Adapting the Maple Computer Algebra System to the Mathematics Curriculum-

J. 8. Devitt
The University of Saskatchewan

Introduction

This year has seen considerable excitement in the
mathematical community over the increased avail-
ability of symbolic algebra software for use in the
classroom. It is not that the software has just
emerged. In fact, such software has been under
development since the early 1960’s [7,6]. Rather,
it is a combination of issues including the evolu-
tion of the software and hardware that combine to
make sufficiently powerful versions of the software
available to individual students and instructors.

Numerous attempts to include computation
in the curriculum have been made over the past
decade using a variety of software and hardware
platforms. However, the ready availability of com-
putational support for algebra is a key step to-
wards providing an adequate computational envi-
ronment for doing college and research level math-
ematics. It is not intended as a replacement for the
computational mainstays of graphics or numerics
any more than algebra is intended as a replace-
ment for numerical computation or visual repre-
sentation. The point is that algebraic computation
plays a crucial role in modelling and in analyzing
and setting up problems. In describing our visual
and numerical observations we often rely heavily
on algebra to state and analyze the underlying
properties of the model? With symbolic algebra
we provide the computational support necessary
to derive and manipulate this underlying model.

Much of the past development effort for com-
puter algebra systems has gone into extending
them to carry out large and difficult algebraic com-
putations. Considerable progress is being made in
this direction but there is more to doing math-
ematics than completing large computations. As
these systems mature it is possible to place some
emphasis on using them to do mathematics. This
places different demands on them.

* (©1988 by J. 5. Devitt

For example, we may want to transform
an indefinite integral using integration by parts
rather than evaluating it. Computer algebra sys-
tems must allow us to manipulate and ohserve al-
gebraic entities from a variety of points of view.

This article raises some of the issues about
the style of use of computer algebra systems
through a variety of examples based on the use
of Maple™to solve particular problems arising
from first year calculus. ! These examples run us-
ing Maple version 4.2 on, for example, a standard
Macintosh Plus with one megabyte of memory. 2
They emphasize how the Maple system can and
has been adapted to the needs which arise in talk-
ing about and teaching mathematics. The exam-
ples do not come close to describing the full com-
putational power of Maple. Our aim is to illustrate
a philosophy or style of use appropriate for such
toals.

Daily use in the classroom

Ideally we should be able to use a symbolic
algebra system in an interactive session much like
we would the blackboard and chalk. A live sym-
bolic algebra session projected by means of an
overhead projector can be the focus of every lec-
ture. At this point the black board may still be
used to sketch rough diagrams motivating con-
cepts and to state theorems. However, almost all
computation can be done by machine.

. Students observe first hand how to carry out
certain basic tasks within the system.

. The instructor role model supports the over-
all goals of applying the available tools to
the problem at hand. We don’t imply that
“Computers aren’t much use for what I do!”
by avoiding the machine at every possible
turn.

. The focus of the lectures is on the structure
of problem solving rather than on the details
of every computation.

1 Maple is a trademark of the University of Waterloo.

2 Maple: Symbelic computation for the Macintosh is
now available from Brooks/Cole Publishing Co., Monterey,
CA. Macintosh is a registered trademark of Apple Com-
puter Ine.

13

Through the use of online documents containing a mixture of explanations and system commands, we
can extend this classroom experience to the laboratory.

When is a solution a solution?

A question which has been forcefully raised by the “Four Colour Theorem” [8] is “What is the nature of
a mathematical solution?".

Symbolic algebra systems cause a real dilemma. Consider the solutions to the following problems proposed
in the American Mathematical Monthly.

Compare the following sum and product [9]

#--> Sum(

#-=> (-1)" (k-1)*binomial (N,k)*k/(1+(k-1)#a),
#==> #==> k=1..H)

#-=> #--> =

#--> #--> Product((k+1) / (k+1/a), k=1..N-1);

N
----- (k - 1)
\ (-1) binomial(N, k) k
} L A — S S -
! 1+(k-1) a
k=1
-1
i k+1
. AT
k + 1/a

Here the Sum and Product deliberately returned unevaluafed though of course the algebra system may
be unable to complete a computation and so would return unevaluated of its own accord.

