Using Hand-Held Graphing Computers in College Mathematics

Gregory D. Foley
The Ohio State University

The distinction between calculator and com-
puter is no longer clear. In 1984, Brophy and Han-
non wrote that, “In mathematics courses, comput-
ers offer an advantage over calculators in that they
can express results graphically as well as numeri-
cally, thus providing a visual dimension to work
with variables expressed numerically” (p. 61).
This advantage of computers over calculators dis-
appeared in early 1986 when Casio introduced
the fr-7000G, a programmable scientific calcula-
tor with interactive graphics, that is, a hand-held
graphing computer. Other similar yet more power-
ful and sophisticated machines soon followed: Ca-
sio’s fz-7500G, and fz-8000G, Hewlett-Packard’s
28C and 285, and Sharp’s EL-5200. In January
1986, only months before the introduction of the
fz-7000G, at the Tulane conference on caleulus re-
form, Tucker et al. (1986) had considered calculus
curriculum revision based on the levels of technol-
ogy required for various types of computational
support. At that time numerical computation
could be done on hand caleulators, but interac-
tive graphics and symbolic manipulation required
micro or mainframe computers. Because of ac-
cess problems, they shied away from recommend-
ing computer-based graphics and symbolic manip-
ulation as a part of mainstream calculus. “The
participants at that conference had no idea that
a Casio fr7000-G [sic] or an HP-28C was looming
on the horizon” (Tucker, 1987, p. 5).
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Hand-held graphing computers combine the
capabilities of a scientific caleulator, a program-
mable computer, an interactive-graphics computer
system, and in the case of the Hewlett-Packard cal-
culators, a limited computer mathematics system
that performs symbolic manipulation. These ma-
chines are powerful tools for mathematical experi-
mentation and exploration. They are too small to
lend themselves to typewriter-style keyboarding,
and ultimately this may be the lone distinction
that remains between hand-held and micro com-
puters.

What Hand-Held Computers Can Do

The capabilities of these pocket-sized com-
puters have been described in some detail else-
where (see, e.g., Foley, 1987a, in press; Michel,
1987; Potter, 1987a; Tucker, 1987). Mucifio (1988)
has even provided a “buyer’s guide” for these ma-
chines. This section provides a summary of the
features of the Casio, Sharp, and Hewlett-Packard
hand-held graphing computers as a reference for
college mathematics faculty who are planning cur-
riculum and instruction to take advantage of these
versatile computational tools.

The hallmarks of these supercalculators are
(a) large display screens, (b) interactive graphics,
and (c) on-screen programming. When choosing
to buy, use, or design a curriculum around one of
these machines all three of these factors should be
carefully considered. Durability and price are also
important; so included below are some notes aboul
the durability and lowest prices as of December
1988 for each model.

The Casio fz-7000G, fz-7500G, and f1-8000G
all have eight-line text displays and graphics view-
ports that are 63 rows by 95 columns of pixels.
They can readily produce the graphs of functions,
and with some programming, the graphs of po-
lar equations, parametric equations, conics, and
even three-dimensional graphs. The viewing rect-
angle and the scaling units are set using the Range
feature. The Trace command allows pixel-to-pixel
movemnent along the most recently drawn function;
the Casio displays the z - or y-coordinate associ-
ated with each pixel along the way. The automatic
goom feature or the Factor command can be used
to zoom-in or zoom-out about a plotted or traced-
to point, or as a default, about the center of the




current viewing rectangle. Early versions of the
Je-T000G did not have automatic zoom, but now
all models have this important feature. Other ca-
pabilities include statistical features and binary,
octal, and hexadecimal computation and conver-
sion. Commands and programs can be selectively
changed and re-executed. Casio syntax closely
parallels standard algebraic syntax. The fz- 70006
(250) has only 0.4K memory. The fe-8000G ($70)
has 1.4K regular memory plus an additional 1.9K
for its file editor. It has an input buffer that saves
the last prior command (this comes in handy if
you accidently hit a wrong key). It can be linked
to a printer or to a tape recorder to save programs
externally. The fz-7500G ($65) has the fastest
graphics and the most memory (4K) of the three.

