computer to enhance intuition
through graphics, and to do some of the otherwise tedious or impossible numeric computations.
The computer software must be so easy to use that attention is focused on the mathematical
concept and not on the computer. It must provide students with as much control as possible over
the output, yet make controls optional so reasonable graphs may be produced with little effort. And
it must be accompanied by examples and exercises that encourage the student to explore examples,
make conjectures, and back up intuition with rigorous mathematical argument.

I wrote and used early versions of some of the software and exercises in the spring of 1988,
In the summer the Sloan Foundation supported work on improving the modules, implementing
new modules, and writing supporting materials. These are being used this fall. Modules have
been written to graph functions of one and two variables, to graph sequences of numbers (z, vs.
n), sequences of functions ( f,(z)), Taylor polynomial approximations to functions, partial sums of
power series and Fourier series, and numerical solutions to equations, definite integrals, and first-
and second-order differential equations. The computer modules are written in Matlab, a software
package that provides matrix operations graphics calls. The software runs at Grinnell College on
a network of Sun 3/50’s. Computer monitors in classrooms allow use of the software for class
demonstration. Students use the laboratory equipped with 18 workstations to run the software,
producing graphs and numeric output on the screen and printing graphs and tables on the laser
printer.

To illustrate how the software is used, I have chosen to focus on seven mathematical problems.

1. Uniform convergence of functions: Figure 1 shows a graph of the first 7 functions in
the sequence f,(z) = nz - e "*. From the graph students can conjecture that each f, has one
critical point, and the maximum values for the functions appear equal. Calculus shows this critical
point to be at # = 1/n, with f,(1/n) = 1/e. The functions do not converge uniformly to 0 on
[0,00). But for ¢ > 0, convergence is uniform on [¢,oc). From the graph it is clear we must argue
that past a point in the sequence f, is decreasing on [¢,00). Graphing leads to conjectures which
then must be proved.

2. Taylor’s Remainder Formula: The sixth Taylor polynomial for sin(z) evaluated at z*
is: Ps(2?) = z* — z°/3! 4+ 2'°/5!. Using Taylor’s Remainder Formula, we find |sin(z?) — Ps(z?)| <




(z*)7/7! 2= .744 at = = 1.8. The graph in Figure 2 illustrates the actual error at 1.8. Further,
if we wish to approximate ful'ssin{zz] dz by fnl'ﬂ Ps(z?) dz, the actual error is represented by the
area between the two functions. Certainly an upper bound for that error is 1.8 times the maximum
error. But a much tighter upper bound is the integral of the TRF bound, fnl'a ' fTdzx.

3. Interval of Convergence: In Figure 3 we graph the partial sum of the Maclaurin series
for f(z) = In(14z) for n = 3,6,9,12. The graph suggests the partial sums converge to the function
for some values of z, but diverge for £ > 1. Intuition motivates a more careful study.

4. General solution to a first order differential equation: In Figure 4 we have graphed
the direction field for the differential equation ' = 1 — 2zy. Initial values for solutions were chosen
by moving the mouse to a point (zg,¥,) and clicking. From this simple graph the student gains
an intuitive notion of the family of curves that make up the general solution to the differential
equation. Also, clicking the mouse in the general vicinity of (2,0) shows the extreme sensitivity to
initial values in some regions.

5. Numerical solutions to first order differential equations: In Figure 5 the solid line
represents the solution to the initial value problem y' = 3yz? - cos(z®), y(0) = 1. The dashed
line is the numerical approximation using Euler’s method with n = 100 intervals. The graph
vividly shows that the extreme curvature of the function makes it difficult for Euler's method to
track. Euler’s improved method and the Runge-Kutta method of order 4 do much better. The
graphs in Figure 6 show the error in the Euler approximation with n = 2000 and the difference
between the Euler approximations at n = 2000 and » = 1000. The similarity of the graphs helps
to support the rule of thumb that the error at 2n intervals approximately equals the difference
between approximations at 2n and n intervals, thus providing a stopping criterion.

6. Series solutions to second order differential equations: Computing series solutions to
second order differential equations is a messy business. The power series solution to the differential
equation y"” = —zy' — y with initial values y(0) =1, y'(0) =2 is
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The behavior of this function is far from obvious. In Figure 7 we have graphed a numerical solution
to the initial value problem together with partial sums of the series solution. The partial sum S,
is indistinguishable from the numerical solution. This computer tool not only gives the students a
way to check their power series solution. It also provides an approximate graph of the function.

7. Fourier series: It is important to support the idea of adding terms in a Fourier series with
graphical results. The module to graph partial sums of Fourier series allows the user to specify the
period of the function f(z) and to define the function over that period piecewise. In Figure 8 we
have graphed the function that is periodic of period 27, and is defined to be 0 on [—7,0) and =
on [0, *]. Once the formulae for the Fourier coefficients have been entered, the student can graph
the partial sum of the Fourier series for any reasonable n. The Gibbs phenomenon is observed at

points of discontinuity. It is also enlightening to graph the difference between f and the partial
sum.

Conclusion: Educational software can give students insight and power to solve a much wider
range of problems than previously possible. The software must be both flexible and easy to use.
Its success must be measured not only by its ability to demonstrate principles, but by its ability to
put useful tools in the hands of the students.
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Emily Moore — Power Series  f{z) = log(1+x)
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Direction field for dy/dx = 1 - 2*x®y

Sequence of functiens: fin,x) = n*x*expl{-n*x)
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Emily Moore — First Order D.E.

y' = JyegAd * cog(xAl)
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Emily Moore -- Second Order D.E.
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