We next force Maple to try evaluating the above expression using a routine which effectively replaces
“Sum” by “sum”, etc. 3

#--> Eval(");
1+ a 1+a
N GAMMA(-—--—-) GAMMA(--=-=--- - 1/a + ¥ - 1)
a a
l+a 1+a
GAMMA(---——-— - 1/a) GAMMA(-——————— + N - 1)
a a

GAMMA(N + 1) GAMMA(1 + 1/a)

GAMMA(N + 1/a)

3 There is a convention that uppercase equivalents of lowercase commands are inert. Eval() is a function in the student

package.

14

We appear to be successful and the answer can be further
simplified further as:

#--> simplify(™);

L

The name stands for “the previous expression”.
Or consider this ordinary differential equations problem.[10]

#--> ODE := y3 = yi*(3*y2~ 2 - y3*yl);

2
OCE := y3 = y1 (3 y2 - y3 y1)

#--> y1 := diff(y(x),x);

d
o B R (¥ 5]
dx
#--> y2 := diff(y(x),x,x);
2
d
¥2 = ===== y{x)
2
dx
#—> y3 := diff(y(x),x,x,x);
3
d
y3 1= ———— y(x)
3
dx
#--> #--> dsolve(ODE,y(x));
y(x)
2 2 2 2 2 1/2
= ((x exp(C) + 2 x exp(C) C1 + C1 exp(C) - 1)
2
/ exp(cC)

- C1

15

1n(2
exp(C)

2 2 2 2 2
(x exp(C) + 2 x exp(C) C1 + C1 exp(C) - 1)
= (1/2)

2 2
+ 2 x exp(C) + 2 exp(C) C1)

1/ exp(C))

1/2
(-1) exp(C)

+ 1n(2
exp(C)

2 2 2 2 2
(x exp(C) + 2 x exp(C) C1 + C1 exp(C) - 1)
{1/2)

2 2
+ 2 x exp(C) + 2 exp(C) C1)

1/2
(-1) c1

+ C2

Though the final answer is not as elegant as we might like, it can be simplified.

#--> subs(exp(C)=K,");

yix)
2 2 2 2 2 1/2
(xK+2xKCl+ClLK-1)
={ —————————————————————————————————————
2
K
- C1
2 2 2 2 2 1/2 2
In(2 K(xK+2xK C1+¢C1 K -1) +2x K
2
+ 2 K C1)
1/K)
1/2
(-1) K
2 2 2 2 2 i/2 2
+1n(2 E(xK+2xKCl+C1 K -1) 2+ 2xK
2

+ 2 K c1)

1/2
(-1) ¢c1

+ C2

In both these examples, we observe that:

s The user has control over what evaluation is attempted and when it takes place.

s The system supports a high level of abstraction providing a near 1-1 correspondence with the tasks at

hand.

® The system is fairly powerful.

o We will need to develop verification techniques if we are to find these answers acceptable.
The verifications refered to above will benefit from machine computation as well. For example, we could substi-
tute the solution to the differential equation back into the original equation using the command subs (" ,0DE) ;.

Some sample symbolic computations

We begin by reviewing some of the basic capabilities of Maple. All the examples you see here run on the basic
Mac Plus with only one megabyte of memory. The actual Maple commands used are indicated here by use of
the prompt #-->.

The overall capabilities of a symbolic algebra system can be quite impressive, First noticed may be the
freedom from concern about machine specific restrictions such as limits on the size of integers and refusals to
represent rationals exactly.