The Sharp EL-5200 (375) has four lines of
textual display and 32 x 96 pixels of graphics dis-
play. It has an extensive input buffer that saves
several prior commands. The graphics are slower
than on the Casios, and the user does not see the
graph being drawn. In addition to all of the fea-
tures of the Casio, the Sharp permits automatic
setting of the y viewing-rectangle parameters and
has a scrolling sereen for tracing along a graph
beyond the current viewing rectangle, plus it has
built-in equation-solving and matrix capabilities.
The programming is awkward compared to the
Casio, but the memory capacity is larger (8K) even
than the Casio fr-7500G. A drawback of the Sharp
is that its right-hand keyboard is a touchboard
connected to the machine’s main circuitry by rib-
bon cables, which can be damaged by opening the
caleulator past the flat position.

The Hewlett-Packard HP-28C (1.6K) is no
longer manufactured and no longer available. It
has been replaced by the HP-285, that has 32K of
memory. Both machines operate in essentially the
same manner. Like the Sharp, the HP-28 only has
four lines of text, but the graphics viewport is a bit
wider at 32 x 137 pixels, and graphs are shown as
they are being drawn. The HP-28 can solve equa-
tions and operate on matrices, and in addition,
can find derivatives and definite integrals, generate
Taylor series, determine antiderivatives of polyno-
mials, and handle complex numbers. The HP-28
has an operating logic based on Reverse Polish No-
tation, and its working memory is organized into
a stack, or column of entries. The HP-28 also
permits the use of algebraic syntax. The machine
is menu driven, and user-developed, stored pro-
grams are automatically added to the HP's exten-
sive list of built-in functions. The programming

is flexible and especially nice for experienced pro-
grammers, permitting BASIC-, FORTRAN-, and
Pascal-like commands. It is the most powerful,
and the most expensive ($170), of the machines
described here. Customized, stored programs can
powerfully personalize the HP-28 to solve many
mathematics problems with just a few keystrokes.
Wickes (1988) provides much valuable information
for those intending to make substantial use of the
HP-28.

All of these hand-held graphing computers
permit interactive experimentation. The Casios
have the largest screen and best graphics. The
HP-28 is the most versatile and powerful. All
of them can be used to make mathematics more
oriented toward concept development and prob-
lem solving and less oriented toward paper-and-
pencil computation. The use of hand-held com-
puters can be applied to many areas of under-
graduate mathematics, especially precalculus, cal-
culus, and statistics. This paper focuses on the
applications of these pocket computers to college
algebra, trigonometry, and analytic geometry, es-
pecially the interactive graphing of functions and
relations and the interpretation and use of the ob-
tained graphs to solve problems.

The Ohio State C? PC Project

The Ohio State University Calculator and
Computer Precalculus (C? PC) Project is a three-
year field-based project aimed at developing a pre-
caleulus course that is rich in problems and takes
full advantage of interactive computer graphics
technology. The primary objectives of the project
are (a) to create instructional materials that make
effective use of computer- and calculator-based
graphing to strengthen student problem solving
skills; (b) to improve student understanding of
functions, graphs, and analytic geometry—critical
areas of mathematical deficiency in the current
college preparatory curriculum; and (¢) to increase
significantly the number of students adequately
prepared to pursue higher education in mathemat-
ics, science, and technical fields.

“Graphs of functions and relations are highly
valued for their ability to display complex informa-
tion visually. Yet students come to view graphing
as a task to be completed rather than an interpre-
tational aid” (Dick, 1989, p. 13). The interpreta-
tion and use of graphs is essential in today's world
in which graphs are so widely used to present in-
formation. Moreover, these skills are especially




important for students who intend to study calecu-
lus and to pursue scientific and technical careers.
Yet, evidence from the Second International Math-
ematics Study shows that many 12th-grade precal-
culus students are weak in coordinate geometry,
functions, and graphing, and in particular, they
do not make a strong connection between a [une-
tion and its graph (Chang & Ruzicka, 1985). For
instance, most do not realize that the solution for
a system of two equations corresponds to the in-
tersection points of their graphs.

