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Preface

Elementary geometry is the stepping stone to more advance mathematical subjects. It

is needed to understand many components of physics, chemistry and engineering. Even the

biological sciences require an understanding of geometry, especially biochemistry. In fact,

more and more scientific disciplines have come to rely on mathematics of some kind which

usually involves some component of geometry.

This book is written so that students and instructors studying geometry can have a

reference book presenting a more detailed investigation of selected advanced topics from

both plane and solid geometry. The material presented begins with elementary concepts

and ideas and progresses rapidly to more advanced concepts. It introduces trigonometry

and vectors and shows how these topics can aid in the study of geometry. It offers the

presentation of geometry fundamentals from a variety of viewpoints. Many examples are

given to help clarify new ideas.

In depth investigations into Projective Geometry, Differential Geometry, Non-Euclidean

Geometry, Stochastic Geometry, Combinatorial Geometry, Riemannian Geometry have been

omitted from this text. Students wishing to pursue an understanding of these more advanced

topics are encouraged to do so. Geometry does not end after taking just one course.

J.H. Heinbockel

July 2017
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Geometry

Chapter 1

Preliminaries

Euclid of Alexandria, Egypt (325-265) BCE is well known for his mathematical

investigations into geometry. His surviving work called Elements consists of 13

books on geometry. These books have been around for over 20 centuries and have

been translated into all the major languages of the world. The thirteen books from

the Elements can be found on the internet. The first four books and the sixth

book investigate properties of lines, figures and shapes in a two-dimensional plane.

The fifth and sixth books are concerned with the theory of proportions. The books

seven, eight and nine are numerical in nature. The tenth book deals with irrational

quantities. The remaining three books deal with solid three-dimensional geometry.

It is not known if Euclid of Alexandria wrote all of the thirteen books on ge-

ometry. It has been suggested that a team of mathematicians wrote the thirteen

books under Euclid’s direction. The matter is an open question because not much

is known about Euclids life. Below is a 17th century painting entitled Euclid by the

painter Antonio Cifrondi. The picture is courtesy of Wikimedia Commons.

Figure 1 -1. Euclid, 17th century painting by Antonio Cifrondi.



2

In his study of geometry Euclid presented certain fundamental propositions,

which are assumed to always be true. He defined concepts about points, lines,

planes, angles, plane figures, parallel lines, solids and other quantities associated

with geometry. Starting with these fundamental propositions, Euclid used various

reasoning techniques to establish additional basic truths associated with points,

lines, plane figures and solid figures. Euclid’s book the Elements was a mathematics

book that introduce critical thinking and reasoning applied to geometric objects and

set a standard for future mathematical analysis.

point line segment plane section cube

no dimension one dimension two dimension three dimension

A point is a location. A point has no dimension. If the point is moved along a

shortest distance to another point, a line segment is generated. This is an example

of a one dimensional object. One can think of the line segment as a continuous

connection of points from a point P1 to another point P2. One can then denote this

line segment using the notation P1P2. The line segment can be extended from either

end to lengthen the line segment.1

A directed line segment or vector, which is positive, is written P1P2

−→
has both a

length and a direction in moving from point P1 to point P2. If P1P2

−→
is a directed line

segment, then P2P1

−→
= −P1P2

−→
because the direction from P2 to P1 is opposite that of

moving from P1 to P2.

If the line segment created is moved up or down in a flat surface to create a

square or rectangle, then a plane section is generated by the motion of the line.

This is an example of a two dimensional figure. You can think of the plane section

generated as defining a rectangle on a flat surface. The edges of the flat surface can

be extended without any bounds to form an infinite flat two-dimensional surface

1 For illustrative purposes the point and line illustrated above have a thickness and are not like the ideal point

and line.
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called an infinite plane. If the two-dimensional plane section is moved up or down

perpendicular to the plane, then a three-dimensional figure is generated. If the plane

section moved was a square, with side x, and it is moved upward a distance x, then

the three dimensional object would be a cube.

Geometry is the investigation of the properties associated with points, lines,

planes, and various shaped objects in one, two and three dimensions. Plane ge-

ometry restricts itself to two-dimensional objects and their properties, while solid

geometry investigates objects in a three-dimensional space. In more advanced ge-

ometry courses one can investigate the goings on in four-dimensional and higher

dimensional spaces. The point, line, square and cube are simple concepts used to

start our study of plane geometry.

The Cartesian method

Figure 1 -2.
Rene′ Descartes

from Wikimedia Commons

A Frenchman by the name of Rene′

Descartes (1546-1650) wrote a book

called LaGéométrie which approached

geometry using algebra and equations

to represent various geometric concepts.

The resulting new approach to geom-

etry gave a geometric meaning to al-

gebraic equations as well as an alge-

braic representation to geometric ideas.

This new geometry is now called Carte-

sian geometry or analytic geometry.

Descartes accomplished this change to

geometry by introducing a rectangular

system of coordinates which could be

used to provide an algebraic approach

to geometry.

You will find that analytical geometry or Cartesian geometry in its simplicity

and ease of presentation is far superior to Euclid’s method of writing things out

and making things very long and wordy. We will refer to the Descartes method of

doing things quite often in order to demonstrate the power of his representation of

geometry. The Cartesian method is sometimes referred to as the start of modern

mathematics.
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One example illustrating the difference between the approach to geometry taken

by Euclid and Descartes is the following. Euclid defines ”point in the plane” as

”that of which there is no part.” Rene′ Descartes defined a point by constructing

two straight lines which were perpendicular to one another. He created a coordinate

system by labeling the horizontal line the x-axis and the vertical line the y-axis. He

then labeled the point of intersection of the lines as the origin and placed number

scales on the two perpendicular lines in order to measure distance from the origin.

A point in this coordinate system is a location with respect to the origin and is

labeled as a number pair2 (x0, y0), called the coordinates of the point with respect to

the origin. Here x0 is called the abscissa or distance from the y-axis and y0 is called

the ordinate or distance from the x-axis. The resulting coordinate system used to

define points is called a Cartesian3 coordinate system, illustrated in the figure 1 -3.

Note that a point in either system is the representation of a location.

Figure 1 -3. Cartesian coordinate system

2 Subscripts placed upon letters are used to denote constant values.
3 Named after Rene′ Descartes. Note that Cartesian is always spelled with a capital C.
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In both the Euclid and Cartesian systems a point has no size only a location.

For illustrative purposes a point is sometimes represented as a dot ( · ) on a planar

surface to emphasize where the location is.

As another example of the difference between the Euclid and Descartes approach

to geometry consider the following. Euclid defines a line as a length without breadth

on a plane. Two distinct points P1 and P2 define a line on a planar surface. One

can think of part of the line as a line segment obtain by point P1 moving along the

shortest distance to the point P2. The points P1 and P2 are then called the endpoints

of the line segment. The line segment thus created can then be extended beyond

its endpoints to whatever length line you desire. For illustrative purposes a line can

be sketched using a straight edged ruler with the line passing through two given

points. The lines as shown in figure 1 -4 have breadth or a line thickness and is for

illustrative purposes only and differs from the ideal line constructed using an ideal

point moving in a direction and having no breadth.

Figure 1 -4. A line segment and parallel lines in Cartesian coordinates

Equation of line

The Descartes system allows one to replace the line by an algebraic equation.

This is accomplished by defining the slope of the line passing through two given

points having coordinates (x1, y1) and (x2, y2) as

Slope = m =
change in y values

change in x values
=

y2 − y1

x2 − x1

(1.1)
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as illustrated in the figure 1 -5. Note the slope of a line never changes. If (x, y)

denotes a variable point which moves anywhere on the line, then it can be used

together with the first point (x1, y1) to calculate the slope. One gets the equation

Slope = m =
y − y1

x − x1

=
change in y values

change in x values
(1.2)

because the slope of a line never changes, no matter where the point (x, y) lies on

the line. If the variable point (x, y) is used together with the second point on the

line (x2, y2), one gets the equation

Slope = m =
y − y2

x − x2

=
change in y values

change in x values
(1.3)

The equations (1.2) and (1.3) are known as the point-slope formulas for the equation

of a line through two given points.

y − y1 = m(x − x1) or y − y2 = m(x − x2), m =
y2 − y1

x2 − x1

(1.4)

Also make note in figure 1 -4 there is a set of parallel lines. In Cartesian coordinates

lines are called parallel whenever their slopes are the same and the perpendicular

distance between the parallel lines remains constant. Sometimes arrows are placed

upon parallel lines to emphasize that they are parallel. Whenever two sets of parallel

lines intersect a parallelogram4 results.

Figure 1 -5. Slope of line through two given points (x1, y1) and (x2, y2)

4 A parallelogram is a four sided closed figure where opposite sides are parallel and are of equal length.
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It doesn’t matter which point-slope formula you select in order to represent the

line. The equations (1.4) are representations for the straight line through the given

points (x1, y1) and (x2, y2). You now have an equation where you can substitute for x

any numerical value and then solve for y which represents the height of the straight

line above the x-axis for the x-value selected.

Example 1-1. Show that it does not matter which of the equations (1.4) are

used to represent the equation for a line. For example, find the equation of the line

which passes through the two points (2, 1) and (4, 5). Then determine if the points

(7, 11), (18, 33), (123, 243) and (52, 100) are on the line.

Solution

The slope of the line through the given points is m =
change in y-values
change in x-values

= 5−1
4−2

= 2

The point-slope formula for the equation of the line is y−y1 = m(x−x1), where (x1, y1)

is any point on the line. Selecting the point (2, 1) as (x1, y1), the equation of the line

is

y − 1 = 2(x − 2) (1.5)

and selecting (x2, y2) as the point (4, 5) the equation of the line is expressed in the

form

y − 5 = 2(x − 4) (1.6)

The equations (1.5) and (1.6) look different, but you can do some algebra and see

they are really the same equation. As a check that you have the correct answer for

the equation of the line you can substitute the point (4, 5) for (x, y) into equation

(1.5) and verify x = 4 and y = 5 satisfies the derived equation (1.5). One finds

(5 − 1) = 2(4− 2) is true and so the point (4, 5) is on the line.

To test the other points that are given to see if they are on the line one must

substitute into equation (1.5) the values (x, y) associated with the given points. If

the equation (1.5) is satisfied, then an identity will result if the point is on the line.

If the equation does not produce an identity when a set of x, y-values are substituted

into the equation, then the equation (1.5) is not satisfied. In this case the point is

off the line. Show that x = 52, y = 100 when substituted into equation (1.5) does not

satisfy the equation and so the point (52, 100) is off the line. The other given points

all produce an identity when their values are substituted into equation (1.5) and

when this happens the equation (1.5) is said to be satisfied and the point is said to

be on the line.
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Slopes of straight lines

Observe that in calculating the slope of a straight line it is customary to always

assume that the change in the x-value is always positive. Pick a point on the line and

move in the positive x−direction and stop. Next move in the y−direction either up

for + or down for − in order to return to the line.

Here an examination of the change in y-values is

then either (a) positive (b) zero or (c) negative. These

changes give rise to lines with either positive, zero or

negative slopes as illustrated in the figure on the right.

Straight lines passing through the point (x0, y0)

(a) with positive slopes have the form y − y0 = +m1(x − x0)

(b) with negative slopes have the form y − y0 = −m2(x − x0)

where m1 and m2 are non zero positive constants. Straight lines with zero slope

are given by equations having the form y = y0 = a constant. Vertical lines have a ±

infinite slope and are represented by equations having the form x = x0 = a constant.

Other forms for a straight line

Equations having one of the forms

(a) Ax + By = C A, B, C constants

(b) y − y0 = m(x − x0) m, x0, y0 constants

(c) y = mx + b m, b constants

(d)
x

a
+

y

b
= 1 a, b constants

(e) x = x0 + a1t, y = y0 + a2t, t0 < t < t1 t0, t1, x0, y0, a1, a2 constants

(1.7)

are all algebraic representations for a straight line or a segment of a straight line in

Cartesian coordinates.

Equations having the form (a) above are referred to as the general form for a

straight line. Equations having the form (b) above are known as the point-slope

form for the equation of a line. The form (c) above is known as the slope-intercept

form and the form (d) is known as the intercept form for a straight line. The form

(e), with parameter t, is called a parametric representation of a straight line. If the

parameter t varies only between certain values, say t0 ≤ t ≤ t1, then only a segment

of the line is represented. Also make note of the fact that the parametric form for a
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line is not unique. For example, the line 3x+4y = 7 can be represented in parametric

form just about any way you want. Three possible forms are (i) x = 7t, y = 1
4
(7− 21t)

(ii) x = 3t − 1, y = 1
4
(10 − 9t), (iii) x = f(t), y = 1

4
(7− 3f(t)) where f(t) is any function of

t you want it to be.

In order to use the form (b) above you have to calculate the slope m of the line

and know a point (x0, y0) on the line. Note that in the form (c) when x = 0, then

y = b which is called the y-intercept, hence the name for the equation. Setting x = 0

in the form (d) one finds y = b, the y-intercept and then setting y = 0 one finds x = a,

the x-intercept, hence the name associated with the equation. If one uses algebra

and eliminates the parameter t in form (e) one obtains the point slope equation of

a line. For example,

x − x0

a1

= t =
y − y0

a2

or y − y0 = m(x − x0) with slope m =
a2

a1

Also observe that the general form for a straight line Ax + By = C, with A, B, C

constants, can be converted to any of the other forms using a little algebra. For

example,

Ax + By = C ⇒ A

C
x +

B

C
y = 1 ⇒ x

(

C
A

) +
y

(

C
B

) = 1 intercept form

Ax + By = C ⇒ y =
−A

B
x +

C

B
slope-intercept form

If (x0, y0) is a point on the line, then (x0, y0) are coordinates which satisfies the

equation of the line or Ax0 + By0 − C = 0. One can then write

Ax+By = C ⇒ A(x−x0)+B(y−y0) = C−Ax0−By0 = 0 ⇒ y−y0 =
−A

B
(x−x0) point-slope form

Substitute the value x = x0 + a1t into the general equation of a line to obtain the

equation A(x0 + a1t) + By = C and then solve for y to obtain

y =
−a1A

B
t +

(

C −Ax0

B

)

⇒ y = a2t − y0, where a2 =
−a1A

B
and y0 =

Ax0 − C

B

This is one of many parametric forms for the line.

Example 1-2. Find the equation of the line which passes through the points

(0, 5) and (7, 0).

Solution

The given points represent the y-intercept and x-intercepts for the equation of

the line. Using the intercept form one can write the equation of the line as

x

7
+

y

5
= 1
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Using algebra one can write

x

7
+

y

5
= 1 ⇒ 5x + 7y = 35

as the general form for representing the line. Alternative representations are

5x + 7y = 35 ⇒ y

5
= 1 − x

7
⇒ y =

(

−5

7

)

x + 5

which is the slope-intercept form with slope m = −5/7 and y-intercept y = 5.

Using the slope m = −5/7 and point (0, 5) the point-slope formula gives

y − 5 = (−5/7)(x − 0) or using the slope m = −5/7 and point (7, 0), the point-slope

formula gives y − 0 = (−5/7)(x− 7). It is left as an exercise to verify that the last two

equations are equivalent to one another.

Example 1-3. Let the endpoints of the line segment AB be A = (x1, y1) and

B = (x2, y2). Find the parametric equation representing this line segment.

Solution:

One can express the points on the line segment AB as a set of values defined by

AB = { (x, y) | x = (1 − t)x1 + t x2, y = (1 − t)y1 + t y2, 0 ≤ t ≤ 1 }

The midpoint of a line segment

In Cartesian coordinates consider two points P1 and P2 having coordinates (x1, y1)

and (x2, y2) respectively. Draw a straight line connecting these points to form the
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line segment P1P2. The midpoint (xm, ym) of

the line segment P1P2 is obtained by taking

the average of the x-values and the average

of the y-values to obtain

xm =
1

2
(x1 + x2), ym =

1

2
(y1 + y2)

This gives the midpoint of the line segment

P1P2 which is the point halfway between

the points P1 and P2.

Example 1-4.

Find the midpoint of the line segment connecting the points (−3, 5) and (5,−1)

Solution

Let (xm, ym) denote the midpoint of the line segment connecting the given points.

The midpoint is obtained by taking the average of the x-values and y-values to obtain

xm =
1

2
(−3 + 5) = 1 and ym =

1

2
(5 − 1) = 2

so that (xm, ym) = (1, 2) is the midpoint of the line segment.

The Greek alphabet

Letters from the Greek alphabet are used quite often in representing mathemat-

ical concepts and are listed below for future reference.

Greek Alphabet

A α Alpha
B β Beta
Γ γ Gamma
∆ δ Delta
E ε Epsilon
Z ζ Zeta

H η Eta
Θ θ Theta
I ι Iota
K κ Kappa
Λ λ Lambda

M µ Mu

N ν Nu
Ξ ξ Xi
O o Omicron
Π π Pi
P ρ Rho
Σ σ Sigma

T τ Tau
Υ υ Upsilon
Φ φ Phi
X χ Chi
Ψ ψ Psi
Ω ω Omega

Proportion

Any equation having the form
a

b
=

c

d
, which states that two ratios are equal, is

called a proportion. Many times in solving a proportion the cross product property
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ad = bc is often used. The above proportion can also be written in the form a : b = c : d.

One can write that if
a

b
=

c

d
then ad = bc (1.8)

A proportion such as the one given in equation (1.8) must sometimes be altered.

This can be accomplished by selecting non zero constants λ, µ and forming the new

ratio
λa + µc

λb + µd
=

a

b
=

c

d
(1.9)

This new ratio equals the old ratios because of the cross product property. That is

λa + µc

λb + µd
=

a

b
⇒ (λa + µc) · b =(λb + µd) · a is an identity by algebra

λab + µcb =λba + µda = λab + µcb

because the cross product da = cb holds from equation (1.8).

Example 1-5. Prove that if the following ratios are true
a

A
=

b

B
=

c

C
, then

a

A
=

b

B
=

c

C
=

a + b + c

A + B + C

Solution

If
a

A
=

b

B
=

c

C
= r, then

a = rA, b = rB, c = rC

so by addition

(a + b + c) = r(A + B + C) ⇒ r =
a + b + c

A + B + C
=

a

A
=

b

B
=

c

C

Alternatively, if
a

A
=

b

B
=

c

C
, then use equation (1.9) with λ = 1 and µ = 1 to

show
λa + µb

λA + µB
=

a

A
⇒ a + b

A + B
=

a

A
=

b

B
=

c

C
(1.10)

Now repeat what has just been done using the equation (1.9) with the new ratio

(1.10). Write
λ(a + b) + µc

λ(A + B) + µC
=

a

A
=

b

B
=

c

C

with λ = 1 and µ = 1 to obtain the desired result.
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Mean proportion

The mean proportion of two quantities a and b, also called the geometric mean

of two quantities, is defined

geometric mean = mean proportion =
√

ab

The quantity x is called the mean proportion of a and b if
a

x
=

x

b
or x2 = ab or x =

√
ab.

The geometric mean or mean proportion can be generalized.

Geometric mean of three numbers x1, x2, x3 is 3
√

x1x2x3

Geometric mean of four numbers x1, x2, x3, x4 is 4
√

x1x2x3x4

Geometric mean of five numbers x1, x2, x3, x4, x5 is 5
√

x1x2x3x4x5

and the pattern continues as the number of products increase.

The arithmetic mean of n numbers is obtained by adding the n numbers and then

dividing the sum by n giving

Arithmetic mean = x̄a =
x1 + x2 + x3 + · · ·+ xn

n
(1.11)

The arithmetic mean answers the question, ”If all n numbers had the same value,

what would this value be to obtain the same sum?”

The geometric mean of n numbers is obtained by multiplying the n numbers and

then taking the nth root of the product giving

Geometric mean = x̄g = n

√
x1x2x3 · · ·xn (1.12)

The geometric mean is the answer to the question, ”If all n numbers had the same

value, what would this value be to obtain the same product? ”

Numbers

Various special types of numbers are employed in the study of geometry. Many

advanced number theoretic concepts assume you know about these special types of

numbers. Remember that the ancient Greeks and Egyptians had number systems

which were not ideal systems for performing mathematical calculations and conse-

quently many geometric methods resulted for solving mathematical problems. It

wasn’t until about the 15th century that our current number system began to be

accepted by Europeans.
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Integers

Figure 1 -6.

Number axes illustrating

multiplication by -1 effect on

numbers

Everyone is familiar with the positive integers

0, 1, 2, 3, . . .. The notation . . . after the number 3 is

called an ellipsis and its use is to mean that the

representation is to be continued with 4, 5, 6, etc fol-

lowing the 3. The ellipsis is a mathematical nota-

tion indicating continuation. The positive num-

bers can be written on a line and the line can be

called the positive number axes. One can define

multiplication of these numbers by negative 1 as

the counterclockwise rotation of the positive num-

ber axis as half of a full rotation of the axis about

the origin (0). This produces a negative num-

ber axes with the origin 0 separating the negative

numbers from the positive numbers.

That is, each time a number is multiplied by -1, a counterclockwise rotation

occurs equal to half of a full rotation. This is illustrated in figure 1 -6. Note that if

a negative number is multiplied by -1, one must perform a counterclockwise half of

a full rotation. Thus (−1)(−1) = 1.

Prime numbers

A prime number is divisible only by itself and the number 1. The first few

prime numbers are 2, 3, 5, 7, 11, 13, 17, . . .. Euclid showed that there is no largest prime

number so an infinite number of primes exist. Goldbach’s5 conjecture is that all

positive even integers greater than two can be expressed as the sum of two primes.

This conjecture remains unproven and waits for someone to prove it. Computers

have verified the conjecture up to very large numbers. However, this is not a proof

for all even numbers greater than two.

Rational numbers

Let m, n denote positive integers with n different from zero, then numbers having

the form of a ratio
m

n
are known as rational numbers. One can construct a table of

rational numbers as illustrated in the figure 1 - 7. Note the ellipsis symbols denoting

5 Christian Goldbach (1690-1764) a German mathematician.
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that the given patterns are to be continued. The set of rational numbers have the

following properties.

(1) An integer can result. For example 5/1 is simplified to 5

(2) A terminating decimal can result as 1/4 = 0.25

(3) An infinite recurring decimal can result as 7/11 = 0.6363636363 . . .

One mathematical notation for representing a recurring decimal is

to place a line over the repeating part. This gives 7/11 = 0.63

Figure 1 -7. Partial listing of rational numbers m/n

Given a number represented by an infinite repeating decimal one can employ

basic mathematics to express the number in the form of a ratio m/n, where m and

n are integers.

Example 1-6. Find the rational number R having the decimal expansion

R = 0.5123123123123 . . . or R = 0.5123

Solution Just use multiplication and subtraction on the given number to convert

it into the form of a ratio of two integers. Multiply R by 10 to get

10 R = 5.123123123 . . . = 5 + 0.123 (1.13)



16

Next multiply equation (1.13) by 103 = 1000 and find

104 R = 5123.123123123 . . . = 5123 + 0.123 (1.14)

The decimal part of the numbers in equations (1.13) and (1.14) are now the same

and so can be removed by using elementary algebra. One finds

104R − 10R = 5123 − 5 or R =
5118

104 − 10
=

5118

9990
=

853

1665

Irrational numbers

An example of an irrational number that arises quite often can be found by

studying circles. A circle is defined as the set of points which are equidistant from

a fixed point called the center of the circle. This set of points forms a curve around

the center called the circumference or boundary of the circle. The distance from the

center of the circle to the boundary of the circle is called the radius of the circle.

The plural of radius is radii and one can say that all the radii of the same circle are

equal. A line from a boundary point through the center of the circle to an opposite

boundary point is called the diameter of the circle. Opposite points at the ends of

a diameter are called antipodal points. Concyclic points are points all lying on the

same circumference of the circle.

An irrational number is a real number that cannot be expressed as the ratio of

two numbers. Properties of irrational numbers are

(a) They have an infinite number of decimal digits.

(b) There are no repetitious or repeating patterns

in the representation of the decimal digits

Examine the figure 1 -8 where two circles of different sizes are displayed. Imagine

the left circle being magnified to produce the right circle. All the dimensions of the

left circle will be increased proportionally and one can say the circles are similar in

that the dimensions are proportional.
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Figure 1 -8.
Two circles are similar

with proportional dimensions

If c1, c2 denote the circumferences of the two circles, and d1, d2 denote their diameters,

then one can say that the circles are related in that the ratios of their respective

parts are the same because of scaling. One finds the ratios

d1

d2

=
c1

c2

or
c1

d1

=
c2

d2

=
circumference

diameter
= constant

This tells us the ratio of circumference divided by diameter of every circle will be

a constant. This constant value turns out to be an irrational number which is

represented by the Greek letter π and is found6 to have the approximate value

π = 3.14159265369 . . . (1.15)

A calculation for the number π will be given in chapter 6.