#--> 2/3;
2/3
#-—-> 100!;

93326215443944152681609238856266700490715968264381621468592,
96389521750090322091560804146307615651828625369T92082722378,
8251185210916864000000000000000000000000

#—> evalf(Pi, 100);

.3141592653589793238462643383279502884197169399375105820974,
9445923078164062862089986280348256342117068
* 10 7 1

Essential operations such as integer greatest common divisors and factoring are made available interac-
tively.

#=-=> 37 B0O;

36360201795860036842385267079543310118023385026001623040344,
0358325806001915838954841985082629793887833081 7970253440385,
57528550315170130661420924309165620257800217712478476434501,
253428365658132099725003715001525787280083859901397953776140,
001

#--> iged(",5~ 300);
1

Our computational experience might have convinced us that we should never leave a variable unassigned,
but here the variable may well be the data.

#--> 51 := Sum{i~ 20,i=1..n);

#--> 52 ;= Sum(1/i~ 3,i=1..infinity);

infinity
\ 1
52 :=) ——
i 3
et i
i=1

Unevaluated expressions like these can be evaluated. exactly by Maple.

#--> Eval(sl):

21 20 19
1/20 (n+ 1) =-1/2 (n+ 1) + 5/3(n + 1)
17 1292 16 13
= 19/2 (n + 1) 4+ —=—===- {n+ 1) - 323 (n + 1)
21
41990 11 223193 e T
¥ o 1) = e—— (n + 1) + 6460 (n + 1)
a3 63
68723 5 2193356 3 174611
= mmeme——— (0 4 1) 4 === (0 4 1) = ———=——— n
10 63 330
174611

#--> Eval(s2):
Zeta(3)

The Maple system generally assumes it is working with polynomials having exact rational number coef-
ficents. However, we can choose to work with algebraic extensions of the rationals.

#--> 1 := expand((x~ 2 - (3#alpha-1)#x + alpha~ 2)
#--> % (x-2+alpha)” 2 J;

4 3 2 2 3 3
f :=x -7 x alpha + 17 x alpha - 16 alpha x + x

2 2 4
- 4 alpha x + 4 x alpha + 4 alpha

4 the Eval() command is a command from the student package which is part of the basic maple system and is used to convert
from unevaluated forms of expression to ones which evaluate.

#--> g := expand((x~ 2+x+1)" 2 * (x—2+alpha)” 2 };
6 5 4 2 5 4

E =X -4 x alpha + 4 x alpha + 2 x - 8 x alpha
3 2 4 3 2 2 3
+ 8 x alpha + 3 x - 12 x alpha + 12 x alpha + 2 x
2 2 2 2

8 alpha x + 8 x alpha + x — 4 alpha x + 4 alpha
#--> alpha := RootOf(x~ B+x~ 3+1,x);

b ki
alpha := RootOf(Z + Z + 1)

#--> evala(Ged(£f,g));

2 5 3 5 3 2
X -4 RootDf(Z + Z + 1) x + 4 RootOf(Z + Z + 1)

The library of about a thousand routines organized into man subdirectories. subdirectories. Most of these
are automatically loaded when needed. However, some mechanism must be provided for focussing on a specific
subject area such as linear algebra, first year calculus, or number theory. An environment for linear algebra
can be quickly constructed by the with() command which defines (but does not load) a library of routines on
this specific topic.

#--> with(linalg);

Warning: new definition for trace
[jacobian, band, smith, add, vectdim, trace, gausselim,

orthog, laplacian, transpose, cond, rowspace, leastsqrs,
scalarmul, adj, genmatrix, hadamard, dotprod, mulcel,
swaprow, vandermonde, submatrix, det, swapcel,
singularvals, bezout, definite, hilbert, range, mdet,
kernel, linsolve, indexfunc, diverge, hessian, addrow,
sylvester, multiply, adjeint, nullspace, mulrow,
inverse, rank, subvector, rowdim, toeplitz, angle,
ismith, eigenvals, colspace, addcol, crossprod, grad,
norm, coldim, curl, permanent]

Once defined the routines will be automatically loaded when needed. These generally apply to matrices
with symbolic entries.