The C?PC project materials (Demana and
Waits, 1988¢c; Foley et al., 1988; Osborne and
Foley, 1988; Waits and Demana, 1988b) are de-
signed to shore up this sagging section of the cur-
ricular fabric. After one and a half years of pi-
loting, these materials were field-tested in some
80 high schools and 40 colleges and universities
across the nation during the 1988-89 academic
year. Throughout the course, hand-held graphing
computers and microcomputer software are used
as tools for concept development, problem solving,
and exploration. Most field-test teachers partici-
pated in summer inservice programs to gain famil-
iarity with the materials and to help them prepare
to create instructional environments in the spirit
of the project. In order to give the reader a sense
of the C*PC instructional environment, some dis-
tinguishing characteristics of the project are out-
lined below. This general outline is followed by a

set of illustrative examples.

Characterizing Features. C?PC has three
characteristics that together make it unique in es-
tablishing the concepts of functions and graphing:

1. Interactive graphing. Interactive computer
graphing is used to provide a rich array of ex-
amples of graphs and functions for students
to explore and examine. This gives the stu-
dent many opportunities to form generaliza-
tions and to develop concepts about graphs,
functions, and their characteristics.

2. Problems as means. Real world problems
situations are used as the means to ap-
proach and teach concepts and skills instead
of merely as exercises after the concept has
been taught. Often a problem serves as the
stimulus for a discussion of some new mathe-
matics with the new mathematics serving as
the conclusion for that discussion.

3.  Calculus topics without calculus. The math-

ematics is organized differently from most
texts. Many topics that are treated lightly

or not at all in other precalculus texts are
explored in depth. Limits, asymptotes, ex-
trema, continuity, and other topics that fore-
shadow calculus are given a thorough treat-
ment.

Classroom Arrangements. We have found
that a key factor affecting success in using inter-
active computer graphing is the arrangement of
the classroom. Graphs can and should serve as
a stimulus for mathematical discussion, and stu-
dents must be able to see what is being discussed.
We have used a variety of arrangements, operating
in one or a combination of the following modes:

1. Graphing calculaior mode with each student
using a hand-held graphing computer.

2. Demonstration mode with a single large mon-
itor or with an overhead projection palette
tied to a computer.

3. Laboratory mode with each student or pair of
students stationed at a microcomputer.

Instructional Principles. The C?PC course
is organized around five methodological themes.
These themes serve as threads that wind their way
through the project materials. The themes are:

1. Active involvement. Students are actively in-
volved in problem solving.

2. Verbal interaction. Students talk about the
mathematics they are learning.

3.  Problem revisitation. Important problem sit-
uations are revisited on a regular basis.

4. Informal language. The formal language of
the mathematical topics is kept to a minimum
and is not introduced until there is a need for
it.

5.  Generalization. Student learning is facilitated
by encountering many instances from which
to make generalizations.

Mathematical Emphases. The use of interac-
tive graphics offers an opportunity to change em-
phases in the mathematical content of precalcu-
lus. Most calculus instructors have based much of
their instruction through the years on the assump-
tion that a picture or graph explains all. The as-
sumption is that graphs intuitively provide a great
deal of information about associated problem sit-
uations and algebraic representations. Our expe-
rience indicates that graphs become intuitive only
after students have learned how to read and inter-
pret the information they provide. That is, stu-
dents must be taught what is contained in graphs




before they can serve as an intuitive base for ex-
planation. In large part, the content of the C?*PC
course was selected to extend substantially stu-
dents’ ability to know what they are seeing when
they encounter a graph and to establish firmly
the connection between an equation and its graph.
Following are some of the major content emphases
that are exploited to build an understanding of
graphs and functions.

1. Viewing reclangles and scale. With either
paper-and-pencil graphing or a computer
graphing utility, one only examines a portion
of most graphs. A viewing rectangle speci-
fies the portion of the plane within which a
graph is to be examined; that is, the minimal
and the maximal values of the r-coordinates
and the y-coordinates. Students learn how
to pick viewing rectangles to satisfy the pur-
pose of the problem at hand; they learn how
to zoom-in, zoom-out, and choose different
scales for the Lwo coordinate axes.

2. Local behavior of functions. The ability to
change viewing rectangles permits students
to examine closely the graphical behavior of
functions. Students can zoom-in to see at
close range such local features as extrema and
intercepts.

