Table of Contents

Numerical Methods for Scientific Computing

Chapter 1 Basic Concepts ................................................. 1
Derivative of a Function, Fundamental Theorem of Calculus, Taylor Series for Functions of a Single Variable, The Landau Symbol $O$, Taylor Series for Functions of Two Variables, Mean Value Theorem, Mean Value Theorem for Integrals, Extreme Value Theorem, Rolle’s Theorem, Intermediate Value Theorem, Number Representation, Number Conversion, Conversion Between Different Bases, Computer Storage of Numbers, Numerical Calculations, Infinite Sequence

Exercise ................................................................. 18

Chapter 2 Equation Solving ............................................... 25
Graphical Methods, Bisection Method, Linear Interpolation, Iterative Methods, Convergence of Iterative Methods, Newton-Raphson Method, Newton-Raphson Method with Multiple Roots, Modifications to Newton-Raphson Method, Secant Method, Müller’s Method

Exercise ................................................................. 53

Chapter 3 Linear and Nonlinear Systems ......................... 59
Preliminaries, Eigenvalues and Eigenvectors, Elementary Row Operations, Gaussian Elimination, Echelon Form and Rank, Rank and Solutions, LU Decomposition, Iterative Methods for Solving $A\mathbf{x} = \mathbf{b}$, Gauss-Seidel Method, SOR Methods, Nonlinear Systems, Newton’s Method for Higher Order Systems

Exercise ................................................................. 100

Chapter 4 Interpolation and Approximation .................... 109
Difference Tables, Interpolating Polynomials, Equally Spaced Data, Unequally Spaced Data, Divided Differences, Error Term for Polynomial Interpolation, Interpolation with Piecewise Cubic Splines, Linearity Condition, Hermite Interpolation, Special Functions and Operators, Rational Functions, Continued Fractions, Parametric Representations, Orthogonal Functions

Exercise ................................................................. 156
# Table of Contents

**Chapter 5  Curve Fitting** ................................................................. 167  
Special Graph Paper, Probability Graph Paper, Least Squares,  
Linear Regression, Weighted Least Squares, Nonlinear Regression

**Exercise** ......................................................................................... 193

**Chapter 6  Difference Equations and Z-transforms** .......... 197  
Differences and Difference Equations, Special Differences, Finite Integrals,  
Summation of Series, Difference Equations with Constant Coefficients,  
Nonhomogeneous Difference Equations, Z-transforms, Properties of the Z-transform

**Exercise** ......................................................................................... 233

**Chapter 7  Numerical Differentiation and Integration** .... 245  
Numerical Approximation for Derivative, Error Terms for Derivative  
Approximations, Method of Undetermined Coefficients, Numerical Integration,  
Newton-Cotes Formula, Romberg Integration, Adaptive Quadrature,  
Gaussian Quadrature, Gauss-Legendre Integration, Gauss-Laguerre Integration,  
Gauss-Chebyshev Integration, General Gauss Integration, Error Term,  
Improper Integrals

**Exercise** ......................................................................................... 292

**Chapter 8  Ordinary Differential Equations** ....................... 303  
Higher Order Equations, Numerical Solution, Single Step Methods,  
Taylor Series Method, Runge-Kutta Methods, Second-order Runge-Kutta Methods,  
Third-order Runge-Kutta methods, Fourth-order Runge-Kutta methods,  
Implicit Runge-Kutta Methods, Multi-step Methods, Open and Closed Adams  
formula, Predictor Corrector Methods, Method of Undetermined Coefficients,  
Error Term, Taylor Series for Systems of Equations, Runge-Kutta for Systems  
of Equations, Local and Global Error, Stability, Stability Analysis of Multi-step  
Methods, Stiff Differential Equations, Variable Step Size, Runge-Kutta-Fehlberg  
method, Boundary Value Problems, Shooting Methods, Differential Equations  
with Singular Points

**Exercise** ......................................................................................... 353
Table of Contents

Chapter 9  Partial Differential Equations .......................... 363

Exercise ......................................................... 401

Chapter 10  Monte Carlo Methods ................................. 411
   Uniformly Distributed Random Numbers, Chi-square $\chi^2$ Goodness of Fit, Discrete and Continuous Distributions, Selected Discrete Distributions, Selected Continuous Distributions, Monte Carlo Examples, Queuing Theory

Exercise ......................................................... 438

Chapter 11  Miscellaneous Numerical Methods .................. 445
   Parallel Computer Systems, Bézier Curves, B-Splines, Fredholm Integral Equation, Neumann Series, Volterra Integral Equation, Boltzmann Differential-Integral Equation

Bibliography ....................................................... 472

Appendix A Units of Measurement .......................... 475

Appendix B Solutions to Selected Exercises ................. 477

Appendix C Tables .................................................. 495

Index ................................................................. 498