No finite number of digits can represent π exactly. The ellipsis . . . is used to em-

phasize the number of decimal digits continue without end and there are no repeating

patterns in the representation of the digits.

Note that the diameter (d) of the circle is twice the radius (r), so that one

can write d = 2r. The ratio circumference of circle
diameter of circle

= π implies c/2r = π or the

6 Modern day mathematicians have devised a method to determine the nth digit of π for any integer n without

having to know any of the previous digits. The technique is known as the Bailey-Borwein-Plouffe formula for

calculating the nth binary digit of π using base 16 mathematics.
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circumference (c) of any circle is given by the relation c = 2πr. In summary, a circle

with radius r has the following properties.

diameter is twice the radius d = 2r

circumference is 2π times the radius c = 2πr

or circumference is π times the diameter c = π d

(1.16)

Square root of 2 is an irrational number

To demonstrate that the square root of 2 is an irrational number one can proceed

as follows. Assume that the square root of 2 is a rational number and then show that

this assumption is not true. This type of proof is known as Reductio ad absurdum

which comes from the Latin and translates to the phrase–reduction to absurdity.

Assume the square root of 2 is a rational number and write
√

2 =
p

q
, where p

and q are coprime numbers. This means that the integers p and q have no common

factors and the ratio
p

q
is irreducible. One can write

√
2 =

p

q

square both sides 2 =
p2

q2

multiply both sides by q2 2q2 =p2

(1.17)

Now even integers all have the form 2n where n is an integer and all odd integers

have the form (2m + 1) where m is an integer. This implies that for all integers

m and n, an even number times an even number results in an even number since

(2n)(2m) = 2(2mn) is even. Also an odd number times an odd number will always

results in an odd number since, (2n + 1)(2m + 1) = (4mn + 2(n + m) + 1) represents an

even number plus one, which is an odd number. The equation (1.17) implies p2 is

an even number and therefore p must be an even number and have the form p = 2m,

where m is some integer. The equation (1.17) can therefore be written

2q2 = p2 = (2m)2 = 4m2 or q2 = 2m2, q2 is even and so q is even

This gives the ratio
p

q
=

even

even
so that the ratio

p

q
has a common factor which con-

tradicts the original assumption that the ratio had no common factor. Therefore, the

original assumption is false and
√

2 cannot be a rational number. Consequently, it

is an irrational number.
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One finds the approximate decimal form for the square root of 2 can be rep-

resented
√

2 = 1.41421356 . . . or
√

2 ≈ 1.414 where again the ellipsis is used to signify

that the decimal part goes on forever and the symbol ≈ represents the symbol for

approximately. In dealing with irrational numbers like the square root of 2, always

use
√

2 rather than 1.4142 . . . or the approximate value 1.414, because
√

2 is a symbol

representing the exact value, whereas the truncated decimal 1.4142 . . . or 1.414 rep-

resentations only give an approximate value for the square root. The square root of

2 symbol
√

2 is to be treated as a symbol in the same sense as the previous symbol

π is used. That is, always use the symbol to represent the exact value of the irra-

tional number because irrational numbers are always associated with never ending

decimals.

The golden ratio

Two positive quantities x and y with x > y, are said to be in a golden ratio φ if

φ =
x

y
=

x + y

x
(1.18)

Figure 1 -9. Golden ratio for line segments

That is, the ratio of the sum of the two numbers (x + y) to the larger number x is in

the same ratio as the larger quantity x over the smaller quantity y. Observe that,

φ =
x

y
=

x + y

x
= 1 +

y

x
= 1 +

1

φ
(1.19)

which requires that φ satisfy the quadratic equation

φ2 − φ − 1 = 0 (1.20)

Solving the quadratic equation (1.20) for the positive root, one finds that the golden

ratio φ is an irrational number having the value

φ =
1 +

√
5

2
= 1.6180339887 . . . (1.21)
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The golden ratio is found in many ancient texts under various alternative names

such as golden rectangle7, golden mean, golden number, golden proportion, divine

proportion, golden section, and divine section. The golden ratio is an irrational

number and can be found in many areas of mathematics, art, architecture, music,

nature and geometry. It has even been used to predict highs and lows of stock prices.

Numbers with a different base

The base 10 number system, which we use in everyday applications of mathe-

matics, means that the numbers we use are all simplifications of numbers having the

form of a summation of terms involving powers of ten. This summation has the form

· · ·+ (10)3 + (10)2 + (10)1 + (10)0 + (10)−1 + (10)−2 + (10)−3 + · · · (1.22)

where you fill in each of the blank spaces ( ) using one of the integers

0, 1, 2, 3, 4, 5, 6, 7, 8, 9. It is to be understood that all leading and trailing zeros are not

written down and the powers of 10 are not written down. Also note that (10)0 = 1.

For example, the base ten number 872.13 is represented base 10 as

872.13 = 872.1310 = 872.13]10 = 8(10)2 + 7(10)1 + 2(10)0 + 1(10)−1 + 3(10)−2 (1.23)

where the notation ]10 is used to emphasize it is a base 10 number. Sometimes a

subscript 10 is placed after the number, as 872.1310, to emphasize the number is base

10. Most of the time the notation ]10 or subscript 10 after the number, is dropped

because everyone knows the base 10 is being used. When dealing with numbers with

different bases the bracket or subscript notation is preferred.

A base 2 number system, also called a binary system, occurs when all the tens

in equation (1.22) are replaced by the number 2. One then obtains a summation of

terms involving powers of two having the form

· · ·+ (2)3 + (2)2 + (2)1 + (2)0 + (2)−1 + (2)−2 + (2)−3 + · · · (1.24)

and you fill in the blanks ( ) using only one of the digits 0 or 1 and 20 = 1. Note a

base 2 number system uses only two symbols 0 and 1. Again all leading and trailing

zeros and the powers of 2 are not written down. Below are some base 2 number

representations along with their base 10 equivalents.

7 The golden rectangle is any rectangle where the ratio of length divided by width equals φ = 1+
√

5
2

.
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1]2 =12 = 1(2)0 = 1

10]2 =102 = 1(2)1 + 0(2)0 = 2

11]2 =112 = 1(2)1 + 1(2)0 = 3

100]2 =1002 = 1(2)2 + 0(2)1 + 0(2)0 = 4

101]2 =1012 = 1(2)2 + 0(2)1 + 1(2)0 = 5

1111]2 =11112 = 1(2)3 + 1(2)2 + 1(2)1 + 1(2)0 = 15

10101]2 =101012 = 1(2)4 + 1(2)2 + 1(2)0 = 21

1000]2 =10002 = 1(2)3 = 8

10000]2 =100002 = 1(2)4 = 16

1001101001002 =2468

101010011112 =1359

11.10101011100001012 =3.67

1001.0012 =9.125

1001.012 =9.25

1001.12 =9.5

A base 8 or octal number system involves powers of 8 and has the form

· · ·+ (8)3 + (8)2 + (8)1 + (8)0 + (8)−1 + (8)−2 + (8)−3 + · · · (1.25)

where the integers going into the blank ( ) spaces are restricted to the eight digits

0, 1, 2, 3, 4, 5, 6, 7. Some sample numbers from the base eight number system are the

following.

18 =1

28 =2

38 =3

48 =4

58 =5

68 =6

78 =7

108 =8

118 =9

128 =10

248 =20

1448 =1(8)2 + 4(8)1 + 4(8)0 = 100

175.18 =1(8)2 + 7(8)1 + 5(8)0 + 1(8)−1 = 125.125

175.018 =125.015625

11.118 =9 + .125 + .015625 = 9.140625

In general, a base b number system, b an integer, occurs when you replace all

the tens in equation (1.22) with the integer b everywhere to obtain

· · ·+ (b)3 + (b)2 + (b)1 + (b)0 + (b)−1 + (b)−2 + (b)−3 + · · · (1.26)

and restrict the integers going into the blank ( ) spaces to the b-digits

0, 1, 2, 3, 4, . . . , 8, 9, . . . , (b− 1)

Note that a base b number system needs b-digits 0 through b − 1. This means that

if 0 through 9 are the first 10 digits, then you have to make up symbols to represent

the digits 10 through (b − 1). Consider the base 16 number system, often called
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a hexadecimal number system. This system needs sixteen symbols to represent the

digits. It is customary to define the 16 digits required as 0,1,2,3,4,5,6,7,8,9 and then

define the symbols A = 10, B = 11, C = 12, D = 13, E = 14, F = 15. In equation (1.22)

replace all the tens by 16 to obtain

· · ·+ (16)3 + (16)2 + (16)1 + (16)0 + (16)−1 + (16)−2 + (16)−3 + · · · (1.27)

and use the digits for the blank ( ) spaces from the set of 16-digits

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,D, E,F

and again make note of the fact that all leading and trailing zeros and powers of

16 are not written down. Some example number representations in the hexadecimal

system are given below.

18A16 =1(16)2 + 8(16)1 + 10(16)0 = 394

EA16 =14(16)1 + 10(16)0 = 234

1716 =1(16)1 + 7(16)0 = 23

3316 =51

8F16 =143

DE16 =13(16)1 + 14(16)0 = 222

45DB16 =4(16)3 + 5(16)2 + 13(16)1 + 11(16)0 = 17883

B.999A16 =11.6

B.116 =11.0625

B.0116 =11.00390625

Example 1-7.

Convert the numbers 431 and 432 to a hexadecimal representation.

Solution

Divide the given numbers by 16 and keep track of the remainders R as illustrated

below.

26

16 |431, R = 15 = F

1

16 |26, R = 10 = A

1AF = 1(16)2 + 10(16)1 + 15(16)0 = 431

27

16 |432, R = 0

1

16 |27, R = 11 = B

1B0 = 1(16)2 + 11(16)1 + 0(16)0 = 432

Here one takes the last quotient together with the remainders to form the base 16

number. The technique behind this is to list the powers of 16 and then determine

the highest power of 16 that you can subtract from the given number. Repeat this

process after subtraction. Here one substitutes zero if you skip a power of 16.
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The representation of numbers in different base number systems can vary in the

symbols used and the way the symbols are interpreted. For example, the ancient

Summerians8 used a sexagesimal number system. Their representation of numbers

was much different from our present day representation of numbers.

The Mayan’s used a base 20 number system. Computers were developed using

binary mathematics. Mathematicians have even experimented using non integer

base numbers like π and square root of 2. A base 12 number system is said to be

much more interesting than a base 10 number system because 12 has more divisors

than 10.

The following is a list of names associated with various number base systems.

base b Name of number base

2 binary

3 trinary or ternary

4 quaternary

5 quinary

6 senary

7 septenary

8 octal or octonary

9 nonary

10 decimal

base b Name of number base

11 undenary

12 duodecimal

13 tridecimal

14 quattuordecimal

15 quindecimal

16 hexadecimal or sexadecimal

17 septendecimal

18 octodecimal

19 nonadecimal

20 vigesimal

base b Name of number base

30 trigesimal

40 quadragesimal

50 quinquagesimal

60 sexagesimal

70 septagesimal

80 octagesimal

90 nonagesimal

100 centimal or centesimal

200 bicentimal

300 tercentimal

400 quatrrocentimal

500 quincentimal

List of names for various number base systems

Angular measure Any line having only one endpoint and extending

forever, is called a ray. Whenever two rays have the

same endpoint, then an angle is formed between the

rays and the common endpoint of the rays is called a

vertex. Draw a circle and then draw a line from the

center of the circle horizontally to the right to create

a ray called the initial side of the angle. Now ro-

tate the ray counterclockwise about the center point

of the circle and stop and call the rotated ray the

terminal side of the angle.

8 The Summerian civilization developed in the Tigris-Euphrates valley and existed from 5000 BCE to approxi-

mately 1700 BCE. The Summerian notation for the number 64 was 1.4 representing one sixty plus four.
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The rotated ray sweeps out and defines an angle of rotation about the center of

the circle. This angle of rotation is illustrated in the figure above and labeled using

the Greek symbol alpha (α). The angle of rotation can also be represented using

the notation ∠A0B which represents the angle obtained in moving from points A to

0 to B. The center point 0 of the rotation is called the vertex of the angle and the

terminal side and initial side rays are called the sides of the angle. The measure of

an angle α is denoted m∠α. For example, m∠α = 30◦, which is read, ”The measure

of angle α is 30 degrees, where the unit of degrees is defined as follows.

The degree (deg)

The ancient Summerians from about 2500 BCE considered the special case of

the angle created when the initial side made one complete rotation about the center

point. This created a situation where the terminal side lay atop the initial side.

The resulting angle was then divided into 360 parts9 where each part was called

one degree. The degree is denoted by the mathematical symbol ◦ and there are 360

degrees in a circle or one revolution equals 360◦. The figure 1 -10 illustrates several

selected positive angles of rotation in the positive counterclockwise direction. Also

illustrated are selected negative angles of rotation in the clockwise direction. One

complete rotation of the initial side about the circle center denotes the angle ±360◦

depending upon the direction of the rotation.

Figure 1 -10. Selected angles of rotation about center of circle

The degree is further subdivided into units called “minutes” and “seconds” where

60 minutes = 1 degree and 60 seconds = 1 minute (1.28)

9 It is not known why the number 360 was selected for the circular division. It is speculated that the Summerians

thought there were 360 days in a whole complete year. Another speculation is based upon the fact that the Sumerian

culture had a base 60 or sexagesimal number system.
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The mathematical notation for minutes is ′ and the notation for seconds is ′′. Thus

34◦ 24′ 18′′ is read as 34 degrees, 24 minutes and 18 seconds. Note that these units

of measurements have survived for over 2000 years as we still have 60 seconds in a

minute and 60 minutes in an hour in our time system of measurements.

Example 1-8.

Convert the decimal degrees 133.742◦ into degrees, minutes and seconds.

Solution

(a) Subtract the integer part of the decimal degrees to get 133◦

(b) Convert the decimal part of the degree (.742◦) to minutes using the conversion

factor 1◦ = 60′ to obtain

.742◦
60′

1◦
= 44.52′

The integer part of this answer gives 44′ as the number of minutes.

(c) Convert the decimal part of the minutes to seconds using the conversion

1′ = 60′′. One finds

.52′
60′′

1′
= 31.8′′

The final answer is

133.742◦ = 133◦ 44′ 31.8′′

which is read, 133.742 degrees equals 133 degrees, 44 minutes and 31.8 seconds.

Example 1-9.

Convert the degrees, minutes, second 17◦ 24′ 45′′ into its decimal degree equivalent.

Solution

(a) Convert the second to minutes using the conversion factor 60′′ = 1′. This gives

45′′
1′

60′′
=

45

60

′
= 0.75′

This gives (24 + 0.75)′ = 24.75′ in the given angle.

(b) Convert the minutes to degrees using the conversion factor 60′ = 1◦ to obtain

24.75′
1◦

60′
= 0.4125◦

The final answer is obtained by addition giving

17◦ 24′ 45′′ = 17.4125◦
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The gradian (grad)

One complete rotation of the circle radius about the center of the circle can be

divided into any number of parts. The gradian, abbreviated grad, unit of angular

measurement, divides one complete rotation of the radius into 400 parts called grads

(sometimes referred to as gons or grades). This allows one to set up a table of angular

equivalents between grads and degrees.

0◦ =0 grad

45◦ =50 grad

90◦ =100 grad

135◦ =150 grad

180◦ =200 grad

180◦ =200 grad

225◦ =250 grad

270◦ =300 grad

315◦ =350 grad

360◦ =400 grad

The grad unit of angular measurement is sometimes used in surveying, military

calculations and in developing instrumentation for specialized equipment.

The conversion factor between degrees and gradians is

360◦ = 400 grad or 1◦ =
400

360
grad =

10

9
grad

The radian (rad)

Let s denote the arc length which is produced

on the circumference of any circle as the radius r

of the circle rotates from an initial position to a

final terminal position. Let α = ∠A0B denote the

angle associated with the above rotation, then the

radian measure used to describe the resulting an-

gle α is defined as the ratio of arc length s produced

divided by the radius r of the circle or α =
s

r
radi-

ans. For the circles illustrated α =
s1

r1

=
s2

r2

=
s3

r3

.

A special case occurs when the radius of the circle makes one complete rotation

about the center of the circle. The arc length s becomes the circumference c of the

circle and we know this circumference is given by c = 2πr.
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After one rotation about the center of the circle one finds α = 360◦ and the arc

length is s = c = 2πr. Therefore, the radian measure of the angle α is related to the

degree measurement of α by the equation

α = 360◦ =
s

r
radians =

2πr

r
= 2π radians

or 1 rad =
180◦

π
or 1◦ =

π

180
rad

(1.29)

The radian is abbreviated rad. It is a dimension-less quantity because both the

numerator and denominator in the definition of radian measure have units repre-

senting dimensions of length which divide out.

One can verify from the conversion factors in equation (1.29), that 1 radian

is approximately 57.296◦. The above conversion factors enable one to produce the

following equivalence relations from degrees to radians.

0◦ = 0

30◦ =
π

6

45◦ =
π

4

60◦ =
π

3

90◦ =
π

2

135◦ =
3π

4

180◦ = π

225◦ =
5π

4

270◦ =
3π

2

315◦ =
7π

4

360◦ = 2π

1◦ =
π

180

x ◦ = x
( π

180

)

180◦ = π

Note that the term rad does not have to be written after the value because radians

are dimensionless. To convert degrees to radians multiply the degrees by
π

180
and

to convert radians to degrees multiply the radian measure by
180

π
. The French

Systéme International d′unités, designated SI in all languages, is the official interna-

tional system for units of measurements throughout the world. In this system the

radian measure is used as the official angular unit of measurement.

Note that on most hand-held calculators you have to select between degrees

(deg), radians (rad) and gradians (grad) before doing any calculations. In using a

calculator or computer for scientific calculations be sure to use radian measure at all

times, unless told otherwise. Also note that in the absence of an angular unit of

measurement it is to be understood that one must use radian measure.

Special angles

An angle between 0◦ and 90◦ (0 and π
2
) is called an acute angle. An angle between

90◦ and 180◦ (π
2

and π) is called an obtuse angle. An angle at 90◦ (π
2
) is called a right

angle. An angle at 180◦ (π) is called a straight angle.
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Figure 1 -11. Special angles

The protractor

The protractor is a semicircular device for measuring and/or constructing angles.

There are usually several sets of markings on the arc of the protractor. The marking

on the lower scale indicate angular measure in degrees from 0◦ to 180◦ reading right

to left. The markings on the upper scale are also in degrees and go from 0◦ to 180◦

but reads from left to right. There is also a marking for the center of the protractor.

These scales are illustrated in the figure below.You can purchase a special protractor

which uses radian measure on its markings.

Figure 1 -12. Protractor for measuring and plotting angles

To measure an angle place the center of the protractor at the vertex of the angle.

The line through the center of the protractor is then aligned with one side of the

angle. The other line defining the angle then intersects the protractor scale at the

angle measurement in degrees. Below is an illustration of a 50 degree angle being

measured.
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Figure 1 -13. Protractor measuring angle of 50◦

The right angle

Figure 1 -14.

The 90 degree angle.

Make special note of the 90 degree angle (π
2

radians).

This angle plays an important part in many geometric

drawings and is referred to as a right angle. Two lines

which intersect have angles associated with the point

of intersection. See the intersection of the x and y axes

in figure 1 -14.

The intersection of two lines is called perpendicu-

lar if all the angles about the point of intersection are

right angles. The special angle π
2

is usually emphasized

by placing a box in the corner where a vertical line is

intersecting perpendicular to a horizontal line as illus-

trated in the figure 1 -14.

A figure constructed using three connected straight line segments forming a

closed loop is called a triangle. See for example the connected line segments 0B,

BA and 0A in the figure above. The points where the line segments meet are called

vertices. The rotation of one side of a triangle to another side creates the interior

angles associated with a triangle. If one of the angles of a triangle is a 90◦ angle (π
2

radians), then the triangle is called a right triangle. The 90◦ angle along with the

angles α and β are the interior angles of the above triangle. Observe that in a right

triangle, the two shorter legs of the triangle intersect in a 90 degree angle and the

side opposite the 90◦ angle, called the hypotenuse, is the longest side of the right

triangle.
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In any triangle a line segment through a vertex which is perpendicular to the

opposite side (or extended opposite side) is called an altitude of the triangle. Every

triangle has three altitudes. In the figure above the line segment BA is the altitude

through vertex B.

Assumption

All right angles are equal to one another.

Notation

(i) ∠A0B is a notation used to represent the angle formed by sides A0 and 0B with

the middle letter 0 denoting the vertex of the angle.

(ii) AB is the line segment from A to B, treated as a positive length.

(iii) ⊥ is the symbol for perpendicular. For example 0A ⊥ AB

(iv) ∠A0B = α Sometimes Greek letters are used to represent angles.

(v) m∠A0B = 72◦ is a notation used for denoting the measure of angle ∠A0B

(vi) If angle ∠ABC is a vertex angle of a triangle, then the notation ∠ B is sometimes

used to represent the vertex angle.

Angle bisector

An angle bisector is a ray that divides an angle into two

equal angles. In the figure given m ∠A = 2α.

Complementary angles

Two angles α and β, in degrees, which add up to 90

degrees are called complementary angles. Two angles α

and β, in radians, that add up to
π

2
are also called com-

plementary angles. That is, the angles α, β are called

complementary angles if one of the equations

α + β = 90◦ or α + β =
π

2

holds true.

The equation used for testing depends upon the units used to measure angles. In

scientific computing the radian measure is used most often.

Equations must be homogeneous in the units selected for use. This means both

sides of an equation must have the same units of measurement. If two or more angles

add to 90◦, then this group of angles is called a complementary set.
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Supplementary angles

Two angles α and β, measured in degrees, which

add up to 180◦, are called supplementary angles. If the

angles are measured in radians, then the sum α+β = π

is required to be satisfied for the angles α and β to be

called supplementary.

Remember that both sides of an equation must have the same units of mea-

surement. If two or more angles add to 180◦, then the group of angles is called a

supplementary set.

Some mathematical symbols

= equal

�= not equal

≈ approximately

< less than

≤ less than or equal

> greater than

≥ greater than or equal

◦ degrees

′ minutes

′′ seconds

∠ angle

. . . continuation

m∠B = measure of angle B
�

AB = arc AB on circle

AB = line segment A to B

Loci

Many geometric problems require one to (i) find the motion of a point satis-

fying prescribed conditions or (ii) locate all points which satisfy given prescribed

conditions. For example, find the locus of points in the plane which are equidistant

from a fixed point. The solution is a circle and the fixed distance is called a radius

and the fixed point is called the center of the circle. The collection of all points

satisfying the prescribed condition are all points on the boundary or circumference

of the circle.

The circle
A circle is defined as the set of points which

are equidistant from a fixed point called the center

of the circle. The radius of the circle is the straight

line distance from the center to any point on the

circle boundary. The circle boundary is called the

circumference of the circle. A line segment from a

point on the circumference which passes through

the center of the circle to a point on the other side

of the circle is called the diameter of the circle.
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The circumference of a circle is also known as the perimeter of the circle, distance

around the circle or boundary of the circle. Observe that the diameter is twice the

radius of any circle. For future reference also make note of the fact that the rotation

of a circle about its diameter will produce the 3-dimensional image called a sphere.

Circle sector and arc length We have previously dealt with the circle

in order to introduce the irrational number π rep-

resenting the ratio of circumference divided by the

diameter. A point moving around a circle can be de-

scribed by an angle changing as the point moves. A

point moving on the circumference of a circle moves

along a curved path called the circumference of the

circle and the motion of the point creates a path

called the arc length along the circumference. This

path length is denoted by the symbol
�

AB and the

arc length is associated with some distance s.

Observe that as the position radius changes from point A to B it sweeps out an

angle called a central angle with vertex at the center point of the circle.

The radius (plural radii) of the circle is a straight line distance from the center

of the circle to an edge point of the circle. If A and B are two points on the

circumference of the circle and one constructs the radii lines from the center 0 to

each point A and B, then the area bounded by the two radii and the arc
�

AB on the

circumference of the circle is called a sector of the circle. The angle θ between the

two radii is called the central angle associated with the sector. If the central angle

θ is less than 180◦, the arc
�

AB on the circumference is called a minor arc and if θ is

greater than 180◦ the arc is called a major arc of the circle connecting the points A

and B on the circumference.

To find the arc length s of the minor arc
�

AB one can use proportions. Express

the ratio of length of minor arc s to the total length of circumference 2πr as being in

the same ratio as the central angle θ to one complete revolution or 2π. One obtains

the proportion
s

2πr
=

θ

2π
or s = rθ (1.30)

which states that the arc length between two points on a circle is determine by the

product of the radius times the central angle θ, where θ must be expressed in radians.
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Definitions

The Merriam Webster dictionary provides the following for the word ‘definition’.

definition a transitive verb

a: to determine or identify the essential qualities or meaning of

b: to discover and set forth the meaning of

A definition describes a quantity or quantities by assigning a ‘name’ and describ-

ing in what context the name is being used. It gives a meaning to the terminology

being used. The definitions are the most important things to study in any mathe-

matics course.