3. End behavior of functions. Alternatively, stu-
dents can zoom-out to obtain a global view of
the graph of a function. The notion of asymp-
tote comes alive for students in a new and
richer way.

4.  Graphical solution algorithms. Equations, in-
equalities, and systems of equations can be
solved graphically through the use of a zoom-
in procedure. This graphical approach is
powerful. Equations involving any elemen-
tary functions can be solved by the zoom-in
method; whereas their algebraic solutions re-
quire a myriad of paper-and-pencil methods.

5. Paramelers and funclions. Students can ex-
plore and discover the effects that equation
parameters have on the graph of a function.
For example, students can experiment with
the equation f(z) = az? + bz + ¢ to deter-
mine the effects that a,b, and ¢ have on the
graph of a quadratic funetion.

6. Mathematical modeling. Students investigate
a wide variety of challenging problem situa-
tions, They create algebraic and geometric
representations for a given situation and use
these representations in the solution of the as-
sociated problem.

Examples

Three examples are given below to illustrate
the C?PC instructional approach and the inter-
active graphing capabilities of a hand-held graph-
ing computer. The Casio is used in the examples
because this is the machine used at most of the
project field-test sites. The Range feature, which
shows all six viewing-rectangle and scale param-
eters at once, and the fast, large-screen graphics
make the Casio a suitable choice for the methods
being illustrated. Other pocket graphers or com-
puter graphing software could be used in a similar
way to solve the example problems. Figures in
this paper are given as they appear on the Casio
graphics screen.

The first example is actually a set of examples
intended to illustrate several aspects of the C?PC
approach. The example foreshadows calculus in
its use of modeling, in its treatment of a function
as the object of consideration, and in its inclusion
of the extreme value conecept. Few, if any, of the
subproblems in the example would ever be consid-
ered in a traditional precalculus course. Parts (a),
(b), and (c) — write an equation that models the
problem, draw a complete graph of the equation,
and identify the portion of the graph relevant to
the problem — represent a typical sequence of steps
stressed in the project materials. These steps are
all that is asked of students on their first encounter
with the full-fledged box problem. Earlier, stu-
dents encounter the box problem in a restricted
setting that leads to a quadratic equation. On
subsequent revisitations question (d), then (e) is
asked. In this way by the time students are faced
with the extreme-value aspect of the problem, they
can deal with this new and challenging issue in a
familiar setting.

Erample 1.

An open box is to be made from a rectangu-
lar piece of sheet metal 20 cm long and 15 cm
wide by cutting and removing equal square
pieces from each corner of the rectangular
sheet and then bending up the sides.

(a) Write an equation that expresses the
volume of the box as a function of the
side length of the removed squares.

{(b) Draw a complete graph of this equation.

(c) What part of the graph in (b) represents
the problem situation?
(d) What size square must be cut and re-

moved to form a box with a volume of
950 ¢m® ?

3
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Solution.
(a)

(b)

What are the dimensions of the box
with the largest volume? What is the
maximum volume?

This step is nontrivial for most students
when they first encounter a box problem
of this sort; this step usually occurs in
beginning calculus. In the C?PC mate-
rials students face this problem only af-
ter they have had numerous experiences
in modeling simpler problem situations.
An equation for the volume function is
V(z) = =(15 - 2£)(20 — 2z).

Graphing y = =z(15 — 2z)(20 — 2z) in
the Casio default viewing rectangle of
[-4.7,4.7] x [-3.1,3.1] yields the graph
shown in Figure 1. Notice that the Ca-
sio graphics viewport does not include
the top row and left-most column of pix-
els. The point (0,0) has actually been
graphed, but this is revealed only if the
Trace command is used,

Figure 1. The graph of the volume function
y=z(15—2z)(20 — 2z) in [-4.7,4.7T] =
[-3.1,3.1]

This graph sheds some light on
one of the questions raised by Small,
Hosack, and Lane (1986): “Should a
student analyze a function to sketch
the graph, or just call up a graph-
ing program?" (p. 433). Some
thought and experimentation is typ-
ically required to obtain a useful
computer-generated graph of a given
function. Here a complete graph is
sought; that is, one that displays all

key attributes of the function. This is a
somewhat subjective and perhaps vague
notion, but one that we have found
to be pedagogically useful. Golden-
berg's (1988) comment about interpret-
ing graphs applies well to the task of ob-
taining a complete graph: “To interpret
graphs correctly, we need mathematical
knowledge and expectations, not just
perceptual experience” (p.135). In this
case a viewing rectangle of [—5,15] x
[-500,1000] is suitable (see Figure 2).

