As x approaches ∞, both the numerator and the denominator contain terms approaching ∞ or $-\infty$.

Divide each term in the numerator and in the denominator by the highest power of x in the denominator: x^3

Simplify

As x approaches ∞, the terms: $\frac{1}{x^2}$, $\frac{1}{x^3}$, $\frac{1}{x}$, and $\frac{4}{x^3}$ all approach 0. Consequently, the numerator approaches 2, and the denominator approaches -3.

(Note that this means the curve $y = \frac{2x^3 + x - 1}{-3x^3 - 2x^2 + 4}$ has a horizontal asymptote $y = \frac{-2}{3}$.)
8. \[\lim_{x \to -\infty} \frac{4x^2 + 5x - 5}{2x^2 \left(2 + x^2\right)} \]

First of all, expand the denominator...

\[= \lim_{x \to -\infty} \frac{4x^2 + 5x - 5}{4x^2 + 2x^4} \]

As \(x \) approaches \(\infty \), both the numerator and the denominator contain terms approaching \(\infty \) or \(-\infty \).

\[= \lim_{x \to -\infty} \frac{\frac{4x^2}{x^4} + \frac{5x}{x^4} - \frac{5}{x^4}}{\frac{4}{x^4} + \frac{2}{x^4}} \]

Divide each term in the numerator and in the denominator by the highest power of \(x \) in the denominator: \(x^4 \)

\[= \lim_{x \to -\infty} \frac{\frac{4}{x^2} + \frac{5}{x} - \frac{5}{x^4}}{\frac{4}{x^4} + \frac{2}{x^4}} \]

Simplify

\[= 0 \]

Except for 2 in the denominator, all the other terms in both the numerator and the denominator approach 0 as \(x \) approaches \(-\infty \). Consequently, the numerator approaches 0, and the denominator approaches 2.

(Note that this means the curve \(y = \frac{4x^2 + 5x - 5}{4x^2 + 2x^4} \) has a horizontal asymptote \(y = 0 \).)
9. \[\lim_{x \to \infty} \frac{\sqrt{\frac{5}{x} + 2x^4 + 1}}{2x^2 + 3} \]

As \(x \) approaches \(\infty \), both the numerator and the denominator approach \(\infty \).

\[
= \lim_{x \to \infty} \frac{\sqrt{\frac{5}{x} + 2x^4 + 1}}{2x^2 + 3}
\]

Divide each term in the numerator and in the denominator by the highest power of \(x \) in the denominator: \(x^2 \).

In the numerator, use the form \(\sqrt{x^4} = x^2 \).

\[
= \lim_{x \to \infty} \frac{\sqrt{\frac{5}{x} + 2x^4 + 1}}{2x^2 + 3}
\]

Simplify

As \(x \) approaches \(\infty \), the terms \(\frac{1}{x^4} \) and \(\frac{3}{x^2} \) both approach 0.

Consequently, the numerator approaches \(\infty \), and the denominator approaches 2.
10. \[\lim_{x \to -\infty} \frac{3 + x}{\sqrt{x^2 + 3}} \]

As \(x \) approaches \(-\infty\), the numerator approaches \(-\infty\), while the denominator approaches \(\infty\).

Divide each term in the numerator and in the denominator by the highest power of \(x \) in the denominator: \(\sqrt{x^2} \)

In the numerator, use the form \(\sqrt{x^2} = -x \).

(Note that as \(x \) approaches \(-\infty\), we can assume \(x < 0 \), so that the general identity \(\sqrt{x^2} = |x| \) results in \(\sqrt{x^2} = -x \).)

\[= \lim_{x \to -\infty} \frac{3 - x}{\sqrt{1 + 3}} \]

Simplify.

As \(x \) approaches \(-\infty\), the terms \(\frac{3}{-x} \) and \(\frac{3}{x^2} \) both approach 0.

Consequently, the numerator approaches \(-1\), and the denominator approaches \(1\).

(Note that this means the curve \(y = \frac{3 + x}{\sqrt{x^2 + 3}} \) has a horizontal asymptote \(y = -1 \)).