Using definitions one can build up a vocabulary to communicate more compli-

cated concepts. For example, knowing that for two lines to be ‘parallel’ they must

(a) both lie in the same plane and

(b) remain a constant distance apart and not intersect

enables one to understand concepts where parallel lines are used. Parallel lines can

also be defined as two nonintersecting lines with the same slopes.

Definitions give us some starting points from which one can begin a study of

plane geometry. Definitions are very important, you must study them, understand

them and recognize them when they occur in problems. The following are some

basic concepts which can be used to start our introduction to geometry.

Postulates

A postulate is a statement about something that is intuitively true and is to

be accepted without any kind of proof. Some examples of postulates occurring in

geometry are:

� A straight line segment can be extended beyond its endpoints.

� A geometric figure can be moved from one location to another in a plane without

changing its size or shape.

� An angle can be bisected by a line through the vertex.

� All the radii of a circle, or of equal circles, have the same length.

� Two lines in a plane either intersect or they are parallel.

� Given a point not on a given line, then one can construct another line through

the point which is perpendicular to the given line.

� Given a point not on a given line, then one can construct another line through

the point which is parallel to the given line.
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Definitions and postulates

� A point is a location and has no dimension.

� A line segment between two points is a collection of points defining the shortest

distance between the two given points. The line segment can be extended from either

end point in a constant direction to form an infinite line. A line can be thought of

as the motion of a point in a constant direction. A line segment is one dimensional

and has length.

� A line is determined by two different points. These points define the slope of

the line as m =
change in y-values
change in x-values

.

� The motion of a line segment, ends not extended, in 2-dimensional space will

usually create a surface. The surface is called a plane or flat surface if a straight line

joining any two points on the surface will lie only on the surface. The ideal planar

surface has no thickness and extends without end. The plane is two dimensional

and has both length and width. A plane is determined by three different points.

� The intersection of two quantities consists of a point or points that are common

to both quantities. The intersection of two lines is a single point. The intersection

of two planes is a line. A line, not in the plane, intersects a plane in a single point.

� A set of points that lie on the same line are said to be collinear.

� A set of points is called noncollinear if at least one of the points is not on the

line determined by the other points.
� A set of points and/or lines are called coplanar if they all lie on the same

plane.

� A set of points and/or lines are called noncoplanar if one of the points (or

lines) does not lie in the given plane determine by the other points (or lines).

� An irregular polygon is a two dimensional

plane figure having three or more sides. The sides

are straight line segments which form a closed loop.

A point where two line segments of the polygon meet

forms an interior vertex angle of the polygon. An

irregular polygon is one where each side and each

vertex angle may be different.

Polygons are given names based upon the number of line segments used in

their construction. Three sides for a triangle, four sides a quadrilateral, five sides a

pentagon, six sides a hexagon, seven sides a heptagon, eiqht sides an octagon, etc.
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� A regular polygon is a polygon with all vertex

angles equal and all sides are of equal length. A regular

polygon is said to be equilateral and equiangular.

� The interior angles of a polygon occur at each

vertex and inside of the polygon.

� An exterior angle of a polygon occurs when a

side of the polygon is extended. The extended line and

side of polygon meet at a vertex of the polygon and form

the exterior angle.

� The apothem of a regular polygon is a line from

the center of the polygon to the midpoint of a side.

� The radius of a regular polygon is a line from

the center of the polygon to any vertex point.

� A self-intersecting or crossed polygon occurs

whenever one or more sides crosses back over an-

other side. A simple polygon is one that is non self-

intersecting. Self-intersecting polygons do not have sim-

ple properties like regular or simple polygons. They are

best studied by breaking them up into many simple poly-

gons.
� A polygon is called convex if none of the ex-

tended sides pass through the center of the polygon.

A polygon is convex if none of the interior angles are

greater than π radians. Regular polygons are always

convex.

� A concave polygon has one or more interior an-

gles greater than 180◦. Concave polygons are easily rec-

ognized whenever any vertex points inward toward the

center of the polygon. Polygons which are not concave

are called convex.

� The perimeter of a simple polygon is the distance

around the polygon. It is the sum of the lengths of the

line segments which make up the sides of the polygon.
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� A diagonal line of a polygon is any line segment

connecting two nonadjacent vertices.

� A polygon with three sides is called a triangle. A

triangle can be expressed using the symbol � followed

by three letters denoting the vertices of the triangle.

For example, the notation �ABC is used to represent

the triangle having vertices ABC.

Angles of a triangle can be added by placing the vertex angles together at a

common point.

Note the notation of lower case a opposite vertex A to denote the length of the

side opposite vertex A and angle α as an alternative notation for vertex angle A

(∠A or ∠CAB). This notation is also applied to the other angles and sides whenever

convenient. The names of triangles depend upon their interior angles.

An angle is called acute if it is less than 90◦, it is called a right angle if it equals

90◦ and called obtuse if it is greater than 90◦. A triangle is called

acute if all of the angles in the triangle are acute

right if one of the angles of the triangle is a right angle.

obtuse if one of the angles of the triangle is obtuse.

A triangle has six parts. There are three sides and three vertex angles. Some

problems associated with a given triangle are:

(i) Determine unknown parts from a set of given parts.

(ii) Determine the area of the triangle.

(iii) Determine the midpoints of the sides.

(iv) Constructing special lines from a vertex angle to the opposite side.

(v) What conditions must the sides and angles satisfy in order for a triangle to

exist?

� A triangle with two equal sides is called isosceles.

Equal sides are highlighted by making identical slash

marks on those sides.

� A triangle with three equal sides is called an equi-

lateral triangle.
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� A scalene triangle is a polygon with three unequal

sides and three unequal angles.

� A quadrilateral is a four sided polygon.

� A rectangle is a four sided polygon with op-

posite sides parallel and all vertex angles equal to 90◦

(π
2

radians).

� A square is a rectangle having all sides of equal length.

� A line which intersects another line or plane at

an angle of 90◦ (or π
2

radians) is called a perpendicular

line. Any other line produces an oblique intersection.

� A circle is a plane figure defined by a closed curve having all of its points

equidistant from an interior point called the center of the circle.

� Two semicircles result when a line is drawn

through the center of a circle.

� The chord of a circle is any straight line which

joins two points on the circumference. A tangent line

to a circle touches the circle at only one point and is

perpendicular to the circle diameter through that point.

A secant line is any straight line passing through the

circle.

� The medians of a triangle are line segments from

each vertex of a triangle to the midpoint of the oppo-

site side. Every triangle has three medians. In the

figure on the right the line segments AA′, BB′, CC ′ are

the medians of triangle �ABC.

� Directions or bearings on a Mariner’s compass

make reference to the cardinal points north, east, south,

west. For example, northeast direction is referenced as

north 45 degrees east with measurement from the north

direction. The southeast direction is referenced as south

45 degrees east.
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Exercises

� 1-1.

In Cartesian coordinates plot the points

(1, 1), (5, 4), (−5, 3), (−1, 1), (−3, 4), (2,−3), (4,−2)

� 1-2. Find the slope of the line segment connecting the given points

(a) (1, 1), (5, 3)

(b) (1, 1), (−5, 2)

(c) (1, 1), (4, 4)

(d) (1, 1), (5,−3)

� 1-3. Find the point-slope formula representing the line through the given points

(a) (1, 1), (5, 3)

(b) (1, 1), (−5, 2)

(c) (1, 1), (4, 4)

(d) (1, 1), (5,−3)

� 1-4. Find the slope of the given line and sketch the line.

(a)
x

4
+

y

5
= 1

(b) 3x + 4y = 5

(c) x = 3 + 4t, y = 7 − 3t

(d) y − 7 =

(

8

3

)

(x − 4)

� 1-5. (The triangle puzzle) Explain the hole in the following diagram.

Hint: What is the definition of slope.

� 1-6. Are the given points collinear or noncollinear?

(a) (2, 1), (10, 25), (100, 295)

(b) (3, 2), (16, 15), (9, 10)

(c) (−7,−7), (−4,−3), (2, 5)

(d) (−8,−4), (−6,−1), (0, 8)
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� 1-7. If
a

b
=

c

d
, show that

(a)
b

a
=

d

c
(b)

a + b

b
=

c + d

d
(c)

a − b

b
=

c − d

d
(d)

a + b

a − b
=

c + d

c − d

� 1-8. A similar puzzle problem. Explain what is happening.

� 1-9. Find the midpoint of the line segment AB if

(a) A = (−2, 5), B = (4, 8)

(b) A = (4, 7), B = (−1, 1)

(c) A = (0, 0), B = (−5, 9)

(d) A = (0, 0), B = (7, 8)

� 1-10. Express the line 8x − 7y = 5 into the form specified.

(a) slope-intercept form

(b) intercept form

(c) parametric form

(d) point-slope form

� 1-11. Find the arithmetic mean of the given numbers.

(a) 1, 2, 3, 4, 5

(b) 7, 5, 3

(c) 9, 10, 11

(d) 68, 78, 88

� 1-12. Find the geometric mean of the given numbers.

(a) 4, 9

(b) 4, 18

(c) 1, 3, 9

(d) 2, 4, 4, 8

� 1-13. Express the decimal number as a rational number.

(a) 1.234

(b) 5.631

(c) 7.421

(d) 34.3205

� 1-14.

An artist wants to paint a picture inside a rectangle

with height y and base x. If x = 64 inches, what is the

approximate height y such that x/y is a golden ratio?
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� 1-15. How many triangles can you find in the given figure.

Hint: There are more than 20. Can you sketch each one?

� 1-16. Represent the given base 10 numbers as binary numbers.

(a) 11

(b) 5.25

(c) 12.5

(d) 7.75

� 1-17. Represent the given base 10 numbers as octal numbers.

(a) 11

(b) 12.125

(c) 32

(d) 17

� 1-18. Represent the given base 10 numbers as hexadecimal numbers.

(a) 1.0625

(b) 32

(c) 65

(d) 127

� 1-19. Find in degrees the angular measure for

(a) one counterclockwise revolution.

(b) one-half of a counterclockwise revolution.

(c) one-third of a clockwise revolution.

(d) one-fourth of a counterclockwise revolution.

(e) one-fifth of a clockwise revolution.

� 1-20. Find in radians the angular measure for

(a) one counterclockwise revolution.

(b) one-half of a counterclockwise revolution.

(c) one-third of a clockwise revolution.

(d) one-fourth of a counterclockwise revolution.

(e) one-fifth of a clockwise revolution.
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� 1-21. Latitude-Longitude

Assume the earth is a sphere and construct

a line from a point P on the earths surface and

the center of the earth. This line forms an an-

gle λ with the earths equatorial plane and is

known as the latitude of the point P . The an-

gle λ varies from 0◦ to 90◦ N and 0◦ to 90◦ S.

The angle θ east or west of the prime merid-

ian is called the longitude of a point on the

earths surface. The angle θ varies from 0◦ to 180◦ E and 0◦ to 180◦ W.

Express the given decimal angles in units of degree, minutes and seconds

(a) 66.5◦ N Arctic circle latitude

(b) 23.26◦ N Tropic of cancer latitude

(c) 51.5074◦ N, 0.1278◦ W London

(d) 40.7128◦ N, 74.0059◦ W New York City

� 1-22. Express the angular measure in decimal form

(a) 66◦ 33′ 46.5′′ N Arctic circle latitude

(b) 23◦ 26′ 13.5′′ N Tropic of cancer latitude

(c) 55◦ 45′ N, 37◦ 36′ E Moscow

(d) 35◦ 40′ N, 139◦ 45′ E Tokyo

� 1-23. Plot the parametric equations

(a) x =3

(

1 − t2

1 + t2

)

y =2

(

1 − t2

1 + t2

)

+ 3

− 1 ≤ t ≤ 1

Show y =
2

3
x + 3

0 ≤ x ≤ 3

(b) x =3t + 4

y =4t + 5

0 ≤ t ≤ 1

Show y =
4

3
x − 1

3

4 ≤ x ≤ 7

(c) x =
2

t
+ 3

y =
4

t
− 1

1 ≤ t ≤ 2

Show y = 2x − 7

4 ≤ x ≤ 5

t x y

0

1

t x y

0

1

(d) How many points are needed to draw a straight line segment?

(e) Find the midpoints of the line segments in parts (a),(b),(c).
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� 1-24.
A particle P rotates in a circular motion about the

center of a circle with radius r. The arc length distance

s swept out during a time interval t is used to define

the linear speed v of the particle as

linear speed = v =
s

t
=

distance
time change

As P rotates the central angle changes with time and is used to define the angular

speed ω of the particle as

angular speed = ω =
θ

t
=

angular change
time change

We know s = rθ, therefore
s

t
= r

θ

t
gives the linear speed of the particle as v = rω.

(a) A wheel rotates at 3 revolutions per second. Express the angular speed in units

of radians per second.

(b) The Earth is approximately 93 million miles from the Sun and rotates in ap-

proximately a circle during a period of approximately 365 days.

(i) Find the linear speed of the Earth as it orbits the Sun. Express your answer

in units of miles per hour, then convert answer to units of kilometers per hour.

(ii) Find the angular speed of the earth in units of radians per second.

(c) Assume the earth spins about an axis with angular speed of 1 revolution per

day at the equator. The radius of the earth is approximately 3960 miles and the

circumference at the equator is approximately 25,000 miles.

(i) What is the linear speed of a point on the equator?

(ii) What is the linear speed of a point at the poles?

(iii) Find the earth’s angular speed in units of radians per second.

� 1-25. Construct the following figures.

(a) An isosceles triangle

(b) An equilateral triangle

(c) A scalene triangle

(d) An acute triangle

(e) An obtuse triangle

(f) A right triangle

� 1-26.

For each triangle of the previous problem (a) construct the altitudes (b) con-

struct the medians (c) construct the angle bisectors. Note in some cases it is neces-

sary to extend the side of a triangle.
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� 1-27.

If distance s equals velocity v times time t, then one

can write s = vt. If the motion is on the circumference

of a circle having radius r, then distance traveled is

s = rθ. Therefore, v =
s

t
=

rθ

t
= rω, where ω =

θ

t
is

called the angular velocity in units of radians/sec.

Two wheels with radii r1 and r2 are connected with a belt around the wheels.

Let R1 and R2 denote the number of revolutions per minute of each wheel. The

linear speed of a point p on the belt must be constant so one can say that the linear

speed of a point on wheel 1 must equal the linear speed of the belt on wheel 2.

(i) Find the angular speed ω1 of wheel 1 and angular speed ω2 of wheel 2 in units

of radians /sec.

(ii) Find the linear speed v1 of a point on wheel 1 and the linear speed v2 of a

point on wheel 2.

(iii) Equate v1 to v2 and show
R1

R2

=
r2

r1

� 1-28. Describe the geometric representations below.

� 1-29.

Let 0 denote the center of the circle illustrated where

360
◦ is divided by 12 so that each angle is 30

◦. Starting

at A move counterclockwise about the circle and label

each angle in radians. For example ∠A0D =
π

2
and

∠A0B =
π

6
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� 1-30.

(a) Under what conditions will all three medians of a triangle have the same

length? (b) Under what conditions will two medians of a triangle have the same

length?

� 1-31.

Find the Cartesian equation for the lines AB, BC, CA which represent the sides

associated with each of the above triangles.

� 1-32.

Any rectangle with sides in a golden ratio is called

a golden rectangle.

(a) Show that one can divide a golden rectangle into

two parts with part one a square and part two a golden

rectangle.

(b) The golden rectangle is the only rectangle that can be divided into a square plus

golden rectangle. Write out in words what happens if you divide the original golden

rectangle into these two parts and then divide the smaller golden rectangle into two

parts followed by dividing the third smaller golden rectangle into two parts, etc.

The final result is called ”the eye of god”.



45

Geometry

Chapter 2

Basic Geometric Concepts

The following are some basic geometric shapes that we will be dealing with in this

chapter and later chapters. Finding properties associated with various shapes is an

important part of geometry.

line plane square cube

isosceles triangle equilateral triangle right triangle obtuse triangle

acute triangle scalene triangle rectangle rhombus

parallelogram trapezoid quadrilateral pentagon
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hexagon heptagon octagon nonagon

decagon undecagon dodecagon twenty-gon

hundred-gon circle ellipse irregular octagon

cone cylinder sphere tetrahedron

frustum square frustum of hexagonal

of cone pyramid pyramid prism

Most of the polygons illustrated above are regular polygons. In general, a regular

polygon with n-sides is called a n-gon. Note that there is hardly a difference between
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the 100-sided regular polygon inscribed within a circle and the circle itself. The early

Greek geometers made use of this fact by observing that the apothem of a regular

n-gon inscribed inside a circle approached the radius of the circle as the number of

polygon sides n increased in size.

Also note that the names given to the polygons are closely related to the Greek

and Latin prefixes associated with the numbers three through twelve.

Definitions
A picture is worth a thousand words. However it is nice to have a formal

definition associated with the things you are about to get involved with.

� A parallelogram is a quadrilateral with two pairs of parallel sides.

� A rhombus is a parallelogram with four equal sides.

� A trapezoid is a quadrilateral having only one pair of parallel sides.

� An isosceles trapezoid has the nonparallel sides equal to one another.

� A pentagon is a five sided polygon and a regular pentagon has 5 equal sides

and vertex angles.

� A hexagon is a six sided polygon and a regular hexagon has 6 equal sides and

vertex angles.

� A heptagon is a seven sided polygon and a regular heptagon has 7 equal sides

and vertex angles.

� A curved line has no portion which is a straight line.

The ellipse

An ellipse can be constructed by taking a string of fixed length and then an-

choring the end points of the string at two different points on a given line. The

two points selected for the end points of the string are called foci and each point is

called a focus. Take a pencil point and pull the string taut and then move the pencil

point around the foci keeping the string taut. The resulting curve is an ellipse. A

more formal definition of an ellipse is that it is the locus of points P such that the

sum of the distances d1 and d2 from two fixed points (foci) remains constant. That is
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d1 + d2 =constant=length of string

The center of the ellipse is halfway between the foci.

One of the properties of an ellipse is that if the elliptic boundary is a reflecting

surface, then sound coming from one focus can easily be heard at the other focus.

Many buildings throughout the world have elliptic shape chambers which make use

of this property.

The postulate

An axiom or postulate is a statement about something which is assumed to be

true and no proof is required for it to be true. Axioms and postulates are usually

associated with everyday concepts assumed to be true and not needing any proof.

For example, in Euclid’s Elements, there is the axiom, ”Things that coincide with

one another are equal to one another”. This is a statement defining one meaning of

equality. It is a common sense statement that if two figures coincide in every way,

then the two figures are identical. The mathematical symbol ∼= is used to represent

congruence indicating two things are identical in every way.

Figure 2 -1.

Triangle ABC congruent to triangle EFG written as �ABC ∼= �EFG
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Examine the figure 2-1 and imagine that you can pick up triangle �ABC and

place it on top of triangle �EFG and the two figures coincide in every way– meaning

all corresponding angles are equal and all corresponding sides are equal, then we can

say that triangle ABC is congruent to triangle EFG and write �ABC ∼= �EFG.

Notation

The statement �ABC ∼= �DEF is the notation for representing triangle �ABC

being congruent to triangle �DEF . This notation represents 6 statements

(i) ∠A = ∠D

(ii) ∠B = ∠E

(iii) ∠C = ∠F

(iv) AB = DE

(v) BC = EF

(vi) CA = FD

Note that the statement �ABC ∼= �EFD has a completely different meaning.

Figure 2 -2. Two polygons with equal sides, equal angles and equal area.

Congruence can be used and applied to any shaped objects. Two line segments

are congruent if they have the same length. Two circles are congruent if they have

the same diameter. In general two objects are said to be congruent or equal to

one another if they have the same size and shape. That is, corresponding parts of

congruent figures are equal. For example, if the two polygons illustrated in the figure

2-2 are congruent, then one can write abcdefg ∼= ABCDEFG indicating corresponding

angles and sides are equal.

In the study of geometry, certain postulates, definitions and notations have to

be made in order to get started. The postulate, as used in geometry, is something

that cannot be proved and must be accepted as being true.

Throughout this textbook note the emphasis on

(a) Definitions

(b) The introduction of symbols for notation

(c) The introduction of axioms and postulates
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More postulates and definitions

� Equality

Things equal to the same thing, or to equal things, are equal to each other.

� Addition

Equals added to equals, the results are equal.

Equals added to unequals, the sums are unequal in the same order.

If unequals are added to unequals, then

(i) less than (a < b) + (c < d) ⇒ (a + c) < (b + d)

(ii) greater than (a > b) + (c > d) ⇒ (a + c) > (b + d)

the sums are unequal in the same order.

� Subtraction

Equals subtracted from equals the results are equal.

Equals subtracted from unequals, the results are unequal in the same order.

If unequals are subtracted from equals, then the results are unequal in the reverse

order.

For example, if (2 = 2) and (3 < 5), then (2 = 2) + (−3 > −5) ⇒ −1 > −3

� Multiplication

Equals multiplied by equals produce products that are equal.

If unequals are multiplied by equals, then the products will be unequal in the

same order.

� Division

If equals are divided by equals, then the quotients will be equal.

If unequals are divided by equals, then the quotients will be unequal in the same

order.

� Transitive property for inequalities

If a > b and b > c, then a > c

� The whole is equal to the sum of its parts.

The whole is greater than any of its parts.
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� Parallel lines are two lines in the same plane that

do not intersect. The perpendicular distance between the

lines remains constant. This Postulate is also known as

Euclids fifth postulate. The math symbol ‖ is used to

denote lines are parallel. One can write (�1 ‖ �2) to

state that line �1 is parallel to line �2. In Cartesian plane

geometry, lines are parallel if they are in the same plane

and have the same slope.

� Two points P1 and P2 determine a unique line segment which in turn can be

extended into an infinite line.

� Three points P1, P2 and P3, which are noncollinear, determine a plane surface which

can be extended without limits to create an infinite two-dimensional plane surface.

A consequence of this is that (a) A plane is determine by a point and a line and (b)

A plane is determined by two intersecting lines.

� If two lines intersect, they intersect in a single point common to both lines.

� If a three-dimensional line passes through a plane,

and the line is not in the plane, then the intersection

is a single point common to the line and plane.

� The intersection of two planes results in a straight line.

� Three or more lines or curves are called concurrent if

they all intersect at the same point. The common point

of intersection is called the point of concurrency. Note

that lines in the same plane which are not parallel can

be called concurrent because they will intersect somewhere.

One famous problem in geometry is to determine

conditions necessary for lines drawn inside a triangle to

meet at a point of concurrency.

� A trapezoid is a quadrilateral with one pair of opposite sides parallel. The parallel

sides are called the bases1 of the trapezoid and the nonparallel sides are

1 The side a polygon stands on is sometimes referred to as its base. Any side of a polygon can be called its

base.
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called the legs of the trapezoid. The shortest distance

between the parallel lines is called the height of the

trapezoid. The angles ∠A and ∠B are called the base

angles of the trapezoid. If the base angles are congru-

ent and the legs of the trapezoid are congruent, then

the trapezoid is called an isosceles trapezoid.

Notation Here are some more mathematical symbols.

⊥ perpendicular

‖ parallel

∼= congruent

∝ proportional to

± plus or minus

� triangle

∼ similar

→ or ⇒ implies

≡ equivalent to

··· therefore

�ABC triangle ABC

[ABC] Area of �ABC

Angles and transversals
A transversal line is a line which intersects two or more lines in the same plane.

In the figure 2-3 a transversal line t intersects lines �1 and �2 to produce the angles

1,2,3,4,5,6,7 and 8.

Two angles are called corresponding angles if they occupy corresponding posi-

tions. For example, the angles

∠1 and ∠5, ∠2 and ∠6, ∠3 and ∠7, ∠4 and ∠8

are corresponding angles.

Two angles are called alternate interior angles if (i) they lie between the lines �1

and �2 and (ii) they lie on opposite sides of the transversal line. For example, the

angles

∠3 and ∠5, ∠4 and ∠6

are alternative interior angles.

Two angles are called alternate exterior angles if (i) they lie on opposite sides

of the transversal and (ii) they lie outside of the lines �1 and �2. For example, the

angles

∠2 and ∠8, ∠1 and ∠7

are alternate exterior angles.
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Figure 2 -3. Angles created by a transversal line.

Two angles are called same-side interior angles if (i) they lie between lines �1

and �2 and (ii) they are on the same side of the transversal. For example, the angles

∠3 and∠6, ∠4 and ∠5

are same-side interior angles.