Figure 2. The graph of y = zl:lﬁ -
'2::}{2[} - 21:] in [-5, 15] x {—*5(][], lﬂ[}[}]

{¢) The only values of = that make sense in

the problem situation are those between
0 and 7.5. The graph shown in Figure
3 extends just beyond these values.

Figure J. The graph of ¥ = =z(15 —
2z)(20 — 2x) in [—1,8] x [—50,500]




(d)

(e)

To determine possible side lengths of
removed squares that would yield a
250 em® box, we overlay the graph of
vy = 250 and project down from the
points of intersection to the z-axis (see
Figure 4). The dashed downward point-
ing arrows do not appear on the Casio.

: Y

Figure 4. The graphs of y = ::{15 =
2z)(20 — 2z) and y = 250 in [-1,8] x
[—50,500]

It appears that an r-value of ap-
proximately 1.1 em or 5.0 ¢em would
yield a 250 cm® box. Substitution
shows that ¢ = 5 exactly satisfies
this condition. Using traditional alge-
braic methods we can determine that
the other exact solutions to the equa-
tion 2(15 — 22)(20 — 2z) = 250 are

r=1§*¥E,butonIy ::@'@

is between 0 and 7.5. The approx-
imate value of this second solution to
our problem is 1.10 em.

Using the graph of the volume function
shown in Figure 3, we can use the Trace
feature to approximate the maximum
value at y = 379.0377662 (see Figure
5; notice that the Casio viewport is re-
duced to 55 x 95 pixels when the Trace
function is being used), and then em-
ploy the X +~ Y command to obtain
r = 2.829787234. Here  represents
the height of the box in cm, and y rep-
resents the volume in em®. The other
dimensions of the box would be 9.34 cm
and 14.34 cm. The standard calculus so-
lution is z = B=¥FE »~ 2828707270

and y = 379.0378082. This 10-decimal-
place accuracy could be achieved by us-
ing zoom-in. Notice that our initial ap-
proximation for the volume has 7-place
accuracy, but our initial approximation
for the height has only 3-place accuracy.
Why?

Y=379. 8377662

Figure §. The graph of ¥ = z(15 —
2z)(20 — 2z) together with the readout of
the relative maximum value on the interval (] <
z<TH

The next example is a typical trigonometric
equation. It illustrates the zoom-in method for
equation solving, pointing out that zoom-in can be
aceomplished in four different ways on the Casio:

1. Key in Range setting parameters by
hand.

2. Automatic zooming.

3.  Use the Factor feature.

4. Setting the Range within a program.

Zoom-in can also be used to solve inequalitics
and systems of equations and to locate relative
extrema. The equation in Example 2, unlike many
equations involving elementary functions, can be
solved exactly by traditional methods; so a paper-
and-pencil approach is sketched.

FErample 2.
Solve cosz =tanz, 0<z< 3.

Solution.

Using zoom-in. One approach to solving
this problem is to graph the functions cor-
responding to the two sides of the equation
on the same coordinate system and then to
determine the r-coordinates of any points
of intersection that lie between z = 0 and




z = % . On the Casio this can be done with-
out any programming by entering and exe-
cuting the dual command Graph Y = cos
X : Graph Y = tan X, and then choosing
a nested sequence of progressively smaller
viewing rectangles each containing the rele-
vant point of interest.

This zooming-in procedure can be ac-
complished by (a) using the Range feature or
(b) using the Trace feature together with au-
tomatic zoom or the Factor command. Stu-
dents unfamiliar with computer graphing can
use the Range feature to set viewing rectan-
gle parameters by hand until they gain some
facility in making intelligent choices about
picking their next view of a given situation.
Next automatic zoom (Casio’s instant factor
function) with its relatively small magnifica-
tion factor of 2 in each direction can serve as
a prelude to the more versatile Factor com-
mand,.