#--> jacobian([1/sin(x+y)],[x,¥]1);
arvay [1 .. $, 1., 2,

cos(x + y) cos(x + y)

e

2 2
sin(x + y) sin{x + y)

Much of the work in designing computer algebra systems has gone into developing sophisticated and
powerful methods to attack large computational problems. Indefinite integration has received considerable
attention. The Risch integration algorithm is used for many classes of problems.

#—> f1 := x / (exp(x) + 1);

x
fl 1=~
exp(x} + 1
#--> int(f1,x);
!
| x
| —————— dx
| exp(x) + 1
/

Though it is not obvious in this example, Maple has actually proved that the above integral cannot be
expressed in terms of elementary functions.® Again we are faced with the question “What constitutes a proof?”.
Our ability to comprehend and verify solutions becomes essential. The following slightly different integral can
be expressed in terms of elementary functions;

#--> 12 := 1 / (exp(x) + 1);

1
12 '@ mmmmm=e=s=e==
exp(x) + 1

#--> int(f2,x);
- In(exp(x) + 1) + ln(exp(x))

as can the following integral,
#--> num ;= x*(x+1) * ((x~ 2%exp(x~ 2)~ 2 - log(x+1)~ 2)" 2
#--> + 2#xtexp(x™ 2)° 3 # (x - (2#x~ 3+2+x~ 2+x+1)*log(x+1))):
#--> den := ((x+1)*log(x+1)~ 2 - (x~ 3+x~ 2)sexp(x~ 2)~ 2)~ 2:
#--> f3 := num/den;
£3 :=

x (x +1)

2 2 2 22
((x exp(x) - In(x + 1))

+ 2

23 3 2
xexp(x) {x-(2x+2x+x+ 1) Inlx + 1))

)

2 3 2 222
/ ((x+1) In(x + 1) - (x + x) exp(x))

% An unevaluated return in Maple generally means that Maple has been unable to solve the problem. This integral happens
to fall into the class of integrals for which Maple has a complete algorithm so we can make the stronger claim.

19

#--> #-——> int(£3,x);

2
x exp(x) In(x + 1)
x - In(x + 1) + ——
2 22 2
x exp(x) - In(x + 1)

2
+ 1/2 In(In(x + 1) + x exp(x))

2
- 1/2 In(ln(x + 1) - x exp(x })

i For definite integration problems, we can automatically invoke numerical techniques in situations that

warrant it.
We first represent the problem without even attempting to evaluate it.

#--> rl1 := Int{ exp(-t) / sqrt(i-t- 2),
#-->t = -1..1);

1
/
[exp(- t)
rl := | ————————————
| 2 1/2
/ (1-¢t)

=1
We next force maple to attempt the evaluation (ie. to use int()).

#--> Eval(");

1
/
| exp(- t)
| === dt
I 2 1/2
I {1-t)

Finally, as this did not evaluate we apply numerical techniques directly to the unevaluated result. The
algebraic representation of the integrand allows for a sophisticated analysis of the numerical problem and the
use of various tranformations to complete the computation.

#--> evalf(");
3.977T463261

A platform for stepwise refinement

Computer algebra systems have a tremendous potential to support stepwise refinement. For example in
Maple we can choose to examine the problem at various levels of detail.

Consider, for instance, the derivation of Simpson’s rule for numerical integration (see Figure 1). Ultimately
we end up with formulas like

#--> simpson(f(x), x=0..2,2);

1/3 £{0) + 1/3 £(2) + 4/3 £(1)
#-=> simpson(f(x), x=0..2,4);
simpson := proc(F, dx) local a,b,f,i,h,n,rg,x;

dx is an equation of the form x=a..b.
n is an opticnal 3rd parameter
& for number of steps.
x := op(l,dx); rg := op(2,dx); # dx is x=a..b
if nargs > 2 then n := args[3] else n := 4 fi;
a := op(1,rg); b := op(2,rg); h := (b-a)/nm;
define a function and evaluate appropriately
f := readlib{unapply){ F , x };
h/3+ (£(a) + £(b)