Intersecting lines

Whenever two lines �1 and �2 intersect, there is al-

ways created two pairs of opposite angles. In the ac-

companying figure the angles α and γ are opposite an-

gles and the angles β and δ are opposite angles . Op-

posite angles are equal. To show that this is true make

the assumption that all the angles α, β, γ, δ are different.

Using radian measure, one can write

α + β = π, β + γ = π, γ + δ = π, α + δ = π

because the angles listed are supplementary angles. Using the assumption that things

equal to the same thing are equal to each other one can equate the representations

for π to obtain
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α + β = β + γ which implies α = γ. In a similar fashion one finds β + γ = γ + δ which

implies β = δ so our original assumption was false.

Therefore, one can say that opposite angles,

formed by the intersection of two lines, must be equal.

Opposite angles are also called vertical angles and can

be defined as a pair of non-adjacent angles formed by

the intersection of two straight lines.

Two angles are called adjacent if they have a common vertex.

Two adjacent angles with the same vertex are called a linear pair if their non-

common sides are on the same line. Supplementary angles forming a straight line is

an example of a linear pair.

Parallel lines and transversals

Any line � which intersects two or more parallel lines is called a transversal line.

Note that when a transversal line � intersects two parallel lines there are created the

following angles:

(i) The angles α and β are alternate interior angles. Alternate interior angles are

congruent and therefore equal.

(ii) The red and yellow angles are alternate exterior angles.

(iii) The orange, green, red and blue angles are corresponding angles. Corresponding

angles are congruent.

In summary, the angles illustrated in the figure 2-4 are such that

β1 = δ1, α1 = γ1 Angles are opposite angles.

δ1 = δ2, α1 = α2 Corresponding angles are equal.

β2 = δ2, α2 = γ2 Angles are opposite angles.

β1 = β2, γ2 = γ1 Corresponding angles are equal.
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Figure 2 -4. Angles created by transversal line

Note that in the special case of parallel lines the corresponding angles are equal

to one another because you can pick up the lower portion of the transversal line

intersection and place it on top of the upper portion of the transversal line intersec-

tion to show that the corresponding angles are congruent and therefore they must

equal one another. The process of picking up one figure and placing it upon another

to show the two figures coincide is known as superposition of the figures. Here by

superposition α1 = α2 = γ2 = γ1. Using the same type of reasoning one can verify that

β1 = δ1 = δ2 = β2. These results are known as the corresponding angles postulate.

Sum of angles inside a general triangle

The sum of the interior angles of any triangle must sum to 180◦ or π radians.

Given an arbitrary triangle �ABC with vertex angles α, β and γ, as illustrated in

the figure 2-5. Construct a line through the vertex C which is parallel to the base AB.

The parallel lines have the transversal lines CA and CB. The alternate interior angles

associated with these transversal lines are the angles α and β. The construction of

the line through vertex C which is parallel to the base AB demonstrates that the

angles α, β and γ are supplementary angles so that

α + β + γ = 180◦ or α + β + γ = π (2.1)



56

depending upon the units used to measure the angles of the general triangle �ABC.

(Euclid, Book 1, Proposition 32)

Figure 2 -5. General triangles with vertex angles α, β, γ

If degrees are used to measure the angles, then one can say that the sum of the

interior angles of any triangle must sum to 180◦. If radians are used to measure

the interior angles, then the sum of the interior angles of any triangle must equal π

radians. In scientific computing the radian unit of measure is preferred.

Exterior angles of a triangle

In the triangle �ABC of figure 2-6 extend the line segment of any side, then the

angle between the extended side and side of the original triangle is called an exterior

angle of the triangle. For example, extend the side AB to the right and create the

exterior angle δ as illustrated in the figure 2-6. Also construct a line through the

vertex C which is parallel to the base AB.

Figure 2 -6. Finding exterior angle of a triangle.

Make note that the parallel lines, one through vertex C and the other the line

segment AB, have the transversal lines BC and AC so that the angles α and β are
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alternate interior angles which are equal. Also δ and α + γ are alternate interior

angles which are equal so that one can express the exterior angle as

δ = α + γ

This demonstrates that the exterior angle of a triangle is always equal to the sum of

the two opposite interior angles. (Euclid, Book 1, proposition 32)

Parallel lines
In Euclid’s book 1, proposition 27, it is demonstrated that if a straight line

crosses two lines �1 and �2 such that either (a) the corresponding angles are equal or

(b) the alternate interior angles are equal, then the lines �1 and �2 are parallel lines.

Figure 2 -7. Parallel lines

The proof given by Euclid uses the following line of reasoning. If the alternate

interior angles are equal, then angle A must equal angle B. If one assumes the lines

are not parallel, then one can say that line �1 eventually meets line �2 at some point,

say to the right of line segment AB. The lines meeting leads to the construction of a

triangle with base line AB and exterior angle B. This leads to a contradiction that

the angle A cannot equal angle B because in the previous section we have shown that

the exterior angle must equal the sum of the two opposite interior angles. This is

how Euclid proved that if the alternate interior angles of the intersection are equal,

then one can conclude that the lines must be parallel.

Area

A square can be used to define area associated with a figure. If each side of a

square has length �, then one says the area of the square is �-squared units, written

as �2 units. The length of � can be any length, small or large. If � = 1 millimeter(mm),

then the area is 1 mm2 (1 millimeter squared). If � = 1 mile, then the area of the square

is 1 mi2 (1 square mile). If � is one foot (ft), then the area of the square is 1 ft2
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(one square foot). If � = 1 meter(m), then the area of the square is 1 m2 (one square

meter).

Figure 2 -8. Finding the area of a rectangle with base b and height h

Consider the problem of finding the area A of the rectangle illustrated in the

figure 2-8, where h is the height and b is the base of the rectangle. One can select

a unit of measurement, say 1 centimeter (1 cm), such that there exists integers h

and b, where h centimeters represents the height of the rectangle and b centimeters

represents the base of the rectangle. Marking off the height and base in centimeters

and constructing vertical and horizontal lines at these marks, one can create a grid of

square centimeters. One can then count the number of squares within the rectangle

to determine the total square area. One finds the total area A of the rectangle can

be expressed

Area of rectangle = (base)(height) or A = bh

square units of area. Here the unit of measurement is the centimeter, so the total

area would be in units of centimeters squared or cm2. The units of measurement

selected for the base b and height h must be the same in order to get square units

of area. The length of a side of the unit square can be any convenient unit of

measurement. The area is not always an integer but depends upon the unit of

measurement selected.

In the study of various geometrical shapes one will find that the area of the

shape can many times be expressed as being proportional to some length or lengths

associated with the shape which are then used in an appropriate manner to determine

the area enclosed by the shape.
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Area of a right triangle
Consider the rectangle ABCD with base length of b units and a height of h units,

as illustrated in the figure below.

Figure 2 -9.

Rectangle and rectangle with diagonal line BD

The rectangle can be thought of as the perpendicular intersection by two sets of

parallel lines giving a right angle at all the corners of the intersection. The area Ar

of the rectangle is the base b times the height h or Ar = bh. If one draws the diagonal

line BD and labels the alternate interior angles α and β, then two right triangles are

formed. One can now split the rectangle into two right triangles as illustrated in the

figure below.

Figure 2 -10.

The two right triangles are congruent

Observe that by symmetry the diagonal BD has produced two congruent right

triangles. The two right triangles formed are exactly equal to one another. Com-

paring the two triangles formed one can see that all the angles are the same and all

the sides are the same. Now the whole is equal to the sum of its parts, so that one
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can conclude that the area of a right triangle is half the base times the height. In

terms of symbols, let [ABD] denote the area of the right triangle �ABD which is the

same as the area [CDB] of the right triangle �CDB, so that one can write

2[ABD] = Ar or 2[ABD] = bh or [ABD] =
1

2
bh (2.2)

which shows that

The area of a right triangle is half the base times the height

Area of an arbitrary triangle
Consider the general triangles �ABC illustrated in the figure 2-11, where all the

sides and angles of the triangle are different and the triangles are not right triangles.

By dropping a perpendicular line from the vertex B to the base AC (or extend base

AC) one can construct two right triangles. To find the area [ABC] of the triangle in

figure 2-11 with vertex angle C less than 90◦ add the areas of the two right triangles.

To find the area [ABC] of the triangle in figure 2-11 with vertex angle C greater than

90◦ subtract the area of the right triangles formed.

Figure 2 -11.

Area of general triangle

Let b denote the base of the triangle and let h denote the height of the triangle

as illustrated in the figure 2-11. For the acute triangle in figure 2-11

Area �ABC = Area �ABD + Area �BDC

or [ABC] =[ABD] + [BDC]

[ABC] =
1

2
b1h +

1

2
b2h

[ABC] =
1

2
(b1 + b2)h

[ABC] =
1

2
bh
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because b = b1 + b2. For the obtuse triangle illustrated in the figure 2-11

[ABC] = Area �ABD − Area �BDC = [ABD] − [BDC]

[ABC] =
1

2
b1h − 1

2
b2h

[ABC] =
1

2
(b1 − b2)h

[ABC] =
1

2
bh

because b = b1 − b2 in this case.

This demonstrates

[ABC] =
1

2
bh =

1

2
(base)(height)

In summary, the area of any triangle is equal to half the base times the height

Area of general triangle

Given a general triangle in Cartesian coordinates with vertices A(x1, y1), B(x2, y2)

and C(x3, y3) as illustrated in the figure 2-12. One can construct a rectangle around

the given triangle as illustrated. The area of the rectangle surrounding the given

triangle is then

Arearectangle = (x3 − x1)(y2 − y3) = (base)(height) (2.3)

.

Figure 2 -12. General triangle in Cartesian coordinates.

Note that the whole is equal to the sum of its parts, which in this case is the rectangle

being composed of four triangles. The given triangle lies inside this rectangle and
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is surrounded by three other triangles labeled triangle 1, triangle 2 and triangle 3,

where the area of each triangle is one-half the base times the height giving

Areatriangle−1 =
1

2
(x2 − x1)(y2 − y1)

Areatriangle−2 =
1

2
(x3 − x2)(y2 − y3)

Areatriangle−3 =
1

2
(x3 − x1)(y1 − y3)

(2.4)

Therefore one can find the area of the given triangle by writing

[ABC] = Arearectangle −Areatriangle−1 − Areatriangle−2 − Areatriangle−3 (2.5)

where [ABC] denotes the area of triangle �ABC

or [ABC] = (x2 − x1)(y2 − y3) −
1

2
(x2 − x1)(y2 − y1) −

1

2
(x3 − x2)(y2 − y3) −

1

2
(x3 − x1)(y1 − y3)

Expand and simplify to show

[ABC] =
1

2
[y1x2 + y2x3 + y3x1 − x1y2 − x2y3 − x3y1]

The above result is based upon the vertex positions as given by figure 2-12. The

area is always considered to be a positive quantity. If the vertex positions change,

then the sign associated with the area may be negative. To avoid this happening,

one uses the absolute value of the answer to keep the area positive giving

[ABC] =

∣

∣

∣

∣

1

2
[y1x2 + y2x3 + y3x1 − x1y2 − x2y3 − x3y1]

∣

∣

∣

∣

(2.6)

The above result can be remembered using the pattern

[ABC] =
1

2

∣

∣

∣

∣

x1 x2 x3 x1

y1 y2 y3 y1

∣

∣

∣

∣

↗ ↗ ↗↘ ↘ ↘

where the arrows show which quantities are to be multiplied. The up arrows receive

a + sign and the down arrows receive a - sign and the pattern is enclosed within

absolute value symbols.
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Euclid’s congruence of triangles
In Euclid’s Elements, one finds the following three necessary conditions for de-

termining congruence of triangles.

SAS (Side-Angle-Side) (Euclid, Book 1, Proposition 4)

If two sides, s1 and s2 and the include angle α of one triangle are equal respec-

tively to the two sides and included angle of a second triangle, then the two triangles

are congruent.

Figure 2 -13. Side-Angle-Side required for two triangles to be congruent

ASA (Angle-Side-Angle) (Euclid, Book 1, Proposition 26)

If two angles α and β and the included side s of one triangle are equal respectively

to two angles and the include side of another triangle, then the two triangles are

congruent.

Figure 2 -14. Angle-Side-Angle required for two triangles to be congruent

SSS (Side-Side-Side) (Euclid, Book 1, Proposition 8)

If two triangles are such that three sides of one triangle are equal respectively

to the three sides of the other triangle, then the two triangles are congruent.
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Figure 2 -15. Side-Side-Side required for two triangles to be congruent

Euclids proof of SAS and SSS are essentially the observation that triangles will

coincide if placed upon one another. Euclid’s ASA proof is a proof by contradiction.

He assumes the triangles are not congruent with one side different from the other

side. He puts in the correct length to make the triangles congruent by use of SAS

and then arrives at a contradiction. This shows his original assumption was incorrect

and so ASA is valid for establishing congruence of two triangles.

Another test for congruence of triangles
The following test for congruence of triangles is often used. It is known as the

Angle-Angle-Side test for congruence. It is not a postulate, but is related to the

ASA proposition.

AAS (Angle-Angle-Side)

If two triangles are such that two angles and a non-included side of one triangle

are equal to the corresponding two angles and non-included side of a second triangle,

then the two triangles are congruent. The situation is illustrated in the figure 2-16.

Figure 2 -16. Angle-Angle-Side required for two triangles to be congruent
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That is, if
Angle α ∼= Angle γ

Angle β ∼= Angle δ

Side BC ∼= Side RQ

then �ABC ∼= �PQR

Right angle-Hypotenuse-Side (RHS) test for congruence

Two right triangles are congruent if the hypotenuse and one side of one triangle

equals the hypotenuse and corresponding side of the other triangle.

This is one of the properties of right triangles which will be discussed in the

Chapter 4. This test for congruence is related to the SSS proposition.

Example 2-1. Show that the triangles illustrated are congruent.

Solution

Given the two triangles, �ABC and �PQR as illus-

trated in the accompanying figure. Assume that angles

∠A = α = ∠P and ∠B = β = ∠Q are the same and that

the non-included sides PR and AC are congruent so that

PR ∼= AC.

One can then show �ABC ∼= �PQR as follows. We know that there is 180◦ in

every triangle and since the angles α and β are known, then ∠C = ∠R = 180◦− (α+β).

One can now use the ASA postulate to show the two triangles �ABC and �PQR are

congruent. In other words, the AAS is really equivalent to the ASA postulate.

Examination of Euclid’s propositions
A heuristic approach to solving a problem is to mentally examine the problem

and explore possible ways to attack it without using any sophisticated or rigorous

mathematical methods of investigation. Heuristic arguments are sometimes used

to suggest how one should proceed toward making a mathematical discovery. Note

that heuristic arguments are not used or is any part of formal logical studies and

are not accepted in any mathematical proofs.

To illustrate how the four propositions SAS, ASA, SSS, AAS provide enough

information in order to study and compare triangles, consider the following heuristic

study of each proposition.
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Figure 2 -17. Given information for SAS postulate

Let us examine the SAS (Side-Angle-Side) proposition. The given information as-

sociated with the SAS proposition is illustrated in the figure 2-17.

If you connect the points B and C by a line segment BC you complete the

triangle and no other triangle meets all the required conditions. This observation

is not a proof of anything but it illustrates how SAS is being employed to establish

two triangles being congruent. That is, you don’t have to have all the information

about a triangle in order to study it and compare it to other triangles. As the above

illustration points out, the side of the triangle BC is implied and can be constructed

from the given information.

Applying the heuristic approach to examine the ASA (Angle-Side-Angle) propo-

sition, make a sketch of the given information as in figure 2-18. Note the rays AD

and BC are implied because the angles are given.

Figure 2 -18. Given information for ASA proposition

One can visualize the extensions of the rays AD and BC intersecting at the point E

to form a triangle. All this implies that ASA provides sufficient information for the

construction of a triangle and can be used to compare two triangles for congruence.
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Examine next the SSS (Side-Side-Side) proposition in a similar manner. Sketch

what is given and investigate why this information is enough to create a triangle for

further investigation.

Figure 2 -19. Given information for SSS proposition

Examine figure 2-19, and observe that three sides s1, s2 and s3 are given. Attach

line s3 to the left-side of line segment s1 and attach line s2 to the right-side of line

segment s1 and label the line segment s1 as s1 = AB. Now rotate side s3 about the

point A and rotate side s2 about the point B to create arcs of circles. Let C denote

the point where the arcs of the circles intersect. If the arcs do not intersect, then

no triangle can exist. If the arcs intersect, then the line segments s2 = CB and

s3 = CA and s1 = AB create the unique triangle �ABC to be studied. One can see

in a heuristic fashion how this information is enough to examine congruence of two

triangles.

The above heuristic investigations into the propositions SAS, ASA, SSS, indicate

that these propositions provide enough information so that any additional informa-

tion required to show congruence of triangles can be constructed from the given

information.

Still another case to examine

As another combination of angles and sides one can employ for comparison to

the Euclid’s triangle propositions, examine the figure 2-20 with the given angle α and

two given sides s1 and s2 . Ask the question, ”Can a unique triangle be constructed

from (Angle-Side-Side) information?” The answer is no, because there are situations

which can occur where the side s2 is attached to the end of side s1 and then swings

in a circular arc to produce either (a) no intersection with extended line defining

the angle α, (b) A unique intersection with extended line, or (c) Two intersections
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with the extended side of the given angle α. The case (c) produces the two triangles

�ABC and triangle �ABD as illustrated in the figure 2-20.

Figure 2 -20. Given information for Angle-Side-Side

One can conclude that when given (Angle-Side-Side) data, there are situations where

the information does not define a unique triangle and therefore cannot be used to

study the congruence of two triangles. This disqualifies the data as not suited for

use in a proposition to investigate congruence of triangles.

Terminology

Definitions, axioms and postulates form the starting point for our investigation

of geometry. This is followed by theorems or propositions, corollaries and lemmas.

A theorem is a mathematical statement (proposition) of some kind expressing some-

thing being true or false. The mathematical statement presented is usually followed

by a demonstration as to how the theorem was arrived at using acceptable mathe-

matical operations. Every theorem has two parts

(i) The hypothesis or conditional part and

(ii) The conclusion or part to be proved.

Two theorems or propositions are said to be the converse of each other whenever

(i) The conclusion of the first theorem becomes the hypothesis of the second theo-

rem and

(ii) The hypothesis of the first theorem becomes the conclusion of the second theo-

rem.

A corollary is usually some fact associated with a theorem that is easily proven

to be true.

A lemma is known as a proved proposition which is used as a prequel to demon-

strating a larger more important theorem.
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Note that the converse of a true statement may or may not be true. For example,

the statement, All right angles are equal is a true statement. However, its converse,

All equal angles are right angles is false.

A theorem or proposition is a true statement having been proven true by the

use of previous known facts or assumptions. This is known as deductive reasoning.

The proof of a mathematical statement should be straight forward without any

flaws or contradictions in the reasoning. Theorems are usually statements introduc-

ing new ideas different from axioms or postulates. These new ideas are proven using

precise language and are presented so that the reader knows exactly how the new

idea was arrived at. The following is an example of a theorem and two ways by

which the proof of the theorem can be presented.

Example 2-2. Prove the theorem

The diagonals of a rhombus intersect perpendicular and they also bisect each other.

Solution
Start with known facts. Sketch a figure of

the rhombus and sketch in the quantities that

are being studied. Make use of definitions of

a rhombus and observe there are 4 equal sides

which are parallel sides. Label the figure with

vertices A, B, C, D and then construct the di-

agonals DB and AC and label their point of

intersection using some symbol like 0.

Examine the figure constructed and note the diagonals are transversal lines asso-

ciated with the parallel sides. These transversal lines create alternate interior angles

which are equal. Label these angles as α and β as illustrated above. We can make

the statement side DC equals the side AB because the sides of a rhombus all have the

same length. Therefore, triangle �A0B and triangle �D0C are congruent triangles

because of the ASA (Angle-Side-Angle) proposition. Mentally, rotate triangle �A0B

counterclockwise about point 0 until it lies on top of triangle �D0C to see that the

triangles are congruent and consequently

�A0B ∼= �C0D so that DC = AB, D0 = 0B and A0 = 0C

This demonstrates that the diagonals of the rhombus bisect one another.
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Next examine the triangles �D0C and �C0B and show these triangles are also

congruent because of the SSS (Side-Side-Side) proposition. Note side 0C is common

to both triangles and side D0 equals side 0B, due to diagonals bisecting each other.

The sides DC and BC are equal by definition of a rhombus having 4 equal sides. Since

these triangles are congruent, then their corresponding angles are also congruent so

that one can write ∠D0C = ∠C0B. These angles are also supplementary, so that

∠D0C + ∠B0C = 180◦

or 2∠D0C = 180◦, which implies ∠D0C = ∠B0C = 90◦. This illustrates that the

diagonals of the rhombus intersect perpendicularly.

Two-column (Statements | Reasons) presentation of proof

Let us examine what we have just done using a symbolic representation of our

reasoning by constructing a step-by-step record of our proof.

The first presentation of the proof was given by writing out sentences explaining

the step-by-step observations used to prove the theorem. The second presentation

of the proof given below is a two-column (Statements | Reasons) approach for pre-

senting proofs. The two-column presentation is a method of illustrating your step-

by-step chain of reasoning used to arrive at your conclusions. For each statement

given there must be a corresponding reason.
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Statements Reasons

1.
Sketch rhombus ABCD

Sides ‖ and =
By definition of rhombus.

2. AB ‖ DC, α, β, 0 Alternate interior angles equal. Labels to figure.

3. DC = BC = AB = AD Sides of rhombus equal.

4. �A0B ∼= �C0D

A SA (Angle− Side −Angle)

(β −AB − α)
(β −DC − α)

where AB = DC

5. CD = AB, D0 = B0, A0 = C0
Sides of congruent �’s are equal

which shows diagonals bisect one another

6. �D0C ∼= �C0B
S S S (Side-Side-Side)

D0=0B, DC=BC, 0C=0C

7. ∠D0C ∼= ∠C0B
corresponing angles of

congruent triangles are equal

8. ∠D0C + ∠C0B = 180◦ Angles are supplementary

9.
2∠D0C=180

◦

∠D0C=90◦=∠C0B
Diagonals intersect ⊥

Example 2-3. Show the diagonals of a parallelogram bisect one another and

the opposite vertex angles are congruent.

Solution

Figure 2 -21. Parallelogram with diagonals DB and AC

Given the parallelogram in figure 2-21 and note that by definition the opposite

sides are congruent with AD = BC and DC = AB. Construct the diagonal lines DB

and AC and observe the equal angles α = ∠EDC = ∠EBA and β = ∠EAB = ∠ECD

because alternate interior angles associated with a transversal line are equal. This

implies that the triangles �AEB and �CED are congruent because of angle-side-

angle. The angles being α and β and the sides being DC and AB, so that one can

write �AEB ∼= �CED. Therefore EB = ED and EA = EC because the corresponding



72

sides of congruent triangles are equal. This demonstrates that the diagonals bisect

one another.

The triangles �ADB and �CBD are congruent (�ADB ∼= �CBD) because of SSS

(side-side-side) with DB being a common side. Therefore, the opposite vertex angles

at A and C are equal ( ∠A = ∠C). In a similar fashion one can show �ADC ∼= �CBA

because of SSS, which implies the opposite vertex at D and B are equal (∠D = ∠B).

It is left as an exercise to construct a two-column (Statements | Reasons) proof

of the above results.

Terminology for the circle

Recall that when using radian measure, the arc

length s swept out by the circle radius r rotating coun-

terclockwise about the circle center is given by

s = rθ, θ in radians (2.7)

The angle θ is called the central angle associated with the arc length s. Another

notation for representing arc length is
�

AB for the central angle swept out as point A

moves along the circumference to the point B. Note the arc
�

AB associated with the

smaller central angle is called the minor arc of the circle and the arc
�

BCA associated

with the larger central angle is called the major arc of the circle.

The line segment AB is called the chord associated

with the arc length s. A sector (orange area above) of

a circle is the area bounded by the two radii and the

intercepted arc s. A segment (blue area) of circle is

represented by the area bounded by the arc s and the

chord AB.

Any angle ∠ACB = α having its vertex on the major arc of the circle and sides

terminating at the points A and B defining the minor arc of the circle is called an

angle associated with the arc
�
AB . In the next chapter we will show that the angles θ

and α associated with the same arc
�

AB are always related to one another. In order

to understand this relationship you must first become familiar with the terminology

used to study angles and arc lengths associated with a circle.
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Similarity

Two objects are said to be similar if the objects have the same shape but are

scaled to have different sizes. Similarity is denoted using the mathematical symbol ∼

If triangle �ABC is similar to triangle �abc, then this is written as �ABC ∼ �abc.