The following style of program, sug-
gested by a colleague (Shumway, personal
communication, 1987), is faster and more
flexible than the automatic-zoom approach,
and since it 15 stored in memory, you cannot
lose it by hitting one wrong key while try-
ing to zoom-in. It is simple, short, and easily
modified.

“F="7 — F

Factor F

Graph ¥ = cos X

Graph Y =tan X
Here's how it works: After entering the pro-
gram we set the viewing rectangle to the Ca-
sio default of [—4.7,4.7] x [-3.1,3.1] with a
scaling unit of 1 on each axis, and execute the
program. The prompt F = 7 will appear on
the screen. It is asking for an F value, which
will act as a magnification factor. In this
case, to preserve our initial choice of viewing
rectangle, we enter the value 1, and then con-
tinue the execution of the program by press-
ing EXE. The graph shown in Figure 6 will
appear. Tracing along the graph of the tan-
gent function to the pixel that best approx-
imates the unique point of intersection be-
tween z = 0 and r = § yields a readout
of 2 =0.7 (see Figure 7). We reexecute the
program using F = 10, which yields Figure
8. Continuing in this manner, we obtain suc-
cessive approximations of z = 0.67, shown
in Figure 9, and then r = 0.666, shown in
Figure 11. We could continue in this manner
to obtain 10-decimal-place accuracy.

Figure 6. The graphs of ¥ = cosz and
y=tanz in [-4.7,4.7] x [-3.1,3.1]

Figure 7. The I -coordinate readout for

the pixel nearest the point of intersection in

[-4.7, 4.7] x [-3.1, 3.1]

Figure 8. The graphs of ¥y = cosz and
y=tanz in [0.23,1.17] x [0.49,1.11]




#=H. &

Figure 9. The I -coordinate readout for the pixel
nearest the point of intersection in [ﬂ.23, 11?] *®

[0.49,1.11]

Figure 10. The graphs of ¥ = co8x and y =
tanz in [0.623,0.717] x [0.759,0.821]

A=l 666

Figure 11. The & -coordinate readout for
the pixel nearest the point of intersection in

[0.623, 0.717] x [0.759, 0.821]

Alternatively, we could use Vonder Em-
bse’s (1988) fancy 19-line zoom-in program.
Vonder Embse’s program, based upon Stick-
ney’s earlier version (1988, of these proceed-
ings), allows the user to zoom-in on a point
by tracing to each of two opposite corners
of the next viewing rectangle. This emu-
lates a feature of the Master Grapher soft-
ware (Waits and Demana, 1988b) that we
have found to be pedagogically advantageous
throughout the C?*PC project; namely, let-
ting the student see the new viewing rectan-
gle within the old one. Goldenberg (1988)
has also found this to be valuable: “When
multiple scales are used to represent the same
graph, graphing windows should contain in-
ternal frames . . . to help students recognize
which portion of a distance [sic] view is being
enlarged in a close-up view” (p. 171).

Traditional approach. The standard tra-
ditional method is to seek an exact solution
by using trigonometric identities to obtain
an equivalent equation that can be readily
solved. Such an equation is sin®z + sinz —
1 = 0. Its one solution for 0 €z < 3 is

sin”? (2148

The exact solution gives rise to the following
theorem: If one leg of a right triangle is in golden
ratio to the hypotenuse, then the second leg is the
geometric mean of the first leg and the hypotenuse,
and conversely. We probably would have missed
this relationship using the zoom-in method. Most
traditional precalculus classes would miss it, too.

Moreover, the exact answer does not give the
average student any idea of the size of the angle for
which the cosine and tangent functions are equal.
Many students would not even realize that is what
the problem is asking for. To answer the ques-
tion, “Which method is better?, we must first an-
swer the question, “What is the educational goal
of studying this problem? Or perhaps, “What are
the goals of the course, and how does this problem
fit into the grand scheme?