+ 4%sum(f{a + (i*2-1)*h),i=1..n/2)

+ 24sum{ f(a + (i#*2)#h),i=1..(n/2)-1));

and :

Figure 1: Simpson’s Rule
1/6 £(0) + 1/6 £(2) + 2/3 £(1/2) + 2/3 £(3/2) + 1/3 (1)
or more generally,

#--> simpson(f(x),x=0..2,n);

2/3
1/2 n
\ 21-1
(£(0) + £(2) + 4 {) £(2 —=——===un 1)
! n
i1=1
i/2n -1
\
+ 2 ()} (4 i/n)))
!
i=1

1/ n

Too often, our testing consists of simply asking the students to recall this formula. But clearly, machines
can compute this and the formula can be locked up. Even for our poorer students, the interest must lie in
grasping the underlying mathematical model.

We need little more than the notion that a polynomial of degree two can be used to represent an arbitrary
function.

We begin with three points. The chosen values of z and the corresponding values for f(z) are shown in
the lists below.

#--> xvals := [0,1,2];

xvals := [0, 1, 2]

22

#--> yvals := map(f,xvals);
yvals := [£(0), £(1), £(2)]

Under the right conditions (the ones that usually hold in class) these three points uniquely define a
polynomial of degree 2. The polynomial and the function must have these three points in common. The
polynomial is given by:

#--> interp(xvals,yvals,x);

2 2 2
1/2 £(2) x - 1/2 #{2) = — £(1) x + 2 £(1) x + 1/2 £(0) x

- 3/2 £(0) x + £(0)
We complete the derivation of Simpson’s rule by integrating the resulting polynomial instead of f(z).

#-=> Int(",x=0..2);

2 2
Int(1/2 £(2) x - 1/2 £(2) = - £{1) x + 2 £(1) x
2
+ 1/2 £(0) x - 3/2 £(0) x + £(0),
x=0..2)
#--> expand(");
2 2 2
/ i /!
| =z | | 2
1/2 £(2) | x dx - 1/2 £(2) | x dx - £({1) | x dx
I | |
/! ! /!
Q 0 0
2 2
/! !
| | 2
+ 2 f(1) | xdx+ 1/2 £(0) | x dx
| |
/! !
0 0
2
/!

- 3/2£(0) | x dx + 2 £(0)
|
!
0

#--> Eval("):
1/3 1(0) + 1/3 £(2) + 4/3 £(1)
The Maple commands form a high level description of the solution.

xvals := [0,1,2];
yvals := map(f,xvals);
interp(xvals,yvals,x);

Int(",x=0..2);
axpand(");
Eval(");

Stepwise refinement is implicit in the question “What really happens when we use interp()?”.
We can proceed by defining F to be an arbitrary polynomial of degree 2,

#--> F = <a*x” 2 + b¥x + c|x>;

2
F:=<ax+bx+clx>

We obtain three equations by evaluating both f and F at the three known points and solve the set of
equations for the three unkown constants. The result is a quadratic polynomial, say R.

#--> eq:={1(0)=F(0), £(1)=F(1), £(2)=F(2)};

eq := {£(0) =¢c, f(1) =a+b+c, 2(2) =4 a+ 2 b + c}
#--> solve(eq,{a,b,c});

{e = £(0), b= - 1/2 £(2) + 2 £(1) - 3/2 £(0),

a = 1/2 £(2) - 1(1) + 1/2 1(0)}

#--> R := subs(",F(x));

2
R := (1/2 £(2) - £(1) + 1/2 £(0)) x

+ (- 1/2 £(2) + 2 £(1) - 3/2 £(0)) x + £(0)

If we are not comfortable with solving systems of linear equations there is a simple explanation. To solve
the system from first principles, choose an unsolved equation, solve it, and update all the other equations with
the implied substitution. Repeat this process until done. A possible first step appears below.