Think of triangle �ABC as a scaled version of triangle �abc. If all the sides of triangle

�abc have been scaled upward to produce triangle �ABC, then this implies there

exits a scale factor s where the sides of triangle �abc can be multiplied by s to

produce
s ac =AC

sab =AB

s bc =BC

where s is the positive nonzero scale factor. This in turn implies that the ratio of the

sides of two similar figures are proportional to one another. This can be expressed

by writing
AC

ac
=

AB

ab
=

BC

bc
= s (2.8)

Note the difference between congruence and similarity. Congruence requires the

same size and shape, while similarity requires only the shape to be the same.

In Cartesian coordinates a translation is the process of moving an object a certain

distance without changing the object. Every point on the object is moved the same

distance and in the same direction. The figure 2-22 illustrates the translation of the

letter A. All points (x0, y0) within the figure A get translated to the new position

(x0 + h, y0 + k) where h and k are given constants.

Figure 2 -22. Translation of the letter A.
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A rotation of an object occurs whenever a center of rotation is selected and then

every point on the object is rotated through the same angle about the center point

of rotation.

Figure 2 -23. Rotation of object.

α = angle of rotation

center of rotation

A reflection of an object occurs whenever a line is used to create a mirror image

of the object. The line is called a line of symmetry. A square has four lines of

symmetry.

Figure 2 -24. Lines of symmetry of an object.

Glide reflection

A glide reflection (P → P ′) is composed of a reflec-

tion (P → P̄ ) in a line x followed by a translation (P̄ → P ′)

in the direction the line. A glide reflection is illustrated

in the figure on the right. Note that in a glide reflection

the point m = x1+x2

2
will always be the midpoint of the

line segment x1x2.
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Similar figure

In general, two figures are said to be similar if

(a) They both have the same shape.

(b) One shape is a translation, rotation, reflection, glide reflection

contraction or expansion of the other shape.

(c) There is a uniform scaling of one shape to the other.

This scaling is an enlargement or shrinking which can be treated

as a transformation of the first shape to the second shape.

Imagine two objects which appear to have the same shape, say a small object

and a large object. If you scale the smaller object by a multiplication factor s and

you can find a value of s which makes the smaller object congruent to the larger

object, then you can say the two objects are similar.

Two triangles are similar if two angles of one triangle are congruent to two angles

of the other triangle. This is sometimes called angle-angle similarity and implies all

the angles of the triangle are known because there has to be 180◦ in every triangle.

The only difference between the triangles is due to the scale factor s either expanding

(s > 1) or contracting (0 < s < 1) the second triangle.

Two right triangles are similar if an acute angle of one equals an acute angle of

the other. Any line drawn through the triangle and parallel to a triangle side will

create a smaller triangle similar to the original triangle. Note that similar triangles

have corresponding sides which are parallel to one another.

One can have side-side-side (SSS) similarity if the corresponding sides of two

triangles are proportional. One can also use side-angle-side (SAS) similarity if the

angle of one triangle is congruent to an angle of another triangle and the lengths of

the sides that include the angle are proportional.

Two polygons are similar if their interior angles are equal and their corresponding

sides are proportional. All circles are similar because the diameter (or radius) of

one can be scaled to that of the other. All squares are similar because their interior

angles are all equal.

Note that similar polygons can be divided into similar triangles with the ratio

of the corresponding sides squared equal to the ratio of the areas as illustrated in

the figure 2-25. (Euclid, book 6, proposition 20.)
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A1

A2

=

(

s1

s2

)2

Figure 2 -25. Ratio of areas for polygons

Example 2-4. Similarity and area

Given the two similar triangles illustrated in the figure 2-26. One can say the

sides a, b, c and altitudes h are proportional so that

a1

a2

=
b1

b2

=
c1

c2

=
h1

h2

(2.9)

These ratios are called similarity ratios associated with the two triangles �AB1C1

and �AB2C2. Using the theory of proportions one can show that the perimeters of

these triangles are also proportional in that

a1

a2

=
b1

b2

=
c1

c2

=
a1 + b1 + c1

a2 + b2 + c2

(See Chapter 1, Example 1-5.)

Figure 2 -26. Similar triangles �AB1C1 ∼ �AB2C2
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Make note of the fact that the sides of the similar triangles have units of length

and the areas of the similar triangles have units of length squared. This suggests

that when dealing with the ratio of areas associated with similar triangles, one would

expect to be dealing with quantities having units of length squared. Let

[AB1C1] =Area triangle �AB1C1 =
1

2
a1h1

[AB2C2] =Area triangle �AB2C2 =
1

2
a2h2

The similarity ratios from the equations (2.9) imply h2 = h1

a2

a1

so that one can write

the ratio of the areas associated with similar triangles as

[AB1C1]

[AB2C2]
=

1

2
a1h1

1

2
a2h2

=
a1

a2

h1

h1
a2

a1

=

(

a1

a2

)2

This shows that when dealing with similar triangles the ratio of the triangle areas

is equal to the square of the similarity ratio or

[AB1C1]

[AB2C2]
=

a2
1

a2
2

=
b2
1

b2
2

=
c2
1

c2
2

=
h2

1

h2
2

Note the above result will not hold if the triangles are not similar.

Examine the figure 2-27 and make the observation that not all rectangles are

similar. One can say also that not all isosceles triangles are similar. Remember that

for triangles to be similar it is necessary that two angles from one triangle be equal

two angles from the other triangle.

Figure 2 -27. Which objects are similar?

Certain special triangles are recognized as being similar.

(i) A line drawn through a triangle and parallel to a base creates two similar

triangles.
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(ii) In a right triangle, if an altitude is constructed from the right angle to the

hypotenuse, then three similar right triangles are created. The three triangles are

the ones left and right of the altitude being similar to one another as well as being

similar to the whole right triangle.

(iii) If two triangles have a common equal angle with the sides of this angle being

proportional, then the triangles are similar.

(iv) Two equilateral triangles are similar with proportional sides.

Example 2-5.

Similar figures can be created using a pantograph

which is a mechanical device used for tracing and scaling

such things as maps, designs, curves, blue prints, photos,

etc. The length of the rods are adjustable to obtain the

desired scaling. In the figure on the left the red curve is

the original and the green curve is the copy. The figure is

courtesy of Wikepedia.

Summary

Similar triangles have corresponding sides in the same

proportion. For example,

a

a′
=

b

b′
=

c

c′

Similar triangles have two corresponding angles equal.

(Note that this implies all three corresponding angles are

congruent since there must be π radians in every triangle.)

For example,

α = α′, β = β′, γ = γ ′

Similar triangles will result if two corresponding sides are in the same proportion

and the included angles are equal. For example,

a

a′
=

c

c′
and β = β′
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Dilatation

A dilatation expands or contracts a figure. The expanded or contracted figure

has the exact same shape as the original figure and only differs in size. Associated

with every dilatation is a scale factor and center of dilatation. Given the triangle

�ABC, select a point 0 outside the triangle as the center of dilatation and then

construct the straight lines 0A, 0B, 0C and extend these lines as illustrated in the

figure 2-28.

Select the points A′, B′, C ′ such that

0C ′ = s 0C, 0B′ = s 0B, 0A′ = s 0A

where s is a scale factor. If 0 < s < 1, then a contraction occurs. If s > 1, then an

expansion occurs. If s = 1, then an identity results.

Figure 2 -28. Dilatation of triangle.

One can slide the triangle �ABC, keeping it parallel to triangle �A′B′C ′ to see

the effect of scaling or seeing how one triangle is transformed into another similar

triangle. One can then say that triangle �ABC is similar to triangle �A′B′C ′ written

(�ABC ∼ �A′B′C ′). Note that any of the ratios

0C ′

0C
=

0B′

0B
=

0A′

0A

will give you the scale factor s.
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This type of scaling can be performed with any shaped plane figure.

Figure 2 -29. Dilatation of quadrilateral.

Example 2-6. Slope values for perpendicular lines

The following is an examination of two lines in Cartesian coordinates which

intersect so that opposite angles are all equal to π
2

radians. Whenever this occurs

the lines are said to be perpendicular to one another. In such cases one can use

similarity to find out certain properties that the perpendicular lines must satisfy.

Examine the sketch in figure 2-30 where lines �1 and �2 have a perpendicular

intersection at point C. Extend the lines until they intersect with the x-axis at

points A and B respectively. These extended lines intersect the x-axis with angles

α and β as measured counterclockwise from the x-axis to the line. The intersections

with the x-axis forms the triangle �ABC. Construct a line segment through the

vertex C which is perpendicular to the x-axis at the point D. Let the constructed

line segment have length h and note that it divides the line segment AB into two

parts. Label these two parts x1 = AD and x2 = DB. Next construct the similar right

triangles �CDA and �BDC as illustrated in the figure 2-30.

Observe that the angles γ and α are complementary angles so that α + γ = π
2
.

The right triangles constructed are similar triangles with their sides proportional

and so one can write the ratios

h

x2

=
x1

h
⇒ h2 = x1x2 (2.10)
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Figure 2 -30. Perpendicular intersection of lines �1 and �2

Examine �ABC and show the slope of line �1 is given by the positive slope

m1 =
change in y-values
change in x-values

=
h

x1

(2.11)

and the slope of line �2 is given by the negative slope

m2 =
change in y-values
change in x-values

=
−h

x2

(2.12)

One can use the results from equation (2.10) and write

m2 =
−h

x2

=
−h x1

x2 x1

=
−h x1

h2
=

−x1

h
=

−1

m1

(2.13)

The equation (2.13) tells us that if two lines �1 and �2, with slopes m1 �= 0 and

m2 �= 0 intersect perpendicularly, then the product of the slopes must equal minus one

or m1m2 = −1. Alternatively, one can say that if two lines are perpendicular, then

one slope must be the negative reciprocal of the other slope, provide neither slope is

zero.

Note that if one of the lines is perpendicular to the x-axis, then its equation is

x = x0 a constant and then the other perpendicular line has the equation y = y0 a

constant.



82

Exercises

� 2-1.

In the right triangle illustrated prove the angles α and β are com-

plimentary angles.

� 2-2.

If �ADC is a reflection of �BDC, then prove that

�ADC ∼= �BDC

� 2-3.

The figure illustrates two parallel lines intersected by a

transversal. If the measure of angle 1 (m∠1) is 30◦(π

6
rad), then

(i) find the measure of all the other angles.

(ii) Determine which angles are supplementary.

(iii) What conditions must the angles satisfy for the lines to be parallel?

� 2-4. Find the exterior angles α′, β′, γ ′, given α, β, γ.
What are the exterior angles if the triangle sides are

extended opposite to the direction illustrated?

� 2-5. Line segment AB is perpendicular to the parallel

lines illustrated. The point M is the midpoint of line

segment AB and line segment CD passes through the

point M. Show AC = BD and CM = DM.

� 2-6. Prove the diagonals of a parallelogram bisect one another and the opposite

vertex angles are equal using a two-column (statement | reason) proof.

� 2-7. If �ABC is an isosceles triangle, show

(i) The angle C bisector is perpendicular to the base AB.

(ii) The angles opposite the equal sides are equal.

(iii) The bisector of angle C divides the base in half.

� 2-8. For the isosceles triangle illustrated in the previous problem, extend a side

through the vertex C and then bisect the exterior angle and show the bisector line

is parallel to the base of the triangle.
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� 2-9. Prove the angles of an equilateral triangle are equal.

� 2-10. Given two legs of a triangle show that the tri-

angle with maximum area that can be constructed is

a right triangle.

� 2-11. Given the isosceles triangle �ABC with

line segments AE and BD. If CD = CE show that BD = AE

� 2-12. Given the isosceles triangle �ABC. If AD = EB

show that CD = CE ⇒ �CDE is isosceles.

� 2-13. Given the isosceles triangle �ABC with AC = CB. Let

P denote any point on the side AB and construct the lines PD

and PE perpendicular to the isosceles triangle sides followed by

the altitude BF.

(a) Find three similar triangles.

(b) Use the law of proportions to show DP + PE = BF

� 2-14. If �ABC is an isosceles triangle

with line � parallel to the base AB, prove

that

(i) �CDB ∼= �CEA

(ii) �ADB ∼= �BEA

(iii) �CDE ∼ �CAB

(iv) CD
CA

= CE
CB

� 2-15. Find the sum of the exterior angles of a triangle.
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� 2-16. Triangle �ABC is an equilateral triangle with

sides of length s and λ is a parameter 0 ≤ λ ≤ 1. If

the distances BE = AD = CF prove that �DEF is an

equilateral triangle for all values of λ.

� 2-17. What conditions must be placed upon the angles

α, β, γ, δ and α′, β′, γ ′, δ′ in order that lines �1 and �2 be

parallel?

� 2-18. Given the triangles �ABC and �A′B′C ′ are

similar triangles with AB ‖ A′B′ and BC ‖ B′C ′.

Make constructions if necessary to show AC ‖ A′C ′.

� 2-19.

Given the right triangle �ABC. From the right angle B

construct the median, angle bisector and altitude. Define

the angles α0 = ∠EBF and α1 = ∠DBE.

(a) Show BD = 1

2
AC = CD ⇒ �BDC is isosceles.

(b) Show in �ABF , ∠A + ∠ABF = π
2

= ∠A + γ

(c) Show ∠BCE = ∠CBD = ∠ABF = π
2
− ∠A = γ

(d) Show γ + α1 = π
4

= γ + α0

(e) Show α0 = α1

� 2-20. Find the area of the triangle having the vertices with coordinates

(i) (1,0), (4,5), (5,7) (ii) (3,4), (7,1), (8,5) (iii) (-3,-5), (3,5), (-10,8)

� 2-21. Given two sets of parallel lines, �1 ‖ �2 and �3 ‖ �4

Show �ABC ∼= �A′B′C ′

� 2-22. Given two parallel lines �1, �2 with points A and

B fixed on line �1 and point P is allowed to move along

line �2. Find the area [APB] no matter where P is on

line �2
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� 2-23. Use the fact that the whole equals the sum of

its parts to calculate the following areas in terms of tri-

angle areas.

(a) The area of a square.

(b) The area of a regular pentagon if h is the

apothem and s is the length of each side.

� 2-24.

Given the isosceles trapezoid with diagonals AD

and CB intersecting at point 0.

(a) Show �ACB ∼= �BDA

(b) Show A0 = 0B and 0C = 0D

(c) Show ODC ∼ 0AB

(d) Find a relationship between CD and AB

� 2-25.

Find all lines of symmetry associated with

the following figures.

(a) A rectangle.

(b) A regular hexagon and regular pentagon.

(c) Examine each letter of the alphabet for symmetry.

� 2-26. In triangle �ABC the line �1 bisects angle A and

line �2 bisects the exterior angle at vertex B. Show that
1

2
∠ACB = ∠EDB

� 2-27. To measure the height h of a pyramid a six foot

pole y is placed in the ground at the tip of the pyramid

shadow and the shadow x from pole is measured to be

4
′. If the tip of the shadow from the pole is 300

′ from

the center of the pyramid, then find the height of the

pyramid.



86

� 2-28. Given the trapezoid ABCD illustrated with di-

agonals AC and DB.

(i) What triangles are similar?

(ii) If ED = 3, AE = 10, EB = 8 and DC = 4, then find

EC and AB.

� 2-29. Given triangle �ABC with vertices A : (−3, 1), B : (8, 5), C : (12,−6) Find

the slopes of AC, BC, AC. Is the triangle a right triangle?

� 2-30. (i) Graph the line �1 : x
5

+ y
6

= 1

(ii) Find the line �2 which is perpendicular to line �1

which passes through the point (1, 1).

(iii) Graph the line �2.

� 2-31. Given line �1 with slope m1 and line �2 with slope m2.

(i) What condition is necessary for the lines to be parallel?

(ii) What condition is necessary for the lines to be perpendicular?

� 2-32.

Given triangle �ABC with parallel lines DE and AB fol-

lowed by the construction of the lines DB and AE. If CD = CE

and DA = EB, then

(a) Show that �DAE ∼= �EBD

(b) Show that �DAB ∼= �EBA

� 2-33.

Let AA′ and BB′ denote altitudes associated with

triangle �ABC. Show that (AA′) · (BC) = (BB′) · (AC)

� 2-34.

Given isosceles triangle �ABC with AC = AB and BC = CD.

Prove that �ABC ∼ �CBD.
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� 2-35.

A surveyor wants to calculate the distance between two

points A and B on the opposite sides of a river. From point B

he measures a distance BC = 500′, where BC is perpendicular

to line AB. He then measures a distance CD = 100′, where CD

is perpendicular to line BC. The line-of-sight from point D to

A intersects line BC at point E. The distance EC is measured

and found equal to 50′. Find the distance AB.

� 2-36.

Given isosceles triangle �ABC with AC = AB and BC = CD.

Prove that �ABC ∼ �CBD.

� 2-37. In triangle �ABC let D, E denote the midpoints of sides AC and CB and then

join these points. Use similar triangles to show DE = 1

2
AB. Write out in words what

this result is telling you. It will be used in many geometric proofs.

� 2-38. Given a triangle inscribed within a circle. Explain what must be done to

circumscribe a triangle about the circle such that the circumscribe triangle is similar

to the inscribed triangle.

� 2-39.

Given triangle �ABC with points D, E, F lying on the mid-

points of the sides as illustrated. Prove that the triangles

�ABC and �DEF are similar.

� 2-40.

Given the triangle �ABC with exterior angle

γ = 110◦. If β − α = 20◦, then find all the interior

angles of triangle �ABC.
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� 2-41.
Given that triangle �ABC is similar to triangle

�A′B′C ′

(�ABC ∼ �A′B′C ′). Let [ABC] denote the area of tri-

angle �ABC and [A′B′C ′] denote the area of triangle

�A′B′C ′. Show that

[ABC]

[A′B′C ′]
=

a2

a′2
=

b2

b′2
=

c2

c′2

� 2-42.
To find the distance CD and CB

across a lake, a surveyor measures the

distances AC, DB, BE, DE where DE ‖
AC. From the known information ex-

plain how the distances CD and AE can

be calculated.

� 2-43.

(a) Prove the diagonals of a rectangle are equal

and bisect one another.

(b) If BE is the median of a right triangle, then

show BE = 1

2
AC

(c) Show the median BE of a right triangle di-

vides the triangle into two isosceles triangles.

� 2-44.

In a Cartesian coordinate system what happens to a general point (x0, y0) during

(a) a reflection about the line x = 0?

(b) a reflection about the line y = 0?

(c) a reflection about the line y = x?

� 2-45. Show that in any triangle �ABC with sides a, b, c one can write

a + b ≥
√

ab, a + c ≥
√

ac, b + c ≥
√

bc

Hint: Expand (
√

X −
√

Y )2 ≥ 0.

� 2-46. Prove that a triangle with two equal medians must be isosceles.
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Geometry

Chapter 3

Shapes and properties

Sum of interior angles of simple polygons

We know the sum of the interior angles of a triangle is 180◦ or π radians. Let

us investigate the sum of the interior angles of polygons with 4,5,6,. . . sides. Let us

begin by examining the interior angles of a quadrilateral, pentagon, hexagon and

heptagon as illustrated in the figure 3-1.

Figure 3 -1.

Triangles inside selected convex polygons.

Select a point inside the quadrilateral and then draw lines from the selected

point to each vertex of the quadrilateral. This creates four triangles inside the

quadrilateral. The interior angles of each triangle is 180◦ or π radians. The sum of

the angles from each triangle is 4(180◦) or 4π radians. The central angles around the

point selected inside the triangle sum to 360◦ = 2(180◦) or 2π radians. Therefore, the

sum of the interior angles of a quadrilateral is

Sum of angles of triangles− Sum of angles around selected central point (3.1)

This gives

4(180◦) − 2(180◦) = 2(180◦) or 4π − 2π = 2π radians

as the sum of the interior angles of a quadrilateral.

In a similar fashion select a point inside a pentagon and construct lines from

this point to each of the five vertices. This creates five triangles. The sum of the
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interior angles of a pentagon can be determined by the use of equation (3.1) which

produces the relation

5(180◦) − 2(180◦) = 3(180)◦ or 5π − 2π = 3π radians

as representing the sum of the interior angles of a pentagon.

Note that a pattern is developing. By selecting an interior point inside a hexagon,

then one can create six triangles so that the equation (3.1) can be used to determine

the sum of the interior angles of a hexagon. This gives

6(180◦) − 2(180◦) = 4(180◦) or 6π − 2π = 4π radians (3.2)

This pattern can be extended to determine the sum of the interior angles of an

n-gon as

n(180◦) − 2(180◦) = (n − 2)(180◦) or nπ − 2π = (n − 2)π radians

In summary, one can state that the summation of the interior angles of an n-gon

will be (n − 2)π radians.

Sum of exterior angles of simple polygons

One can set up a pattern for calculating the summation of the exterior angles of

a n-gon. Examine the hexagon illustrated with the exterior angles εi, i = 1, 2, 3, 4, 5, 6

and interior angles αi, i = 1, 2, 3, 4, 5, 6. Note the summation of an exterior angle with

its corresponding interior angle will always produce the result π because these angles

are supplementary.

The Greek letter sigma
∑

is used to denote a summation of terms. The notation

n
∑

i=1

f(i) = f(1) + f(2) + f(3) + · · ·+ f(n)

can be used as a shorthand to express a summation of the terms f(1) + f(2) + f(3) +

· · ·+ f(n). The index i below the Greek letter sigma is called the starting summation

index and the n on top of the sigma is called the ending index for i. One then

substitutes for i all the integers ranging from the starting index to the ending index

to obtain the sum.

For the hexagon illustrated one can construct interior angles α and exterior an-

gles ε as illustrated. These angles are supplementary angles and so one can write



91
α1 + ε1 =π

α2 + ε2 =π

α3 + ε3 =π

α4 + ε4 =π

α5 + ε5 =π

α6 + ε6 =π

(3.3)

The summation notation can be used to express the summation of the above

equations. The summation of all of the above equations can be expressed in the

form
6

∑

i=1

αi +
6

∑

i=1

εi = 6π (3.4)

because equals added to equals the results are equal.

Here
6

∑

i=1

αi represents the summation of the interior angles of the hexagon and

6
∑

i=1

εi represents the summation of the exterior angles of the hexagon. We know

6
∑

i=1

αi = (6 − 2)π from equation (3.2). Therefore, equation (3.4) becomes

6
∑

i=1

εi = 6π − (6 − 2)π = 2π (3.5)

The equation (3.5) can be generalized in the case of an n-gon instead of a

hexagon. Just replace 6 everywhere it occurs in equation (3.5) by n to obtain

n
∑

i=1

εi = nπ − (n − 2)π = 2π (3.6)

which tells us that the summation of the exterior angles of an n-gon must equal 2π.

In summary, we have discovered that the summation of the exterior angles of an

n-gon will always equal 2π and the summation of the interior angles of an n-gon is

(n − 2)π.

Area of regular polygons

Consider the regular polygons illustrated in the figure 3-2. These polygons

have equal sides and equal interior angles. The symmetry associated with regular
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polygons allows one to take the summation of the interior angles of an n-gon to

obtain (n − 2)π . Dividing this value by the number of sides n produces the angular

value at a single vertex. The center point of a regular polygon is the point inside

the boundaries which is equidistant from each vertex.

Figure 3 -2.

Selected regular polygons

The apothem of a regular polygon is the distant from the center point to the

midpoint of a side. The center point and apothem for selected regular polygons

are illustrated in the figures 3-2 and 3-4. Note that the distance from the center

of a regular polygon to a vertex gives the radius R of a circumscribed circle and

the distance from the center to the midpoint of a side gives the apothem a which

represents the radius of the inscribed circle. Each regular polygon has an interior

isosceles triangle consisting of a side si, i = 4, 5, 5, 7, . . . and two radii ri, i = 4, 5, 6, 7, . . ..

This terminology is illustrated in the figure 3-3 for the special case of a pentagon.

Figure 3 -3.

Inscribed and circumscribed circles for pentagon.
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Each regular polygon with n-sides (n ≥ 4) has an apothem an, n = 4, 5, 6, 7 . . .

which represents the height of a single isosceles triangle which is part of the regular

polygon. The situation is illustrated in the figure 3-4.

Figure 3 -4.

Section of an n-gon

Let An, n = 4, 5, 6, 7, . . . denote the area of a single triangle associated with a

regular polygon of n-sides and let Atn denote the total area associated with a regular

polygon of n-sides. Also let Pn denote the perimeter of a regular polygon having n

equal sides. Using a summation of triangle areas one can verify

Area of single triangle Total area of polygon

square n = 4 A4 =
1

2
a4s4 At4 = 4A4 =

1

2
a4(4s4) =

1

2
a4P4 =

1

2

(s4

2

)

(4s4) = s2

4

pentagon n = 5 A5 =
1

2
a5s5 At5 = 5A5 =

1

2
a5(5s5) =

1

2
a5P5

hexagon n = 6 A6 =
1

2
a6s6 At6 = 6A6 =

1

2
a6(6s6) =

1

2
a6P6

heptagon n = 7 A7 =
1

2
a7s7 At7 = 7A7 =

1

2
a7(7s7) =

1

2
a7P7

...
...

n-gon An =
1

2
ansn Atn = nAn =

1

2
an(nsn) =

1

2
anPn
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Observe that in the special case of a square the apothem is given by a4 = s4

2
so that

the total area for the square is the side squared.