Exact answers tend to please our mathemat-
ical souls, yet they are rare. Zoom-in is a very
general method that makes the solver of an equa-
tion think in terms of the functions involved and
their graphical representations. Most students,
with sufficient, carefully designed exposure to the
zgoom-in method, come to realize what it means
to solve an equation, and they learn a great deal
about functions and graphs in the process.




The final example comes from Larry Thursby,
a high school student in the C?PC project. Af-
ter graphing ordinary rose curves in class one day,
he went home and began exploring what I now
call generalized rose curves. This is an example of
what students can and will do on their own if put
in the proper learning environment.

Ezample 3.
Graph r=6sin2.5q.

Solution.

This can be accomplished on the Casio by
using the following program:

0—-T

Range -9, 9,1, -6, 6, 1

Lbl 1

6 sin 2.5T — R

Rec (R, T)

Plot 1]

Line

T+01 —-T

T < 47 = Goto1
The portions of the program in boldface
type may vary from problem to problem. No-
tice the variable T (used for the angle #)
takes on values from 0 to 4= in 0.1 size in-
crements. The functional value R is com-
puted for each of these values of T'. These
polar coordinates, (R,T), are converted to
rectangular coordinates; the point is plotted.
Then that point is connected by a line seg-
ment to its immediate predecessor (except for
the first time through the loop when there is
no preceding point). The Line command is
given in boldface because in some cases you
may wish to delete this step to avoid con-
necting points. The Range parameters are
chosen so that the entire graph will appear
on the screen and to fit the 3:2 aspect ratio
of the Casio screen.

When the program is executed the Ca-
sio flashes back and forth between the text
window and the graphics window. At the
end of execution, the Casio will show the text
window, and the graph will be stored in the
graphics window., The G — T command will
reveal the graph shown in Figure 12.

Figure 12, The graph of * = Gsin2.58 in
[-9,9] x [-6,6]

Discussion and Conclusion

Hand-held graphing computers with their in-
teractive graphics capabilities have profound im-
plications for what we can and should teach and
how we should teach it. Graphs of functions and
relations can be quickly drawn and explored. In-
teractive graphical methods, such as zoom-in, can
be used to develop mathematical connections and
to solve realistic problems. The Sharp EFL-5200
goes beyond interactive graphics with its built-in
equation-solving and matrix capabilities. For in-
stance, the Sharp’s SOLVE key makes short work
of Example 2. We can subtract tanzr from each
side of the original equation to obtain f(z) =
cosr —tanz, set z-min = 0 and z-max = 1,
and then graph f using the AUTODRAW fea-
ture, which picks the y-min and y-max for us
automatically. This yields the graph shown in Fig-
ure 13. After graphing the function, we need only
press the SOLVE key. After a brief wait the so-
lution = = 0.666239433 will appear on the screen
(see Figure 14; notice that the Sharp viewport is
reduced to 24 x 96 pixels when the SOLVE key is
used).




Figure 13. The graphof y = cosz—tanz in [0,1] x
[-1.0711,1]

8. 6E62304TE

Figure 1. The z -intercept readout sbtained by using the
SOLVE key

The HP-28 can solve Example 2 without even
drawing a graph. Using the Solve menu, we can
store the equation in its original form, provide the
HP with an initial guess, say r = 0.5, and then
in a matter of seconds have the 12-place solution
0.666239432493 with a message that says, “Sign
Reversal,” indicating an approximate solution.

The C?*PC materials do not include auto-
matic equation solving because that is not in
keeping with the project’s goal of developing a
strong, stable connection between algebraic and
geometric representations of functions and rela-
tions. When the instructional focus is not on
solving the equation or gaining geometric intu-
ition but on using the solution, the automatic
solving routines of the Sharp and the HP-2§ are
appropriate. This should be the case by the
time a student studies calculus, if not before.
Hand-held graphing computers, especially the
symbol-manipulating HP-28, offer many powerful,
sometimes controversial new approaches to the
teaching and learning of college mathematics.
Many more questions can be asked than answered.
This article has offered a set of examples that il-
lustrate how these machines can be used in the
context of a course in college algebra, trigonom-
etry, and analytic geometry designed to prepare
students for calculus. We should all reflect on how

this new breed of calculators can be used to im-
prove the instruction in the courses we teach.
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