#--> solve(£(0) = F(0) , {c});

{c = £(0)}

#--> eq := subs(",eq);

eg :=

{1(0) = £(0), £(1) = a + b + £(0),
1(2) =4 a+20b + 1£(0))

Having derived the model, we can now observe how it behaves in specific instances using just a few
additional commands.

#--> F := makeproc({ R , x);

F := proc (x) option operator; (1/2+#f(2)-f(1)+1/2¢£(0))#x++2
+(=1/2+£(2)+2+£(1)-3/2%£(0)) #x+£(0) end

#——> 1 ;=< x" 4+ 3| x>;

4
f:=<x + 3[x>
#--> plot({f(x),F(x)}, x=0..2);

See Figure 2.
Additional cases may also be considered.

#-->f ;= <x + 4 | x>
#--> plot(f(x),F(x),x=0..2);
#--> £ := gin;

#--> plot(f(x),F(x),x=0..2);

We have been able to design the model and observe its behaviour all in the same environment.

19.9

- 10.4

Figure 2:

Accessibility

A note is in order about user interfaces and the Macintosh release of Maple. While much of what has
been discussed above is independent of the user interface, depending to a large extent on the functionality of
the commands, user interfaces cannot be ignored. The easier the commands are to construct, the more likely it
is that we are to try a few “computer experiments” when starting almost any new problem - the more effective
our mathematical laboratory will become.

Maple: Symbolic computation for the Macintosh now runs on the Macintosh®under Finder™ (and
MultiFinder™™)® This is a complete version of Maple version 4.2 and performs well on a standard Mac Plus
with only one megabyte of memory. It includes plotting and is known to run well under a variety of networking
software.

The user interface of Maple on the Macintosh provides you with a session window (already open) to
capture all the results of typical Maple commands. There are three exceptions to the use of this window for
displaying results. The help() command displays its results in a read-only text window. Similarly the plet()

& Macintosh is a registered trademark of Apple Computer Inc. Finder and Multifinder are trademarks of Apple Computer

Inc. Maple is a trademark of the University of Waterloo while Maple for the Macintash is published by Brooks/Caole Publishing
Co., Pacific Grove, Ca.

command produces its results in a special plol window. Finally there is a stafus window that indicates the
amount of system resources you have used. See Figure 3.

Li Fik: Edit font ot Settings Windows

Status G S s e Rl B R

EEe plot sincos35]

Bytes Used: 252000 ¢
Bytes Alloc: 110592
Seconds: 12.55

Information for help|:

FUMCTION : help = descriptions of syntax|

CALLING SEQUENCE : help(topic 3, or FEEs

SYHOPSIS

helpt intro 3; introduction to Maple

helpd indax 3; list of help categories

helpl index, |ibrary J; Hople library functions and

helpt index, t‘category: J; list of help files on specif|

helpl <iopic* 3; explanation of a specific to

helpl {packoger, <topic*); explanation of a topic in <p 142
helpl "<keyword>”), explanation of a statement K .
helpl distribution .:.i_; for information on kow to ob 1) + 2 arctantx 2 "
Hote 1: A Maple keyword {(reserved word? cannot be used

the help function unless |t is enclosed in bockguy |

“"halplguit);” couses o syniax error — use “helpd quit’);.c.

diffe™, =y;
1/4
1/2 2 1/2 1/2
2x + 2 (x +x2 + 1) (2 x =2] 2 1/
[—— = Ykw = w2 + 13
2 1/2 2 1/2 2
x —x 2 + 1 (x = x2 + 13
(_--_-_-----------
2 1/2
X *x 2 + 1

Figure 3: A Sample Screen

If you were never to venture beyond the use of this one session window you could pretend that vou were
using Maple on a typical large mainframe. You would simply type in your commands using the Macintosh
enter key at the end of each line, rather than the return key”. However, a big advantage to the Mac style
implementation over others is that you can edit and reuse previous commands all directly from within your
Maple session.