Generalizing the calculation of area for other regular polygons one finds

Area of regular polygon =
1

2
(apothem)(perimeter)

which states the general formula for the area of a regular polygon is half the product

of the apothem times the perimeter of the regular polygon.

Thales theorem of proportion

In the triangle �ABC illustrated, assume the line segment DE is parallel to

the base AB. Show the given figure has the following proportional line segments

CD

DA
=

CE

EB

Solution

One can demonstrate that the trian-

gles �DEC and �ABC are similar because

corresponding angles are equal to one an-

other. It is given that the line segment

DE is parallel to the base line segment AB.

Therefore, one can pick up the base line

segment and lay it on the line segment DE

to show

α = ∠CAB = ∠CDE and β = ∠CED = ∠CBA

because this is an example where corresponding angles are equal. Therefore, two

angles of one triangle are congruent to two angles of the other triangle which demon-

strates the triangles are similar. Similar triangles have sides that are proportional

so that one can write the ratio equality
CA

CD
=

CB

CE
which can be written as

CD + DA

CD
=

CE + EB

CE
⇒ 1 +

DA

CD
= 1 +

EB

CE
⇒ DA

CD
=

EB

CE

One can now use the cross product property of proportions to rewrite this last

proportion into the form desired. This result is sometimes referred to as the side

splitter theorem.
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Converse of Thales theorem

If there exists a triangle �ABC where sides AB and AC are intersected by a line

which produces a line segment DE such that

AD

DB
=

AE

EC
, (3.7)

then one can say that DE is parallel to the triangle base BC written (DE ‖ BC).

Figure 3 -5. Triangle �ABC intersected by line segment DE

Proof

The proof is by contradiction. Assume the line segment DE is not parallel to BC.

We know that one can construct a line through point D which is parallel to the base

BC so we construct this parallel line in red and label its intersection with side AC as

point F . We now have DF ‖ BC by construction. By Thales proportional theorem, if

DF ‖ BC, then the following must hold true

AD

DB
=

AF

FC
(3.8)

By hypothesis the equation (3.7) must hold as well as equation (3.8). We can employ

the axiom, things equal to the same thing are equal to one another to show

AF

FC
=

AE

EC
(3.10)

Add 1 to both sides of equation (3.10) to show

AF

FC
+ 1 =

AE

EC
+ 1

(AF + FC)

FC
=

(AE + EC)

EC

AC

FC
=

AC

EC

(3.10)

The equation (3.10) implies that FC = EC which requires that the line segments

DE and DF be the same and so DE is parallel to BC which contradicts our original

assumption.
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Area of special quadrilaterals

Let us find ways to find the area and perimeter associated with the special

quadrilaterals known as, the rectangle, the parallelogram, the rhombus, the trape-

zoid and the kite.

The rectangle

A rectangle is a quadrilateral with two pair of

parallel sides. The length of the sides are unequal

and each of the interior angles is a right angle. We

have previously demonstrated that the area of a

rectangle is given as the base times the height.

Area A = bh = (base)(height) Perimeter P = 2(h + b)

The parallelogram

A parallelogram with base b and

height h has two sets of parallel sides. If

one constructs a diagonal as illustrated,

then the area of the parallelogram is the

sum of the areas of two triangles giving

Area of parallelogram = bh = (base)(height)
Figure 3 -6. Parallelogram

The perimeter of the parallelogram is

Perimeter = P = 2b + 2�

where � is the slant height associated with the parallelogram side.

The rhombus

A rhombus is a parallelogram having four congruent sides. It is a special case

of a parallelogram where the base length equals the side length. The diagonals of

a rhombus intersect each other and divides the rhombus into four congruent right

triangles. The area of the rhombus is the sum of the areas of these four right

triangles. Let A1, A2, A3, A4 denote the areas of these four right triangles. One finds

A1 =
1

2
b1h1, A2 =

1

2
b1h2, A3 =

1

2
b2h2, A4 =

1

2
b2h1
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Figure 3 -7. Rhombus with diagonals d1 and d2

Therefore
A1 + A2 =

1

2
(h1 + h2) =

1

2
d1b1

A3 + A4 =
1

2
(h1 + h2)b2 =

1

2
d1b2

and consequently

A1 + A2 + A3 + A4 =
1

2
d1(b1 + b2) =

1

2
d1d2

This shows the area of a rhombus equals half the product of the diagonals.

In summary,

Area of rhombus A =
1

2
d1d2 Perimeter of rhombus P = 4�

The trapezoid

A trapezoid is a quadrilateral where two opposite sides are parallel as in figure

3-8. The parallel sides are said to represent the bases b1 and b2 of the trapezoid. The

nonparallel sides are called the legs of the trapezoid. If a trapezoid has congruent

legs, then the trapezoid is said to be isosceles.

The angles α1 and α2 are called the base angles associated with base b1 and the

angles β1 and β2 are known as the base angles associated with base b2 of the trapezoid.

An isosceles trapezoid is a trapezoid with a line of symmetry passing perpendicular

to the parallel sides. In an isosceles trapezoid the base angles are congruent because

of the line of symmetry. Note also that the diagonals of an isosceles trapezoid are

equal and the opposite angles are supplementary.
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Figure 3 -8. Trapezoid and isosceles trapezoid

The midpoint line of a trapezoid is defined as the line segment connecting the

midpoints M1 and M2 of the trapezoids legs. Examine the figure 3-8 and observe that

by using Thales theorem of proportion BM3 = M3D and by the midpoint theorem

associated with triangle �ABD

M1M3 =
1

2
AD =

1

2
b2

Similarly, in triangle �BDC

M3M2 =
1

2
BC =

1

2
b1

follows from the midpoint theorem and by addition

M1M3 + M3M2 = M1M2 =
1

2

(

AD + BD
)

=
1

2
(b1 + b2) (3.11)

Therefore, the midpoint line segment M1M2 has length which represents the

average value of the bases. The perimeter of the trapezoid is obtained by adding

the lengths of the trapezoid edges. One finds

Perimeter P = �1 + �2 + b1 + b2

where �1 and �2 are the legs of the trapezoid and b1, b2 are the base lengths. By

constructing the diagonal line segment BD, as illustrated in the figure 3-8, one forms

two triangles where the area of each triangle is 1

2
the base times the height or

Area �BDC =
1

2
b1h Area �ABD =

1

2
b2h ⇒ Area trapezoid =

1

2
(b1 + b2)h

since the total area is the sum of its partial areas. Hence, the area of a trapezoid is

the average base length times the perpendicular distance between the parallel sides.
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The kite

The kite is illustrated in the figure 3-9

and is defined as a quadrilateral with adja-

cent sides which are equal. This produces a

figure with a line of symmetry. The diago-

nals of a kite intersect one another to form

four right angles. By symmetry the diag-

onal d1 is divided by the line segment AC

and the line segment BD divides the other

diagonal into two parts h1 and h2 where

d2 = h1 + h2. The area of a kite can be ob-

tained by adding together the area of tri-

angles �ABD and �BDC. This produces

the result

Area A =
1

2
d1h1+

1

2
d1h2 =

1

2
d1(h1+h2) =

1

2
d1d2

Hence, the area associated with a kite is

half the product of the diagonals.

Figure 3 -9.

Convex and concave kite

The perimeter of the kite is P = 2(�1 + �2).

Example 3-1. Show the diagonals of a kite intersect perpendicularly.

Solution

A kite is illustrated in the figure 3-10. The problem is to show AC ⊥ BD

Figure 3 -10. Kite with diagonals DB and AC
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Statements Reasons

1. AB = BC Definition of kite

2. AD = CD Definition of kite

3. BD = BD Common side to 2 triangles

4. �ABD ∼= �CBD Side-Side-Side

5. ∠ABD ∼= ∠CBD From congruent triangles

6. AB = BC, ∠ABE = ∠CBE, BE = BE Side-Angle-Side observation

7. �ABE ∼= �CBE Side-Angle-Side congruence

8. ∠AEB ∼= ∠BEC From congruent triangles

9. ∠AEB + ∠BEC = 180◦ Supplementary angles

10. 2∠AEB = 180◦ ∠BEC = ∠AEB

11. ∠AEB = 90◦ = ∠BEC Diagonals intersect ⊥

Area of irregular polygons

The figure 3-11 illustrates selected irregular shaped polygons. The problem is to

find the area and perimeter associated with these plane figures. It will be assumed

that the Cartesian coordinates of the polygon vertices are known. To find the area

of irregular shaped polygons such as the ones illustrated in the figure 3-11 one can

proceed using one of the following methods.

Figure 3 -11. Irregular shaped polygons

Construct triangles

Start at a vertex of a given irregular polygon and construct triangles by drawing

lines to the other vertices as illustrated in the figure 3-12(a). The problem is then

reduced to finding the area of each triangle. The total area of the polygon is then a

summation of these areas.
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Figure 3 -12. Area associated with irregular shaped polygons

Example 3-2. Leonhard Euler (1707-1783) a famous Swiss mathematician

asked the question: How many ways Wn can a convex polygon of n sides be broken

up into triangles by constructing diagonals which do not intersect one another? This

turn out to be a difficult problem but Euler solved it and obtained the answer

Wn =
2 · 6 · 10 · · ·(4n − 10)

(n − 1)!

where n! = n(n − 1)(n − 2) · · ·(3)(2)(1)

This problem and many others like it is one example of how questions in geom-

etry led to a new branch of mathematics called combinatorics.

Area of triangle

To find the area of a single triangle

with known coordinates, one can drop per-

pendicular lines from each vertex to the

x-axis as illustrated in the accompanying

figure. The area of the triangle �ABC is

then given by









Area of

trapezoid

ABx2x1









+









Area of

trapezoid

BCx3x2









−









Area of

trapezoid

ACx3x1









The area of the trapezoids is the average height times the base so that one can write

Area�ABC =
1

2
(y2 + y1)(x2 − x1) +

1

2
(y2 + y3)(x3 − x2) −

1

2
(y1 + y3)(x3 − x1)
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Because the position of the vertices can vary, the sign associated with the area can

change. To keep the area a positive quantity the absolute value of this answer is

used The above answer for the area is often written in the form of an absolute value

Area�ABC =

∣

∣

∣

∣

1

2
[(x1y2 − y1x2) + (x2y3 − y2x3) + (y3x1 − y3x1)]

∣

∣

∣

∣

(3.12)

Area of irregular polygon

To find the area of the irregular polygon in figure 3-12(b) one can drop perpen-

dicular lines from each vertex to the x-axis as illustrated. The area of the polygon

is then obtained as an addition followed by a subtraction of areas associated with

trapezoids. For example, in the figure 3-12(b) the area of the polygon ABCDE is

calculated using









Area of

trapezoid

ABx1x0









+









Area of

trapezoid

BCx3x1









+









Area of

trapezoid

CDx4x3









−









Area of

trapezoid

AEx2x0









−









Area of

trapezoid

EDx4x3









Generalization

Another way to calculate the area of a polygon with n-sides having the vertices

(x1, y1), (x2, y2), (x3, y3), · · · , (xn−1, yn−1), (xn, yn)

is obtained from the multiplication of the coordinates in the following pattern.

Area n-gon =

∣

∣

∣

∣

1

2

[

x1 x2 x3 · · · xn−1 xn x1

y1 y2 y3 · · · yn−1 yn y1

]
∣

∣

∣

∣

Construct lines with positive and negative slopes as illustrated below.

Figure 3 -13. Coordinate pattern with lines
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The coordinates touching a line are multiplied together with a + sign for the lines

with negative slope and a - sign for lines with a positive slope. This gives the area

formula

Area n-gon =

∣

∣

∣

∣

1

2
[(x1y2 − y1x2) + (x3y1 − y3x2) + · · ·+ (xnyn−1 − xn−1yn) + (x1yn − xny1)]

∣

∣

∣

∣

where again the absolute value sign has to be used to keep the area positive. Note

this formula can be used to calculate the area formula in equation (3.12).

Midpoint theorem

In triangle �ABC of figure 3-14 show the line segment M1M2 connecting the

midpoints of sides AB and AC satisfies the following properties.

(a) The segment M1M2 is parallel to the third side BC

(b) The segment M1M2 is half the length of side BC

Solution

In order to prove the above assertions a parallelogram M1BCM3 will be con-

structed where the segment M1M2 is parallel to the side BC and from the parallelo-

gram the above properties can be established. Begin by extending the line segment

M1M2 to point M3 such that M1M2 = M2M3 and then construct the line segment M3C.

Figure 3 -14. Line segment M1M2 connecting midpoints.

Observe that

(i) AM1 = M1B by definition of a midpoint.

(ii) AM2 = M2C by definition of a midpoint.

(iii) M1M2 = M2M3 by construction.

(iv) Observe the angles ∠M1M2A = ∠CM2M3 because opposite angle are equal.

(v) The triangle �AM1M2 is congruent to triangle �CM2M3 because of SAS

(vi) We know corresponding sides of congruent triangles are equal so that sides
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M3C = M1A = M1B

(vii) Also corresponding angles from congruent triangles are equal so that

∠M1AM2 = ∠M2CM3 = α which implies AB ‖ CM3

(viii) Using the converse of the Thales proportion theorem AM1

M1B
= 1 = AM2

M2C
which

implies M1M2 ‖ BC

This demonstrates that M1BCM3 is a parallelogram with opposite sides parallel

and equal. Therefore, one can write

BC = M1M3 = 2M1M2 ⇒ M1M2 =
1

2
BC

Parallel intercept theorem

Show that if parallel lines produce equal intercepts on one transversal, then they

will produce equal intercepts on any other transversal. The situation is illustrated

in the figure 3-15.

Figure 3 -15. Parallel lines cut by transversal �t produces equal intercepts.
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Solution:

To prove this theorem we will produce a series of parallelograms and congruent

triangles to demonstrate the conclusion. By hypothesis the transversal line �t cuts

the parallel lines to produce the equal line segments

AB = BC = CD = DE (3.13)

Let �T denote any other transversal line which intersects the parallel lines at the

points F, G, H, I, J as illustrated in the figure 3-15. One can now construct the

lines �1, �2, �3, �4 through the points F, G, H, I respectively which are all parallel to

the transversal line �t and producing the parallelograms

ABB′F, BCC ′G, CDD′H, DEE ′I

illustrated in the above figure. The opposite sides of the parallelogram are parallel

and equal to that

AB = FB′, BC = GC ′, CD = HD′, DE = IE ′ (3.14)

and because of the hypothesis things equal to the same things are equal to one

another, one finds

FB′ = GC ′ = HD′ = IE ′ (3.15)

The angles α are all equal because they are corresponding angles in one situation

and opposite vertex angles of a parallelogram in another situation and alternate

interior angles in still another situation. The angles (α+β) are corresponding angles

in one situation and the angles β are corresponding angles in another situation.

Therefore, the triangles

�FB′G, �GC ′H, �HD′I, �IE ′J

are all congruent (ASA) to one another, which implies the corresponding sides are

equal or FG = GH = HI = IJ which was to be demonstrated.

Corollary

A line which bisects one side of a triangle (point

D) which is at the midpoint of AB and is parallel to

the triangle base BC, will bisect the third side (point

E) at the mid-point of AC and the line segment DE will

have a length one half the third side. This is sometimes

referred to as the mid-segment theorem.

DE =
1

2
BC, AD = DB, AE = EC



106

Corollary

A line through the midpoints of a

trapezoids legs will be parallel to the trape-

zoid bases and have a length equal to the

average value of the bases.

AB =
1

2
(b1 + b2)

Tools for geometric constructions

Figure 3 -16. Tools for geometry

The tools for geometric constructions are illustrated in the figure 3 -16. In addi-

tion to the pencil and ruler there is the drawing compass1 which is used for drawing

circles and measuring distances on maps used for navigation. It is usually a device

with two arms which can be spread apart because of a hinge or screw adjustment

device. The bottom of one arm of the drawing compass is a needle point and at

the bottom of the other arm is a pencil point or drawing lead. Also illustrated is

a protractor for measuring angles. Sometimes the protractor has two scales. One

scales goes right to left across the top measuring angles from 0 to 180 degrees in the

positive direction. The second, lower scale goes left to right measuring angles from

0 to 180 degrees in the negative direction. You can purchase a special protractor

which measures in units of radians or grads if you desire. The drawing triangles can

be used as a straight edge and have angles of 30, 45 and 60 degrees because these

angles occur quite frequently.

1
Make note of the difference between a drawing compass and a directional compass which points to magnetic

North. They are different types of compasses.
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Note in the following paragraphs various constructions are performed using only

a pencil, straight edge (ruler), and a drawing compass. These were the only instru-

ments available to the ancient Greeks who studied geometry. Constructions using a

straight edge and drawing compass are an important part of learning geometry.

Find midpoint of a line segment using drawing compass and ruler

(Euclid, Book 1, Propostion 10)

1) Given line segment AB

2) Widen the compass so the distance between

the needle point and the lead point is greater

than 1

2
AB. Maintain this distance on the com-

pass throughout the construction.

3) Place the needle point at A and make marks

above and below the line segment AB as illus-

trated in the figure 3 -17

4) Place the needle point at B and make marks

above and below the line segment AB which inter-

sect the previous marks. Where these marks cross

are labeled as points C and D.

5) Use a straight edge to draw a line connect-

ing the points C and D.

6) The intersection of the line segments CD

and AB are perpendicular and CD bisects the line

segment AB. Figure 3 -17.

Finding the midpoint
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Figure 3 -18.

Addditional constructions

The reasons why the above constructions bi-

sect the line segment AB can be seen by construct-

ing the line segments as illustrated in the figure 3-

18 to form a rhombus. We know the diagonals of a

rhombus bisect each other and the diagonals of the

rhombus are perpendicular to one another. Note

that finding the midpoint of a line segment is used

quite frequently in geometry. Recall that if you

know the Cartesian coordinates (x1, y1) and (x2, y2)

of the line segment endpoints, then the midpoint

is given by (xm, ym) =
(

1

2
(x1 + x2),

1

2
(y1 + y2)

)

.

Construct a tangent line to a circle

Using the drawing compass construct a circle

with center labeled 0. Select a point P on the cir-

cumference of the circle and without changing the

compass setting place the needle point of the com-

pass at point P and draw another circle identical

in size to the first circle. Next draw the line 0P

and extend the line to intersect the second circle

at the point P ′. This construction makes point P

the midpoint of the line segment 0P ′. Now you can

go through the procedure for finding the midpoint

of the line segment 0P ′.

Widen the compass and place the needle point at 0 and make two arcs above

and below the line segment 0P ′, then move the needle point of the compass to the

point P ′ and do the same thing. Call the intersection points of these arcs A and B.

Use a straight edge and draw the line segment AB which is now a tangent line to

the circle at point P .

Note that this construction is the same used for finding the midpoint of a line

segment. Observe that the tangent line constructed is perpendicular to the circle

radius and diameter. (Euclid, book 3, Proposition 18)
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In Cartesian coordinates, if (x1, y1) are the

coordinates of point P on the given circle, then

the slope of the line passing through the points

0 and P is m =
change in y
change in x

= y1

x1

and the point-

slope formula for the equation of the line 0P is

y = y1

x1

x. Recall that the slope on any line which

is perpendicular to a line with slope m has a slope
−1

m
which is the negative reciprocal of slope m.

Therefore, the slope of any line perpendicular to the line 0P must have the slope

m⊥ = −1

m
= −x1

y1

. The tangent line to the circle is perpendicular to the line 0P and

passes through the point (x1, y1). Using the point-slope formula for the equation of

the line with slope m⊥ which passes through the point (x1, y1) is therefore

y − y1 =

(

−x1

y1

)

(x − x1) (3.16)

This is the equation of the tangent line to the circle with point of tangency (x1, y1).

Construction of line parallel to a given line

(Euclid, Book 1, Proposition 31)

Figure 3 -19.

Steps for constructing parallel line.
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Given a line � and a point P not on the given line. The problem is to construct

another line through point P which is parallel to the given line. The situation is

illustrated in the figures 3-19 and 3-20.

(i) Construct a line L through point P which intersect the given line � at an angle

at point A.

(ii) Place the needle of the drawing compass at point A and draw an arc which

intersects the lines � and L at the points B and C as illustrated above.

(iii) Using the same compass distance AB place the needle of the drawing compass

at point P and make the same kind of arc as in step (ii) above. This arc intersects

line L at point D.

(iv) Adjust the drawing compass distance to measure the distance BC, then place

the compass needle at the point D and make an arc intersecting the previous arc at

point E. Note the distances DE = BC.

(v) Construct the straight line through the points P and E and call this line �′.

Figure 3 -20.

Constructing parallel line to given line � through given point P.

(vi) The line � and �′ are parallel. This is because the angles ∠DPE = ∠BAC because

corresponding angles are equal.

Line through given point P perpendicular to given line � (Euclid, Book

1, Proposition 12)

Case 1: Given a line � and point P not on line �.

The problem is to construct a line through P which is perpendicular to the line �.

1) Widen the compass so it intersects the given line � when the needle is place
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at the point P and then make two arcs which intersect line � at points A and B as

illustrated in the figure 3 -21.

Figure 3 -21.

Constructions for perpendicular line PP ′

2) Widen compass again and place needle of compass at point A and make arc

below line, then place needle of compass at point B and make another arc below line

� which intersects the first arc constructed. Call the point of intersection of these

arcs point p′.

3) Use a straight edge and construct the line segment PP ′ which is now perpen-

dicular to the given line �.

Figure 3 -22.

Kite formed by APBP ′

The reason why this construction works is be-

cause the constructions form a kite and we know

the diagonals of a kite intersect perpendicular to

one another.
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Figure 3 -23.

Line CP perpendicular to line �

Case 2:(Euclid, Book 1, Proposition 11)

Given a line � and point P on the line �.

Construct line perpendicular to given line and

through point P on the given line.

1) Put needle of compass at point P and make

two arcs intersecting the given line � at points A and

B as in figure 3 -23.

2) Widen compass and put the needle of the com-

pass on point A and make a mark at point C. Put

needle of compass at point B and make intersection

with mark at C.

3) Construct line with straight edge through the

two points P and C. The constructed line is perpen-

dicular to the given line and passes through the given

point P .

Figure 3 -24.

Line CP perpendicular to line �

The reason why this construction works is be-

cause triangle �ACP of figure 3 -24 is congruent to

triangle �BCP (�ACP ∼= �BCP) due to the fact

the sides AC = CB, AP = BP and CP = CP being

a common side. Since the triangles are congruent,

their angles are equal so we have ∠APC ∼= ∠BPC

and ∠APC + ∠BPC = 180◦, which implies that

∠APC = ∠BPC = 90◦ and line segment CP is per-

pendicular to line �.

Example 3-3. (Theorem) If a point P lies on a perpendicular bisector of a line

segment AB, then it is equidistant from the endpoints of the line segment.

Proof

If CM in figure 3 -25 is a perpendicular bisector of the line segment AB, then

AM = MB.
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Let the point P denote an arbitrary point

on the perpendicular bisector CM and construct

the line segments PA and PB. This creates

two right triangles with common side PM . The

triangles �APM and �PMB are congruent so

that (�APM ∼= �PMB) because of side-angle-side

(SAS). Therefore AP = PB since corresponding

sides of congruent triangles are equal.

Figure 3 -25.
Line segment PD is

perpendicular bisector of AB

The converse of this theorem is also true. One can say that if the point P is

equidistant from the endpoints A and B, then the point P must lie on the perpendic-

ular bisector of the line segment AB.

Here our assumption is that PA = PB and

we must show the point P lies on the perpendic-

ular bisector. One can construct the line through

point P which bisects the angle ∠APB and inter-

sects the line segment AB at the point M . Then

the triangles �APM and �PMB are congruent

(�APM ∼= �PMB) because of SAS and conse-

quently AM = MB since corresponding sides of

congruent triangles are equal. In these triangles

angles ∠AMP = ∠BMP = π
2

so that PM is per-

pendicular to AB. This demonstrates the point P

must lie on the perpendicular bisector of the line

segment AB.

Figure 3 -26.

Line segments PB = PA.

Example 3-4. (Theorem) If one constructs the perpendicular bisector to each

side of a general triangle ABC, then these perpendicular bisectors meet at a point of

concurrency called the circumcenter. The distances from the circumcenter, labeled

0, to each vertex of the triangle ABC are all equal and one can write 0A = 0B = 0C.

A circle with center point at the concurrent circumcenter and radius 0A produces a

circumscribed circle enclosing the triangle.

