Table of Contents

Introduction to the Variational Calculus

Chapter 1 Preliminary Concepts ... 1
Functions and derivatives, Rolle’s theorem, Mean value theorem, Higher ordered derivatives, Curves in space, Curvilinear coordinates, Integration, First mean value theorem for integrals, Line integrals, Simple closed curves, Green’s theorem in the plane, Stokes theorem, Gauss divergence theorem, Differentiation of composite functions, Parametric equations, Function defined by an integral, Implicit functions, Implicit function theorem, System of two equations with four unknowns, System of three equations with five unknowns, Chain rule differentiation for functions of more than one variable, Derivatives of implicit functions, One equation in many variables, System of equations, System of three equations with six unknowns, Transformations, Directional derivatives, Euler’s theorem for homogeneous functions, Taylor series, Linear differential equations, Constant coefficients

Exercises ... 47

Chapter 2 Maxima and Minima .. 55
Functions of a single real variable, Tests for maximum and minimum values,
First derivative test, Second derivative test, Further investigation of critical points,
Functions of two variables, Analysis of second directional derivative, Generalization,
Derivative test for functions of two variables, Derivative test for functions of three variables,
Lagrange multipliers, Generalization of Lagrange multipliers, Mathematical programming,
Linear programming, Maxwell Boltzmann distribution

Exercises ... 87
Chapter 3 Introduction to the Calculus of Variations 95

Functionals, Basic lemma used in the calculus of variations, Notation, General approach,

[f1]: Integrand $f(x, y, y')$, Invariance under a change of variables,

Parametric representation, The variational notation δ, Other functionals,

[f2]: Integrand $f(x, y, y', y'')$,

[f3]: Integrand $f(x, y, y', y'', ..., y^{(n)})$,

[f4]: Integrand $f(x, y_1, y_1', y_2, y_2', ..., y_m, y_m', y_m'', ..., y_m^{(n_m)})$,

[f5]: Integrand $f(t, y_1(t), y_2(t), \dot{y}_1(t), \dot{y}_2(t))$,

[f6]: Integrand $f(t, y_1, y_2, ..., y_n, \dot{y}_1, \dot{y}_2, ..., \dot{y}_n)$,

[f7]: Integrand $F(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y})$,

[f8]: Integrand $F(u, v, x, y, z, \frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}, \frac{\partial y}{\partial u}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial u}, \frac{\partial z}{\partial v})$,

[f9]: Integrand $F(x, y, z, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z})$,

[f10]: Integrand $F(x_1, x_2, ..., x_n, w, w_{x_1}, w_{x_2}, ..., w_{x_n})$,

[f11]: Integrand $F(t, x, y, z, u, v, w, u_t, u_x, u_y, u_z, v_t, v_x, v_y, v_z, w_t, w_x, w_y, w_z)$,

[f12]: Integrand $F(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y^2})$,

[f13]: Integrand $F(x, y, u, v, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y})$,

Differential constraint conditions, Weierstrass criticism

Exercises .. 131

Chapter 4 Additional Variational Concepts 137

Natural boundary conditions, Natural boundary conditions for other functionals,

More natural boundary conditions, Tests for maxima and minima, The Legendre and Jacobi analysis, Background material for the Jacobi differential equation,

A more general functional, General variation, Movable boundaries, End points on two different curves, Free end points, Functional containing end points,

Broken extremal (weak variations), Weierstrass E-function, Euler-Lagrange equation with constraint conditions, Geodesic curves, Isoperimetric problems, Generalization, Modifying natural boundary conditions

Exercises .. 187
Table of Contents

Chapter 5 Applications of the Variational Calculus 195

- The brachistochrone problem, The hanging, chain, rope or cable,
- Soap film problem, Hamilton’s principle and Euler-Lagrange equations,
- Generalization, Nonconservative systems, Lagrangian for spring-mass system,
- Hamilton’s equation of motion, Inverse square law of attraction, spring-mass system, Pendulum systems, Navier’s equations, Elastic beam theory

Exercises .. 231

Chapter 6 Additional Applications ... 243

- The vibrating string, Other variational problems similar to the vibrating string,

Exercises .. 301

Bibliography ... 310

Appendix A Units of Measurement ... 312

Appendix B Gradient, Divergence and Curl 314

Appendix C Solutions to Selected Exercises 318

Index .. 348