The various windows can be thought of as multiple clipboards. Classroom examples are easily prepared
and stored on a file server. After solving the problem using Maple, save the Maple instructions together with
comments etc. outlining the solution process in file in the class library. By opening such files from within Maple,
students have access to these documents. They may try out examples immediately by selecting and entering
the associated commands. The students can easily modify the examples and save their own versions, either on
diskettes or on file space provided on the server.

The standard plot command in Maple 4.2 directly supports the plotting of Maple expressions and fune-
tions, parametric plots, polar coordinates, and curves generated by lists of points. It uses adaptive techniques
and is robust in that singularities, or wildly fluctuating function values are generally handled well. Several out-
put devices are supported including regis, In03, vt100, tektronics, postscript and ascii character plots. Several

7 These keys have distinct functions on the Macintosh keyboard.

———)

curves may be plotted on one graph by simply passing a set of expressions as the first argument to the plot
function. All such plots may be saved as a Maple data structure, and later modified.

Maple for the Macintosh also uses a new output format for plots (plotdevice := mac;). By default,
plots created by Maple on the Macintosh are displayed in a special plot window. This window can be resized,
printed, or saved directly. See Figure 4. The graphs can be cut and pasted to the scrapbook or to other

applications directly. Figure 5 shows the result of enhancing the graph generated by Maple in Figure 4 through

a few simple commands in MacDraw® 8

| 18.9—+

=256+

Figure 4: A Maple Plot on the Macintosh

The Mean Value
Theorem

Figure 5: An Enhanced Maple Plot

Maple is small enough that it may be used effectively under MultiFinder. On a two megabyte machine,
you can have Maple and at least one other application running simultaneously. Cutting and pasting between
applications becomes quick and elegant,

% This is a registered trademark of Claris Corporation.

While much work remains to be done on the
development and design of effective experimental
laboratories for mathematics, all the key ingredi-
ents are in place. We are starting to address the is-
sue of "how” a computer algebra system should be
used for doing experimental mathematics. Maple’s
student package is a specific attempt to address
this issue of style. The Maple Macintosh interface
is an important first step and serves as a prototype
for emerging interfaces on other work stations. The
next decade promises to be an exciting time for
mathematics and mathematics education.

References

[1] Char, et. al., The Maple User's Guide ,
WATCOM Fublications Ltd., 415 Phillip
St., Waterloo, Ontario, 1985

[2) Devitt, J. S., Teaching First Year Calenlus
through the UUse of Symbolic Algebra |, -
published classrcom notes, The University
of Saskatchewan, October, 1987,

[3] Devitt, J. 5. The Full Power of Maple on
a Mac Plus?, the Maple Newsletter, vol 4,
1989, pp.4-9.

[4] Toward a Lean and Lively Calculus , MAA
Notes, No. 6, edited by R. G. Douglas, The
Mathematical Association of America, 1986

(6] Calculus for a New Century: A pump not
a fiter, MAA Notes, No. 8, edited by L.
A. Steen, The Mathematical Association of
America, 1988

[6] Hearn, Anthony C., Reduce 2: A system and
language for Algebraic Manipulation, Pro-
ceedings of the Second Symposium on Sym-
bolic and Algebraic manipulation, Associ-
ation for Computing Machinery, 1971, pp.
128-133.

[7] Rand, R. H., Computer Algebra in Applied
Mathematics: An Iniroduction to MAC-
SYMA, Pitman Pub. Ltd. London, 1984.

[8] Ore, Oystein. The Four Color Problem, Aca-
demic Press, New York, 1967.

[9] Zaslove, E. Problem E2971, The American
Mathematical Monthly, 1982,

[10] Sadowski, J. Problem E3022 The American
Mathematical Menthly, 1983.

27