Another name for the circumscribe circle is the circumcircle. This is a circle

which passes through each vertex of a given triangle. The radius of the circumcircle
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is called the circumradius. (Euclid, Book 4, Proposition 5)

Observe that the circumcenter lies

(i) inside the triangle when it is acute

(ii) on the hypotenuse when a right triangle

(iii) outside the triangle when it is obtuse

To calculate the coordinates of the circumcenter for triangle �ABC when A has the

coordinates (x1, y1), B has the coordinates (x2, y2) and C has the coordinates (x3, y3)

one can proceed as follows.

Figure 3 -27. Construction of circumcenter for acute, right and obtuse triangles.

(i) Calculate the slope associated with each side of the triangle �ABC

m1 = slope AC =
(y3 − y1)

(x3 − x1)
, m2 = slope AB =

(y2 − y1)

(x2 − x1)
, m3 = slope BC =

(y2 − y3)

(x2 − x3)

because of the definition that the slope of a line segment is the change in y-values

divided by the change in x-values.
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Figure 3 -28. General triangle �ABC

(ii) Calculate the midpoints associated with each side of the triangle

midpoint AC = M1 =

(

1

2
(x1 + x3),

1

2
(y1 + y3)

)

midpoint AB = M3 =

(

1

2
(x1 + x2),

1

2
(y1 + y2)

)

midpoint BC = M2 =

(

1

2
(x2 + x3),

1

2
(y2 + y3)

)

because the midpoint is determined by taking the average of the x-values and y-

values associated with the endpoints of a line segment.

(iii) Calculate the slopes of the perpendicular bisectors through the points M1, M2 and M3

slope through M1 = m⊥AC = −1/m1

slope through M3 = m⊥AB = −1/m2

slope through M2 = m⊥BC = −1/m3

because if two lines are perpendicular the product of their slopes must equal -1.

(iv) Calculate the equations of the lines representing the perpendicular bisectors

line ⊥ AC through M1 is y − 1

2
(y1 + y3) = m⊥AC

(

x − 1

2
(x1 + x3)

)

line ⊥ AB through M3 is y − 1

2
(y1 + y2) = m⊥AB

(

x − 1

2
(x1 + x2)

)

line ⊥ BC through M2 is y − 1

2
(y2 + y3) = m⊥BC

(

x − 1

2
(x2 + x3)

)
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These lines result using the point-slope formula for the equation of a line.

The circumcenter is calculated by solving for the values of x and y which satisfy

any two of the above equations simultaneously. One finds the circumcenter has the

coordinates

xc =
(x2

1 + y2

1)(y3 − y2) + (x2

2 + y2

2)(y1 − y3) + (x2

3 + y2

3)(y2 − y1)

2 (x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1))

yc =
(x2

1 + y2
1)(x2 − x3) + (x2

2 + y2
2)(x3 − x1) + (x2

3 + y2
3)(x1 − x2)

2 (x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1))

(3.17)

In the special cases where a slope is zero or undefined, then modifications to the

above equations are necessary. These modifications will usually simplify one or more

of the equations for a line to the form of x=a constant or y=some constant. The

resulting algebra in solving for the circumcenter is also simplified.

Example 3-5. (Special case)

In the special case of a right triangle, assign the Cartesian coordinates

A(0, y2), B(0, 0), C(x1, 0)

to the vertices of the triangle as illustrated in the figure 3 -29.

Figure 3 -29.

Right triangle with three perpendicular bisectors.

In this special case the midpoints are

for AB, (0,
y2

2
), for BC (

x1

2
, 0), for AC (

x1

2
,
y2

2
)

The line representing the perpendicular bisector of segment AB is y = y2

2
= a constant.

The line representing the perpendicular bisector of line segment BC is x = x1

2
. To
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find the equation for the perpendicular bisector of line segment AC, first note that

the slope of AC is

mAC = − y2

x1

=
change in y
change in x

with its negative reciprocal m⊥AC =
x1

y2

being the slope of the line perpendicular to

AC. The perpendicular bisector line must pass through the midpoint of AC and so

one can use the point-slope formula to obtain the equation

y − y2

2
=

x1

y2

(x − x1

2
)

The three perpendicular bisector lines meet at the midpoint of the line segment AC

and has the coordinates (x1

2
, y1

2
) and represents the circumcenter for the circumscribed

circle.

Altitudes

An altitude of a triangle is a line segment constructed through the vertex of a

triangle which is perpendicular to the side opposite the vertex.

Figure 3 -30.

Altitude from vertex C

Sometimes the side opposite the vertex must be extended in order to meet the

perpendicular line. Every triangle has three altitudes which meet at a common point

of concurrency called the orthocenter.
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Example 3-6. Calculate the orthocenter associated with the general triangle

illustrated in the figure 3 -31.

Figure 3 -31.

Triangle with three altitudes.

Solution

The slopes associated with the triangle sides are given by

Slope AB = mAB =
y2 − y1

x2 − x1

Slope BC = mBC =
y3 − y2

x3 − x2

Slope AC = mAC =
y3 − y1

x3 − x1

(3.18)

The slopes of the lines perpendicular to the triangle sides have values which are the

negative reciprocals of the slopes given in equation (3.18). The equations of the

lines representing the altitudes of triangle �ABC are given by

line �1 = Altitude through vertex A y − y1 = − x3 − x2

y3 − y2

(x − x1)

line �2 = Altitude through vertex B y − y2 = − x3 − x1

y3 − y1

(x − x2)

line �3 = Altitude through vertex C y − y3 = − x2 − x1

y2 − y1

(x − x3)

(3.19)

Select any two of the lines from the equations (3.19) and solve these simultaneous

equations to obtain the coordinates (xH , yH) of the orthocenter

xH =
λ(y1 − y3) + µ(y3 − y2) + ν(y2 − y1)

y2(x1 − x3) + y1(x3 − x2) + y3(x2 − x1)

yH = − λ(x1 − x3) + µ(x3 − x2) + ν(x2 − x1)

y2(x1 − x3) + y1(x3 − x2) + y3(x2 − x1)

where

λ =x3x1 + y3y1

µ =x2x3 + y2y3

ν =x1x2 + y1y2

(3.20)
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Example 3-7. (Theorem) The larger side of a triangle subtends the greater

angle.

(Euclid, Book 1, Proposition 18)

Solution

Figure 3 -32.

Triangle ABC

Given �ABC with BC > AC as illustrated in the figure 3 -32. Let angle A equal α

(∠A = α) and let angle B equal β (∠B = β). We wish to demonstrate that α > β.

Using a drawing compass place the needle point at the vertex C and pencil point

at the vertex A and make an arc which intersect the line segment BC at the point

D as illustrated. Use a straight edge and construct the line AD. By construction

the triangle �ACD is an isosceles triangle with AC = CD and so the angles opposite

these sides are also equal. Let ∠CAB = ∠ABC = γ as illustrated in the figure 3 -32.

One can then make the following arguments.

(i) α > γ The whole is greater than any of its parts

(ii) γ is the exterior angle of �ABD and therefore

γ > β

Therefore α > γ > β

The converse of the above (Euclid, Book 1, Proposition 19)

In any triangle the greater angle is subtended by the greater side.

Here we assume that α > β and wish to show this implies a > b.

The proof is by contradiction. In the given triangle one of the conditions

a = b, a < b, or a > b

must hold.
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If a = b, then triangle ABC would become an

isosceles triangle with α = β. But we know α > β.

Therefore, the original assumption that a = b must

be false.

Assume the a < b and note that we have

just shown the larger angle is always opposite

the larger side, therefore our assumption implies

α < β, which is again a contradiction to the facts

given and so one can conclude our original as-

sumption is false.

The only case left is the case a > b which must

hold.

Figure 3 -33.

Triangle ABC

Example 3-8. (Theorem) The triangle inequality

(Euclid, Book 1, Proposition 20)

The sum of two sides of any triangle will always be greater than the third side

Given the �ABC illustrated in the figure 3 -34 with sides a, b, c. Show that one can

write

b + c > a or a + c > b or a + b > c

This is known as the triangle inequality.

Figure 3 -34.

Triangle inequality

Extend the line segment BC in figure 3 -34, then

use a drawing compass with the needle set at vertex

C and the pencil point set at vertex A. Construct the

arc of a circle which intersects the extended line BC at

the point D. Add the line segment AD and observe that

this construction is such that DC = AC = b and results in

the figure 3 -34. Observe that the constructed triangle

�ADC is an isosceles triangle with base angles

∠ADC = ∠DAC = δ

Associated with the triangle �ABD is the inequality

∠DAB = α + δ > δ since the whole is greater than any of its parts.
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Using the fact that the larger angle is always opposite the larger side, one finds

the larger side opposite angle ∠DAB is DC +CB = b+ a and the smaller side opposite

the angle δ = ∠ADC is AB = c. Consequently, in triangle �ABD one can say

if α + δ = ∠DAB > δ then a + b > c

which is called the triangle inequality.

It is left as an exercise to derive the inequalities a + c > b and b + c > a. These

derivations are identical to what has been done above, but with all the symbols

changed around.

Example 3-9. Triangle inequality for real numbers

The absolute value of a real number x is defined

| x |=
{

x, if x ≥ 0

−x, if x < 0
(3.21)

For z and r real numbers, the inequality

| z |≤ r is equivalent to − r ≤ z ≤ r

In general, if x and y are real numbers, then one can write

− | x | ≤ x ≤ | x | and − | y | ≤ y ≤ | y |

Adding these inequalities one finds

− [| x | + | y |] ≤ x + y ≤ | x | + | y |

which by definition can be expressed

| x + y | ≤ | x | + | y | (3.22)

which is the triangle inequality for real numbers.
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Example 3-10. Show the shortest distance from a point P to a line � is always

the perpendicular distance.

Solution

Given a line � and a point P not on the line �.

Construct the perpendicular line to � which passes

through point P and intersects line � at point A.

One can now extend the line PA downward to the

point B, where B is selected such that PA = AB.

Let Q denote any point on line � which is different

from point A and then construct the line segments

QP and QB.
Figure 3 -35.

Shortest distance to line �

The triangles �PAQ and �QAB are congruent right triangles (�PAQ ∼= �QAB).

They are congruent using the SAS (side-angle-side) postulate with the line segment

AQ the common side. Therefore, one can write PQ = QB. Using the triangle in-

equality associate with triangle �PQB one finds

PQ + QB > PB (3.23)

but PB = PA + AB = 2PA and PQ + QB = 2PQ so that equation (3.23) reduces to

2PQ > 2PA or PQ > PA (3.24)

This demonstrates that any line through point P to the line �, which differs from

the perpendicular line through P to the given line �, will always have a longer length

than the perpendicular distance PA.

Example 3-11. Another look at the triangle inequality

Construct the altitudes from each vertex to the opposite sides of a general tri-

angle �ABC, with sides a,b,c as illustrated in the figures below.
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In the triangle on the right with altitude from

vertex A, note that the line segments CD and DB

are perpendicular to the line segment AD. Using

the results from the previous example one finds

the inequalities
AB >BD

CA >DC

Add these inequalities

AB + CA >BD + DC

or c + b >a
(3.25)

In the triangle with altitude from vertex B, note that the line segments AE and

EC are perpendicular the line segment EB. This is the same situation as in the

previous example and so one can produced the inequalities

CB >EC

AB >AE

Add these inequalities

CB + AB >AE + EC

or a + c > b
(3.26)

In the triangle with the altitude from vertex C,

note that the line segments AF and FB are per-

pendicular to the line segment CF .

This is the same situation as in the previous example which results in the in-

equalities
CB >FB

CA >AF

Add these inequalities CB + CA >AF + FB

or a + b > c

(3.27)

The equations (3.25), (3.26), (3.27) show that the sum of two sides of any triangle

will always be greater than the third side which is the triangle inequality.
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Radius perpendicular to chord

Figure 3 -36.

(Euclid, book3, proposition3)

If AB is the chord of a circle and a radius 0D is con-

structed which is perpendicular to the chord, then

this radius will bisect the chord. The situation is il-

lustrated in the figure 3-36. Label the intersection

of radius 0D with the chord AB as the point C. Con-

struct also the line segments 0A and 0B to form the

two right triangles �A0C and �B0C.

Observe that these right triangles are congruent (�A0C ∼= �B0C) because of

the RHS (Right triangle-Hypotenuse-Side) postulate where 0C is a common side to

both right triangles and the radii 0A and 0B represent the hypotenuses of these right

triangles. Therefore, AC = CB because corresponding parts of congruent triangles

are equal to one another. Consequently, point C is the midpoint of the chord AB.

This demonstrates that any radius 0D which is perpendicular to a chord AB will

bisect the chord.

Example 3-12. Show two chords are congruent if and only if they are equidis-

tant from the center of the circle. (Euclid, book 3, proposition 14)

Proof

Associated with two circles having the same radius r assume that the chords AB

and CD are given with AB congruent to CD (AB ∼= CD). Construct the line 0E which

is perpendicular to AB and the construct the line 0F which is perpendicular to the

chord CD. Next construct the radial distances 0C and 0A.

Figure 3 -37. Circles with congruent chords
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We know that if 0F is perpendicular to CD, then CF = FD which implies 2CF = CD.

In a similar fashion, if 0E is perpendicular to AB, then AE = EB and one can write

2AE = AB. These results hold because we know a line from the center of the circle

which is perpendicular to a chord must bisect the chord. By hypothesis AB = CD,

therefore one can write

2AE = 2CF ⇒ AE = CF (3.28)

which implies triangle �A0E is congruent to triangle �C0F (�A0E ∼= �C0F) because

of RHS (Right triangle-Hypotenuse-Side) using the hypotenuse r and sides AE and

CF. Therefore, 0E = 0F because corresponding parts of congruent triangles are equal

to one another.

Conversely, assume that 0F = 0E with 0E ⊥ AB and 0F ⊥ CD. In this case

the two right triangles �C0F and �A0E are congruent by RHS (Right triangle-

Hypotenuse-Side) with hypotenuse r and sides 0F = 0E. Therefore, AE = CF

and we know 0E bisects AB and 0F bisects CD so that AB = 2AE and CD = 2CF

Consequently AB = 2AE = 2CF = CD

and the two chords are equal.

The inscribed angle

For the circle illustrated in the figure 3-38 as-

sume that there is a sector formed with the central

angle β which intersects the circumference of the

circle at the points A and B. One can select any

point P on the major arc formed by the points

A and B and then construct the chords PA and

PB. The inscribed angle α = ∠APB is defined as

the angle formed by the two chords PA and PB

which have the common endpoint P on the major

arc associate with the minor arc
�

AB . The point

P is also known as the vertex of the inscribed an-

gle ∠APB. The other endpoints A and B define

the minor intercepted arc s =
�

AB associated with

both the central angle β and inscribed angle α.

Figure 3 -38. Inscribed angle
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The inscribed angle theorem

(Euclid, book 3, propositions 20,21)

The inscribed angle theorem states that the in-

scribed angle α, associated with the central angle

β, will not change as the vertex point P moves

along the major arc formed by the central angle.

Further, the inscribed angle α will always have the

value of half of the central angle (α = 1

2
β). Another

way of saying this is that the central angle β will

always be twice the inscribed angle α.

The proof of this theorem is broken up into three cases.

Case 1: Consider the special case where one chord PA is the diameter of the

circle.

Case 2: Investigate the special case where the center of the circle in the interior

of triangle �PAB.

Case 3: Investigate the special case where the center of the circle is exterior to

the triangle �PAB.

Case 1: Assume the line segment PA passes

through the center of the circle (0) and then con-

struct the radius 0B = r. In this special case

the triangle �P0B is an isosceles triangle with

equal angles ∠0PB = ∠0BP = α and the angle

∠P0B = π − β because the central angle β and an-

gle ∠P0B are supplementary angles. The sum of

the angles in any triangle must add to π radians.

Therefore in triangle �P0B

α + α + (π − β) = π or β = 2α (3.29)

This demonstrates the central angle is twice the

inscribed angle or α = 1

2
β as stated in the theorem.
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Case 2: Construct the line P0 and then ex-

tend the line to intersect the circle at the point

C as illustrated in the figures on the right. The

constructed line divides the inscribed angle α into

two smaller angles labeled α1 and α2 such that

α = α1 + α2. Use the results from case 1 above to

verify that

α1 =
1

2
∠A0C

α2 =
1

2
∠C0B

Adding these equations gives

α1 + α2 =
1

2
[∠A0C + ∠C0B]

Note that α = α1+α2 and β = ∠A0C +∠C0B so that

α = 1

2
β which was to be proved.

Case 3: Construct the line P0 and then extend the line to intersect the circle at

point C. The constructed line forms the inscribed angles α1 and α2 as illustrated.

Note that in this case we have α = α2 − α1. Use case 1 above and verify that

α1 =
1

2
∠C0A

α2 =
1

2
∠B0C

Subtracting these equations produces the re-

sult

α2 − α1 =
1

2
[∠B0C −∠C0A]

But α = α2 − α1 and β = ∠A0B = ∠B0C − ∠C0A so

that again we have α = 1

2
β
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(Theorem)

Let ABCD denote a quadrilateral inside a circle, then the opposite angles sum

to two right angles. (Euclid, book3, proposition 22)

Proof:

Using the inscribed angle theorem from the previous discussion, one can verify

the equal angles associated with the segments AB, BC, CD, DA. Using the fact that

for every triangle the sum of the interior angles must equal two right angles or π

radians, one can verify the following equations.

Figure 3 -39. Inscribed angles associated with quadrilateral

In triangle �ABC the sum of the interior angles produces

(α + δ) + β + γ = π (3.30)

The equation (3.30) shows that the opposite angles associated with a quadrilateral

inscribed inside a circle must sum to two right angles. Quadrilaterals with vertices

on the circumference of a circle are called cyclic quadrilaterals.

How to construct a regular dodecagon using a protractor

First construct a circle of radius r using a drawing compass. We know that the

dodecagon has 12 sides and so divide the 360◦ of the circle into 12 parts to obtain
360

◦

12
= 30◦. Use a protractor and make marks (·) on the circumference of the circle

every 30◦ as illustrated in the figure 3 -40. Draw lines from the points marked to the

center of the circle and also draw line segments connecting the marked points on
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the circumference of the circle to form a loop around the inside of the circle creating

the dodecagon.

Figure 3 -40.

Area of a circle

Examine the dodecagon figure constructed in the figure 3 -40 and observe that

the lines through the center of the circle create 12 isosceles triangles around the

inside of the circle. Each side of the isosceles triangles have length equal to the

radius r of the circle.

Examine the figure 3 -41 and make the following observations. As the number of

sides of the inscribed polygon increases, then the side s gets smaller and the apothem

h approaches the radius r of the circle. One can approximate the area of the circle

by adding up the areas of the 12 isosceles triangles created inside the dodecagon of

figure 3-41. Let h, the apothem, denote the height of the isosceles triangle and let s

denote the base of the triangle. We know the area of one triangle is given by 1

2
the

base times the height or At = 1

2
sh.

Figure 3 -41.

Dodecagon with inside isosceles triangles with base s and height h

Therefore the approximate area for the circle is

Acircle ≈ (12)At = (12)
1

2
sh =

1

2
h(12s) (3.31)



130

where the symbol ≈ is used to represent ‘approximation’ and the quantity (12s)

represents the perimeter of the dodecagon.

Instead of 12 isosceles triangles, suppose there were n such triangles, where n

is a large number. One would expect the area approximation would get better as

n increased. Using the notation limn→∞ to denote the limit as n increases without

bound, the area of the circle approximation becomes

Acircle = lim
n→∞

1

2
h(ns) (3.32)

where n has replaced the 12 in equation (3.31). The quantity ns in equation (3.32)

now represents the perimeter of the constructed n-sided polygon created by n trian-

gles, all having base s, inside the circle. The value of ns approaches the circumference

of the circle which we know is 2πr. As n gets larger, the base s gets smaller and the

value of h approaches the value of the circle radius r so that equation (3.32) becomes

Acircle = lim
n→∞

1

2
h(ns) =

1

2
r(2πr) = πr2 (3.33)

This gives the result that the area of a circle is given by π times the radius squared.

In summary a circle with radius r has the following properties.

(i) The diameter d is twice the radius or d = 2r

(ii) The circumference c is given by c = 2πr = πd

(iii) The area A is given by A = πr
2

(iv) The circle is a figure with constant width.

(3.34)



131

Exercises

� 3-1. Find the sum of the interior angles of

(a) A triangle

(b) A quadrilateral

(c) A pentagon

(d) A hexagon

� 3-2. Consider a regular polygon with n sides inscribed within a unit circle as il-

lustrated.

Fill in the following table.

Regular polygons with

central isosceles exterior

sides angle base angle angle

n θ (radians) β (radians) ε (radians)

3

4

5

6

7

8
...

...
...

...

n

� 3-3. Perform the following summations.

(a)
5∑

i=1

i2 (b)
5∑

j=0

(2j + 1) (c)
5∑

k=1

k3 (d)
5∑

i=0

2i
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� 3-4. Given a regular pentagon with

radius= 1, apothem= 1

4
(1 +

√
5), and one side= 2

√

5

8
−

√
5

8

(a) Find the perimeter and area of the pentagon.

(b) Find the radius of the circumscribed circle.

(c) Find the radius of the inscribed circle.

� 3-5.
An n-sided regular polygon is inscribed inside a circle

having radius r.

(i) The apothem an satisfies 0 < an < r because the perpen-

dicular distance 0C = an is the shortest distance to line AB

and also by the larger side opposite larger angle theorem.

(ii)The chord satisfies AB <
�

AB = sn = rθn, because shortest distance from point A

to B is a straight line.

(a) For an n-sided inscribed polygon, find the central angle θn.

(b) For an n-sided inscribed polygon, find its perimeter pn.

(c) Show the area of the inscribed n-sided regular polygon is given by

An = 1

2
(apothem)(perimeter) = 1

2
(an)(pn)

(d) Show in the limit limn→∞ an = r, limn→∞ pn = 2πr

(e) Show the area of the circle is limn→∞ An = 1

2
(radius)(circumference of circle)

because of step (d). That is, as n increases the inscribed polygon becomes a circle.

� 3-6. Find the sum of the exterior angles of

(a) A triangle, (b) A quadrilateral, (c) A pentagon, (d) A hexagon

� 3-7. For the triangle given DE ‖ AB.

Find x and the ratio DE
AB

� 3-8.

Given triangle �ABC with line BD such that

AD = BD and AD = DC. Prove that CB ⊥ AB.
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� 3-9. Find the area of the following figures. Assume all lengths are in units of

meters.

� 3-10.

Given two similar triangles �ABC and �A
′
B

′
C

′.

Place the smaller triangle inside the larger triangle and

construct appropriate parallel lines �1 ‖ �2 ‖ �3 to show

that the ratio of the sides associated with similar tri-

angles being proportional can be proven using Thales

parallel intercept theorem.

� 3-11.

Find the equation of the line � through the mid-

points of the sides of the given trapezoid. Is this line

parallel to the trapezoid bases?

� 3-12.

If line � is a perpendicular bisector of line segment

AB, then prove that any point P on line � is equidistant

from the endpoints.
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� 3-13. Find the circumcenter for the triangle �ABC with vertices

(a) A : (0, 0), B : (14, 0), C : (7, 49) (b) A : (0, 0), B : (14, 0), C : (5, 15)

� 3-14. Prove the diagonals of a parallelogram bisect one another.

� 3-15. Prove the opposite sides of a parallelogram are equal.

� 3-16. Prove a diagonal of a parallelogram creates two equal triangles.

� 3-17. Prove that parallel lines are everywhere the same distance apart.

� 3-18. Given an angle ∠ABC with angle bisector BD

and arbitrary point P on the angle bisector line. Con-

struct the perpendicular lines PF and PE. Prove the

theorem that every point P on the angle bisector is

equidistant from the angle sides.

� 3-19.

Given triangle �ABC. Move the vertex C around

to show |a− b| < c < a + b

� 3-20. Generalize the triangle inequality to polygons. Prove the side of any polygon

will always be less than the sum of the other sides.

� 3-21.
A Reuleaux triangle is constructed as follows. (i) Con-

struct an equilateral triangle with side of length �. (ii) Set

drawing compass width equal to � and place the needle of

compass at each vertex to draw the arcs
�
AC ,

�
AB ,

�
BC .

Prove figure has constant width.

� 3-22.
Select a point P inside a circle and construct two different chords

AB and CD through the point P as illustrated. Use the inscribed angle

theorem to show

(a) The triangles �APC and �DPB are similar.

(b) Show PA · PB = PC · PD
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� 3-23.

Given two triangles �ABC and �DEF where

∠A = ∠D. Prove that

[ABC]

[DEF ]
=

AB ·AC

DE · DF

� 3-24.

