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A METHOD TO TEACH NUMBER THEORY USING A COMPUTER
Chris K. Caldwell

1. Introduction

Much of elementary number theory was discovered through computation, yet
computation and discovery are almost nonexistent in the traditional number theory
course. As a result this course often becomes stale and theoretical.

To allow discovery in our number theory course we have used muMATH by
SoftwareHouse (augmented with our own number theoretical routines) as an
unlimited precision calculator, making otherwise tedious computations trivial. Using
carefully selected homework assignments, the students were led by to discover
number theory for themselves. In class we developed the student’s results and laid
the groundwork for their future discoveries.

The homework problems not only set the pace of the course, but were chosen to
teach the students how to experiment and conjecture. By using a text only as a
reference we avoided the student's usual proof algorithm: (1) reread the techniques
in the section containing the problem, (2) apply only those techniques.

In this paper we give examples of the homework problems and explain the
philosophy behind their choice. We end with a brief discussion of the program and
the text.

2. The Homework

To emphasize discovery, homework problems were chosen to be open ended. To
make student discoveries central to the course, the lectures usually centered on the
previous night's homework. Lectures also introduced definitions and concepts
necessary for following problem sets. Consider the following homework problems:

1. Choose several primes p. For each evaluate (p-1)! modulo p. Make a
conjecture. Prove your conjecture.

2. Choose a prime p and an integer a. Evaluate aP~1 modulo p. Repeat
with several different a's and p's, be sure to try a = 0. Make a conjecture.
Prove your conjecture.

While doing these problems the student quickly conjectures Wilson's theorem and
Fermat's little theorem respectively, though they can not yet prove them. The proofs
are given the next class day. Because we were proving results the student had
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discovered herself, the student was more interested, and remembered the results
longer.

In real life we rarely know ahead of time if we can prove our conjectures, though
we often have a gut feeling. To help develop this instinct in our students we did not
indicate if they could succeed in their assigned proofs. The following problem, for
example, leads to the unproven Goldbach's conjecture.

3. Choose any even integer larger than two. Can it be written as the sum of
two primes? Make a conjecture. Prove your conjecture.

In the class meeting following this problem, we would discuss the progress that has
been made towards a proof. More importantly, we would discuss why this result is
harder to prove than the previous results.

Very little of undergraduate mathematics was done this century, so students rarely
encounter unsolved problems. Number theory is an ideal place to correct this
shortcoming. Here is one example:

4. Let F(n) = 3n+1 if nis odd, n/2 if n is even. Starting with any positive
integer iterate this function until you reach one. For example starting with
13 we get the following sequence of numbers 13,40,20,10,5,16,8,4,2,1.
Prove or disprove that the sequence always terminates (always reaches
one).

(The function F is included as part of our computer software.) Shank's book [8] is an
excellent source for this type of problem.

In the above examples the student could not have completed the proof herself. To
avoid the danger that the student would not even try to prove her results, many of
the problems had trivial proofs:

5. Take any three digit number and write it down twice. For example, 451
becomes 451451. Divide the resulting six digit number by 77. Make a
conjecture. Prove your conjecture.

(Note abcabc = abc-1001 = abe-77-13.) It is surprising how many students can not
tell whether proving a result will be easy or difficult. Hopefully students develop the
necessary intuition as they see both easy and difficult problems side by side.

Two more pitfalls to avoid are the law of small numbers [5], and the student's
desire to do only the minimum work required. We attack these problem with the
following.

6. For n=1,2,...,20 factor n2+n+41. Make a conjecture. Prove your
conjecture.
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7. Use PRIMETEST to test the primality of the following numbers: 31, 331,
3331, 33331, 333331, 3333331. Make a conjecture. Prove your
conjecture.

(PRIMETEST is part of our computer package.) Here the suggested numbers are all
prime, so many students fell into the trap and conjectured that the results are
always prime. Only about one half of the students looked look at unlisted terms in
the second sequence. 33333331 is prime, but 17 divides 333333331.

Problems six and seven could be used to lead into a classroom discussion about
Fermat and Mersenne primes, or about formulas for the n-th prime, or functions
which take on only prime values... The student should be shown that there are vast
unexplored frontiers.

We close this section with a follow up to problems six and seven.

8. We have seen several sequences whose first few terms are prime.
Construct an interesting sequence of your own which begins with at least
five primes.

This problem exemplifies our goals: it requires student discovery, it is open ended,
and it can be used to lead into many classroom discussions.

3. The Program

All of the examples above are computationally intensive. Few students enjoy
calculating 1372 modulo 73 by hand, or factoring 202420+41 by hand. So the
computer was introduced as a calculator, making the calculation trivial - but leaving
the student to interpret the results. We used muMATH by SoftwareHouse because
it was cheap and ran on the IBM-PCs we had available. Any software package that
had unlimited precision rational arithmetic could have been used. To this package
we added the basic functions of number theory (phi, sigma, Jacobi symbol,...) along
with routines to factor numbers (Pollard's rho and p-1 methods, ... [see references 2
and 7]). We also included the primality proving theorems of [1].

The computer was used as a discovery tool only, it was not the cbject of study and
few students bothered to even list the subroutines. Less than fifteen minutes was
necessary for most students to begin using the program. Many students enjoyed
having the machine factor their phone numbers, social security numbers, even their
names (viewed as integers base 36). The program greatly encouraged
mathematical play.

As an example of the surprising power of this little system, consider the numbers in
problem seven, ap = (10M-7)/3. It was known that these are prime for n =1,2,3,4,5,6,




7,17,39,49,59,77 and 100. Using the muMATH routines (and factorizations from [2])
we proved the primality of two of the next three probable-primes: a5 and asgq.
Harvey Dubner showed agqg is prime.

4. The Text and Students

This course could have been taught without a text, or with a text like Shank's book
[8], however, we chose to use a traditional text as a reference (Burton[3]). Next time
we will probably use Eyden [4] or Rosen [6] because of their treatment of primality
testing and RSA codes. Whatever text is chosen, do not follow it closely. Otherwise
the students will look up the results rather than discover the results. Not all
students thrived under these conditions (a few were frightened by the problems sets
and dropped the course immediately), but most students did very well, and a few
even learned to love
number theory. The students' confidence increased. Many made mathematical
discoveries for the first time in their lives. Several now regularly use the computer
as a tool in mathematics.

Our small school has two number theorists and a biannual number theory course.
So | have only been able to teach number theory once. | will definitely use this
approach again.
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