Let AB equal a chord of a circle and let point C denote

the midpoint of the arc
�
AB . Let CD denote any other chord

which intersects the chord AB at point E. Prove that

CD

CA
=

CA

CE

� 3-25.

Given two unequal line segments x and y. Show that

√
xy <

(x + y)

2
⇒ geometric mean < arithmetic mean

� 3-26.

Given triangle �ABC is an isosceles triangle. Show that

the line which bisects the exterior angle at vertex C is parallel

to the base AB.

� 3-27. Examine a rectangle with sides (a + b) and (c + d). Show graphically that

(a + b)(c + d) = ac + ad + bc + bd

� 3-28.

If P is a point exterior to a circle and from

point P one constructs two tangents to the circle

which touch the circumference at points A and B,

then

(i) Prove that PA = PB

(ii) Show line 0P bisects angle ∠APB

� 3-29. Show that if two triangles are similar, then their altitudes are also similar.
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� 3-30.

in

Let M1 and M2 denote the midpoints of the bases

associated with a trapezoid. Prove that the line seg-

ment M1M2 will pass through the point of intersection

of the diagonals.

� 3-31.

(a) Find the area of the trapezoid illustrated.

(b) What happens to the trapezoid as b2 → 0?

(c) Find the area of the trapezoid if b2 → 0.

� 3-32.

Given the triangle �ABC select any point P within

the triangle and then draw three different lines through

the selected point where each line is parallel to a side

of the triangle. Label the points of intersection with

the sides to obtain the figure illustrated.

(a) Show triangles �ABC, �PEG, �DPF, �HIP are similar triangles.

(b) Show that
[DPF ]

[ABC]
=

(

DP

AB

)2

,
[PEG]

[ABC]
=

(

PE

AB

)2

,
[HIP ]

[ABC]
=

(

HI

AB

)2

(c) Show that

√

[DPF ]

[ABC]
+

√

[HIP ]

[ABC]
+

√

[PEG]

[ABC]
=

DP

AB
+

HI

AB
+

PE

AB
= 1

(d) Show that [ABC] =
(

√

[DBF ] +
√

[HIP ] +
√

[PEG]
)2

� 3-33.
Select an arbitrary point inside an equilateral tri-

angle �ABC with altitude equal to h. Construct the

perpendicular lines PQ, PR, PS to the triangle sides and

show that PQ + PR + PS = h.

� 3-34.

Select an arbitrary point P inside an equilateral

triangle with sides of length �. Construct the line seg-

ments PQ, PR, PS such that PQ ‖ AC, PR ‖ AB, PS ‖ BC.

Show that PQ + PR + PS = �

Hint: Extend line PQ, then form similar triangles and

parallelogram.



137

Geometry

Chapter 4

The Pythagorean Theorem

The Pythagorean theorem states a property of right triangles that has been

known for over three thousand years. Consider the right triangle illustrated in the

figure 4 -1.

Figure 4 -1. Right triangle with shorter legs meeting at a right angle.

The Pythagorean theorem states that all right triangles have the following property.

The Pythagorean Theorem

In every right triangle having sides x and y forming a right angle

and having a hypotenuse r opposite the right angle,

one can say that the square of the hypotenuse is equal to the

sum of the squares of the other two sides.

or x
2 + y

2 = r
2

In a right triangle the side opposite the right angle is called the hypotenuse.

The sides of the right triangle which form the right angle are called the legs of the

right triangle. The more formal term cathetus means either leg of a right triangle

and the plural catheti refers to both sides making the right angle.

The Pythagorean theorem is named after Pythagoras1 (570-495) BCE, who is

supposedly the first person to have provided a written proof of the theorem. There

1 Pythagoras of Samos (569-475) BCE a Greek philosopher, mathematician and religious leader.
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is much evidence2 indicating that the Hindus, Babylonians and Chinese knew about

this theorem about 1000 years before Pythagoras.

Currently there are probably over 500 different proofs of the Pythagorean theo-

rem. The book Pythagorean Proposition by Elisha Scott Loomis contains well over

350 proofs. Many alternative proofs of the Pythagorean theorem can be found on

the internet. About 3000 years ago the Chinese were the first to come up with a

geometric proof of this theorem. This geometric proof is illustrated in the figure 4-2,

where the right triangle in 4-2(a) is reproduced four times and arranged as shown

in figure 4-2(b).

Figure 4 -2. Geometric proof of Pythagorean theorem

This new arrangement, figure 4-2(b), shows a square with sides of length (x + y)

and inside this square is another square with sides of length r. We know there

must be 180◦ in a triangle so it follows that the angles α and β must sum to 90◦.

This demonstrates that the square with sides of length r is indeed a square with 90◦

corners, because of the angular sum α + 90◦ + β = 180◦ along the straight line for any

side (x + y) of the larger square.

The area of the larger square can be found by calculating

Area = (x + y)2 = x2 + 2xy + y2 = x2 + y2 + 4

(
1

2
xy

)

(4.1)

which represents the sum of two squares plus the area of four triangles as pictured

in figure 4-2(c). This area can also be expressed as the sum of the square with sides

2 This theorem was developed around 800 BCE by Hindu mathematician Baudhayana in his book Baudhayana

Sulba Sutra.
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r plus 4-times the area of the triangle in figure 4-2(a). This alternative method of

expressing the area of the square in figure 4-2(b) is written

Area = r2 + 4

(
1

2
xy

)

(4.2)

Using the postulate that things equal to the same thing are equal to each other, one

can write

Area = x2 + y2 + 4

(
1

2
xy

)

= r2 + 4

(
1

2
xy

)

which simplifies to

x2 + y2 = r2 (4.3)

which is the Pythagorean theorem.

This result can also be expressed geometrically by moving the triangles in figure

4-2(b) to their new positions in figure 4-2(c). By comparing the geometry of the

figures 4-2(b) and 4-2(c), one can conclude that the result given by equation (4.3)

is true.

In addition to the figure 4-2 there is another image to help you visualize the

Pythagorean theorem. This image is given in figure 4-3 and represents the square

of each side of a right triangle attached to the appropriate side.

Figure 4 -3. Image to help remember the Pythagorean theorem x2 + y2 = r2

Another proof of the Pythagorean theorem

Consider the right triangle �ABC illustrated in the figure 4-4 which has legs

a,b and hypotenuse c. Construct a line perpendicular to the line AB which passes

through the vertex C as illustrated. Label the point of intersection with side AB of

length c as point D and note this perpendicular line divides the length c into two

parts labeled c1 and c2 such that c = c1 + c2. Also define the distance CD = h as the

height of the triangle and then construct the three similar triangles illustrated in

the figure 4-5.
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Figure 4 -4. Right triangle divided into three right triangles

Figure 4 -5. Three similar right triangles from figure 4-4

Comparing similar triangles �CDB and �ACB form the ratio

a

c
=

c2

a
=⇒ a2 = c c2 (4.4)

Comparing the similar triangles �ADC with triangle �ACB one finds

b

c
=

c1

b
=⇒ b2 = c c1 (4.5)

Now add the equations (4.4) and (4.5). By the postulate equals added to equals the

results are equal, one obtains the equation

a2 + b2 = cc1 + cc2 = c (c1 + c2) = c c = c2 (4.6)

because c1 + c2 = c. This verifies that the sum of the squares of the legs of a right

triangle must equal the hypotenuse of the right triangle squared.
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Example 4-1.

Use the Pythagorean theorem to find the shortest distance from a point (x0, y0)

to a given line �.

Figure 4 -6. Distance from point (x0, y0) to line �

Solution:

Let d denote the perpendicular distance from the point (x0, y0) to the line �. The

general equation for the line � is Ax + By + C = 0 where A, B, C are given constants.

The slope of the line � is m = −A
B

and the slope of the line �⊥ which is perpendicular

to Ax + By + C = 0 is m⊥ = B
A

which is the negative reciprocal of the slope m. The

equation of the perpendicular line which passes through the point (x0, y0) can be

represented as y − y0 = B
A

(x − x0). This line intersects the x-axis at the point

x1 = x0 − y0

A

B
(4.7)

where y = 0. Constructing the line x = x0 one finds it intersects the line � at the

point (x0, y1) where

y1 =
−C

B
− A

B
x0 (4.8)

and there is created two similar right triangles as illustrated in the figure 4-6. Using

the similar right triangles one finds the ratio

√

y2
0 + (x − x0)2

y0 − y1

=
y0

d
(4.9)
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where the Pythagorean theorem is used to calculate the hypotenuse of the larger

right triangle. Using the equations (4.7) and (4.8) one finds

x0 − x1 = y0

A

B
, y0 − y1 =

Ax0 + By0 + C

B
,

√

y2
0 + (x0 − x1)2 =

y0

B

√

A2 + B2 (4.10)

The equation (4.10) simplifies the equation (4.9) to produce the relation

d =
Ax0 + By0 + C

√

A2 + B2

(4.11)

for the perpendicular distance from (x0, y0) to the line �. Observe that the square

root has two signs and sometimes the distance d comes out negative. To make the

distance d always positive one can select the sign of the square root to make the

distance d positive.

In summary, from the general equation of a line Ax + By + C = 0 one can imme-

diately write the distance formula

d =
Ax + By + C

±
√

A2 + B2
(4.12)

where the sign on the square root is to be selected to make d a positive distance.

The result given by equation (4.12) can be used in the following way.

(i) If one substitutes x = x0 and y = y0 into the equation (4.12) and gets a positive

number d, then d represents the perpendicular distance of the point (x0, y0) from the

line.

(ii) If one substitutes x = x0 and y = y0 into the equation (4.12) and gets zero,

then the point (x0, y0) is on the given line.

Euclid’s proof of Pythagorean theorem

The figure 4-7 is known as the Bride’s Chair and was used by Euclid to prove the

Pythagorean theorem. You can find this figure in Euclid’s the Elements under the

listing of proposition 47, book 1. In figure 4-7 there is the right triangle �ABC with

sides a and b meeting to form a right angle, together with the side c opposite the right

angle, known as the hypotenuse. Euclid constructed the squares a2, b2 and c2 and

placed these squares against the corresponding sides of triangle �ABC as illustrated.

Euclid then made some straight line constructions to prove that a2 + b2 = c2 for any

right-angled triangle.
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Figure 4 -7. The Bride’s Chair

He did this by showing the area a2, attached

to side a, was equal to the rectangular area

BHJD within the square c2 attached to the hy-

potenuse c, as illustrated in the figure 4-7. He

then showed that the area b2, attached to side b

was equal to the rectangular area HAEJ within

the square c2. This demonstrated that the sum

of the areas a2 + b2 had to equal the area c2

because the whole must equal the sum of its

parts.

In order to make Euclid’s proof as simple as possible, consider the following

basic concepts which will be employed multiple times during Euclid’s proof of the

Pythagorean theorem.

1) If you have two parallel lines a distance h apart and then construct a fixed

line segment B1B2 = b on the lower parallel line, one can then select a point P on

the upper parallel line to construct the triangle �PB1B2. This triangle will always

have the area of half the base times the height h no matter where the point P is on

the upper parallel. Note all the triangles have the same height and base. (Euclid,

Book 1, Proposition 38)

Figure 4 -8. Area of triangle remains the same as point P moves on upper line.

2) Construct a rectangle ABCD between two parallel lines as illustrated in the

figure 4-9 and the let point B move to a point B′ on the upper parallel. Observe that

the area of triangle �BDC is the same as the area of triangle �B′DC and this area
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will always equal half the area of the rectangle ABCD because the two triangles

have the same base. Alternatively one can say that the area of the rectangle is

twice the area of triangle �B′DC because they have the same base. (Euclid, Book

1, Proposition 41)

Figure 4 -9. Area of triangle �B′DC and triangle �BDC are equal as B′ moves.

Examine the figure 4-10 which starts with a right triangle �ABC with side a

opposite angle A, side b opposite angle B with these sides forming a right angle.

The hypotenuse c is opposite the 90◦ angle at vertex C. A square with side a is

placed upon side a of the triangle. Similarly, squares of sides b and c are placed upon

the respective sides b and c of the triangle, as illustrated in the figure 4-10.

Draw a straight line from point F to point A and make the following observations.

(a) Side CA is parallel to side FB

(b) The line FA is like the line B′D of figure 4-9.

(c) One can slide point A to point C and conclude that

the triangle �FBA has an area of 1

2
a2

because in sliding point A all triangles have the same base FB

Do you recognize figure 4-9 within the figure 4-10 ?
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Figure 4 -10. Construction to begin Euclid’s proof of Pythagorean theorem

Draw a straight line from point C to point D and note that triangle �FBA is

congruent to triangle �CBD because of SAS (Side-Angle-Side). That is,

(a) FB ∼= BC Both line segments are of length a

(b) ∠FBA ∼= ∠CBD Both angles are equal to (90 + β) degrees.

(c) BA ∼= BD Both line segments are of length c

Consequently, one can write �FBA ∼= �CBD because of SAS.

Figure 4 -11. Another construction to begin Euclid’s proof of Pythagorean theorem
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The figure 4-11 illustrates the two congruent triangles �FBA and �CBD, where

the area of each triangle is 1

2
a2. Draw the straight line CJ which is perpendicular to

the line segment DE and intersects the line segment BA at point H. This construction

gives the parallel line segments CHJ and BD. By moving the point C to the point

H, one can observe that half the area of the rectangle BHJD is given by 1

2
a2 and so

the area of the rectangle BHJD is a2. Go back to figures 4-8 and 4-9 and observe

how one can slide a point along parallel lines to see how an area of the triangles

remain constant. Next examine the figures 4-10 and 4-11 to see how this sliding

along parallel lines is employed to show two figures have the same area because of a

common base associated with a set of parallel lines.

The final steps to complete the proof of the Pythagorean theorem is to show

the area b2 is the same area as the rectangle HAEJ of figure 4-11. Toward this end,

draw the straight line CE as illustrated in the figure 4-12 and then draw the straight

line BG followed by the previous straight line CHJ which is perpendicular to the

line segment DE. In these figures observe that the line segment GA is parallel to the

line segment CB, written GA ‖ CB. Also note that the line segment AE is parallel to

the line segment GA, written AE ‖ CJ. Examine these constructions and experiment

with the sliding of point B to C one finds that the area of triangle �BGA is 1

2
b2 and

by sliding the point C to point H, one can show the area of triangle �CAE is half the

area of rectangle HAEJ. Also observe that �BGA is congruent to �ECA, because of

SAS, with the angle (90 + α) associated with each triangle.

Figure 4 -12. Construction of other straight lines
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Figure 4 -13. Congruent triangles

These observations are illustrated in the figure 4-13.

We can formalize Euclid’s proof of the Pythagorean theorem by constructing

step-by-step statements followed by our reasoning for making the statements. This

is known as a (Statements | Reasons) table for a more formal presentation of the

above observations.
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Euclid’s Proof of Pythagorean theorem

Statement Reason

1. figure 4-9 CA ‖ FB Square has ‖ opposite sides

2. Area �FBA = 1

2
a2 = Area �FBC Common base FB

3. FB ∼= BC = a Equal side of square

4. ∠FBA ∼= ∠DBC Each angel (90◦ + β)

5. BA ∼= BD Sides of square equal

6. �FBA ∼= �CBD Side-Angle-Side (SAS)

7. Area �FBA =Area �CBD = 1

2
a2 Congruent triangles have same area

8. figure 4-10 BD ‖ CHJ By construction

9. Area �CBD = Area �BHD Common base BD

10. Area �BHD = 1

2
Area rectangle BHJD Diagonal HD halves rectangle

11. Area BHJD= a2 2 times area �BHD

12. figure 5-12 CB ‖ GA Square has ‖ opposite sides

13. Area �ABG = 1

2
b2 = Area �ACG Common base AG

14. BA ∼= AE = c Equal side of square

15. ∠EAC ∼= ∠BAG Each angle (90◦ + α)

16. AC ∼= AG = b Sides of square equal

17. �CAE ∼= �GAB SAS

18. Area �GBA = Area �CAE = 1

2
b2 Congruent triangles have same area

19. CHJ ‖ AE Square has parallel opposite sides

20. Area �CAE = 1

2
(Area HAEJ) =Area �HAE Common base AE

21. Area rectangle HAEJ = b2 2 times area �HAE

22. a2 + b2 = c2 whole equal to sum of its parts

rectangle BHJD+ rectangle HAEJ= square BAED
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Still another proof of the Pythagorean theorem

Figure 4 -14. Constructions to right triangle �ABC

Given the right triangle ABC one can make the following constructions.

(a) The line EBF which is parallel to the side AC

(b) The perpendicular line CF ⊥ BF

(c) The perpendicular line AE ⊥ EB

(d) The line DC parallel to the line AB

(e) The line DA parallel to the line CB
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This creates the three similar right triangles illustrated in the figure 4-14. Com-

paring the sides of the triangle �CBF with the triangle �ABC one finds

CF

x
=

y

r
=

BF

y

which implies that

CF =
xy

r
and BF =

y2

r

Comparing the sides of triangle �AEB with the triangle �ABC there results

BE

x
=

x

r
which gives the result BE =

x2

r

The area of the figure constructed in figure 4-14 can be viewed in two ways.

Area =
xy

r

(
x2

r
+

y2

r

)

︸ ︷︷ ︸

area of rectangle ACFE

+
1

2
xy

︸︷︷︸

area triangle ADC

Area = xy
︸︷︷︸

area rectangle ADCB

+
1

2

x2

r

xy

r
︸ ︷︷ ︸

area triangle AEB

+
1

2

y2

r

xy

r
︸ ︷︷ ︸

area triangle CBF

Now things equal to the same thing are equal to each other so one can equate

the two area representations to obtain the algebraic equation

x3y

r2
+

xy3

r2
+

1

2
xy = xy +

1

2

x3y

r2
+

1

2

xy3

r2

simplify to find
1

2

x3y

r2
+

1

2

xy3

r2
=

1

2
xy

or
x2

r2
+

y2

r2
= 1 =⇒ x2 + y2 = r2

which states that the square of the hypotenuse must equal the sum of the squares

of the other two sides.

Converse of the Pythagorean theorem

From Euclid’s Elements, book 1, Proposition 48, one finds that if you are

given a triangle with sides of lengths a,b,c such that a2 + b2 = c2, then the an-

gle opposite the side of length c must be a right angle. Here one can write

Right triangle with sides of length a,b,c =⇒ a2 + b2 = c2, with its converse

a2 + b2 = c2 =⇒ Right triangle with angle C opposite side c = 90◦ or π
2

radians

The proof of the converse Pythagorean theorem is as follows.
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Figure 4 -15. Congruent triangles

Construct a right-angled triangle �DEF with legs DF = b ,FE = a and side DE = f

as illustrated in the figure 4-15. We wish to show that if a2 + b2 = c2, then angle C

opposite side c is a right angle.

By construction the triangle �DEF is a right angled triangle and so by the

Pythagorean theorem the side opposite the 90◦ angle when squared must equal the

sum of the squares of the other two sides or

a2 + b2 = f2 (4.13)

By hypothesis

a2 + b2 = c2 (4.14)

Things equal to the same thing are equal to one another so one can conclude

f2 = c2 ⇒ | c |=| f | ⇒ f = c

because both c and f represent positive lengths. Therefore, triangle �ABC is con-

gruent to triangle �DEF (�ABC ∼= �DEF) because of SSS (Side-Side-Side). In

congruent triangles, corresponding angles are equal so that ∠C = ∠F are right an-

gles.

Other triangles

In general, given an acute, right or obtuse triangles with sides a,b,c as illustrated

in the figure 4-16, one can show the following inequalities result

obtuse triangle a2 + b2 < c2, right triangle a2 + b2 = c2, acute triangle a2 + b2 > c2
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Figure 4 -16. Inequalities for acute and obtuse triangles.

Projections

Given two line segments AB and CD as illustrated in the figure 4-17.

Figure 4 -17. Projections of AB onto CD

The projection p of AB onto the line CD is obtained by dropping perpendicular lines

from the endpoints of the AB line segment onto the CD line as illustrated above.

The distance p is called the projection of the line segment AB onto the line CD.
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Projection and acute triangle

Consider the triangle �ABC with acute angle

at vertex C and where p is the projection of side AC

onto the side CB. Show that the square of the side

opposite the acute angle is given by

c2 = a2 + b2 − 2ap (4.15)

(See Euclid, book 2, proposition, 13)

Solution:

Drop a perpendicular line from vertex A to the side

CB, intersecting at D, and call this altitude h. Let

p denote the projection of side AC onto side CB.
We employ the Pythagorean theorem to show in �CDA b2 = h2 + p2 and in �ADB

h2 + y2 = h2 + (a − p)2 = c2. One can then write

c2 =(b2 − p2) + (a − p)2

c2 =b2 − p2 + a2 − 2ap + p2

c2 =a2 + b2 − 2ap

Projection and obtuse triangle

Consider the triangle �ABC with the vertex C

as the obtuse angle and where p is the projection of

side BC onto the extended side AC. Show that the

square of the side opposite the obtuse angle satisfies

c2 = a2 + b2 + 2bp (4.16)

Solution:

Drop a perpendicular from vertex B to the extended

side AC and label the intersection point D and alti-

tude h.

The Pythagorean theorem requires that in �ABD c2 = (b + p)2 +h2 and in �BDC

h2 + p2 = a2. Therefore,
c2 =b2 + 2bp + p2 + a2 − p2

c2 =a2 + b2 + 2bp

(See Euclid, book 2, proposition, 12)



154

Pythagorean triples

Three positive integers (a, b, c) such that a2 + b2 = c2 are called a Pythagorean

triple. For example, (3, 4, 5) is a Pythagorean triple because 32 + 42 = 52. Any right

triangle having a Pythagorean triple (a, b, c) for its sides is called a Pythagorean

triangle.

Euclid’s formula Euclid’s formula for producing Pythagorean triples begins

by selecting two integers p and q which are coprime3 with p > q. If there are three

positive integers (a, b, c) such that a2 + b2 = c2, then one can write

b2 = c2 − a2 = (c − a)(c + a) or
b

c − a
=

c + a

b

must be a rational number. In this case one can express the rational number as

c

b
+

a

b
=

p

q
and

c

b
− a

b
=

q

p
(4.17)

where p and q are coprime integers. Solve the equations (4.17) for the ratios
c

b
and

a

b
as follows. Using addition of the equations (4.17) verify that

c

b
=

1

2

(
p

q
+

q

p

)

=
1

2

(
p2 + q2

qp

)

(4.18)

Using subtraction of the equations (4.17) verify that

a

b
=

1

2

(
p

q
− q

p

)

=
1

2

(
p2 − q2

qp

)

(4.19)

By equating both the numerators and denominators in the equations (4.18) and

(4.19) there results Euclid’s formula for Pythagorean triples

a =p2 − q2

b =2pq

c =p2 + q2

p and q integers with p > q (4.20)

Observe that the results given by equation (4.20) satisfies the Pythagorean theorem

because
a2 + b2 =c2

(p2 − q2)2 + (2pq)2 =(p2 + q2)2

becomes an identity.

3 Two integers p and q are called coprime if the only integer that divides both p and q is the number 1. One
can also say that the greatest common divisor of p and q is 1. The terminology relatively prime, mutually prime

and coprime all mean the same thing.
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Some well known Pythagorean triples

Pythagorean triples (a, b, c)

p q (a,b,c)

2 1 (3,4,5)

3 1 (8,6,10)=2(4,3,5)

3 2 (5,12,13)

4 1 (15,8,17)

4 2 (12,16,20)=4(3,4,5)

4 3 (7,24,25)

5 1 (24,10,26)=2(12,5,13)

5 2 (21,20,29)

5 3 (16,30,34)=2(8,15,17)

5 4 (9,40,41)

Make note of the following facts concerning Pythagorean triples.

1) If (a, b, c) is a Pythagorean triple, then (ka, kb, kc) is also a Pythagorean triple

for all positive integers k.

2) If (a, b, c) forms a Pythagorean triple, then (b, a, c) is also a Pythagorean triple.

3) Pythagorean triples of the form (ka, kb, kc) are called non primitive Pythagorean

triples since they are multiples of (a, b, c).

The Euclid formulas given by the equations (4.20) does not generate all of the

Pythagorean triples. For example, the Pythagorean triple (9, 12, 15) or (12, 9, 15) can-

not be generated by using the equations (4.20).

A modified form of the equations (4.20) given by

a =m(p2 − q2)

b =m(2pq)

c =m(p2 + q2)

(4.21)

where m, p, q are positive integers with

(i) p > q

(ii) p − q is an odd number

(iii) p and q are coprime

will generate all the Pythagorean triples
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Example 4-2. Way back in the year 1643 the French mathematician Fermat4

asked the following question: Find a Pythagorean triangle with sides a, b and hy-

potenuse c such that c and (a + b) were perfect squares. The smallest solution turns

out to be

a = 4, 565, 486, 027, 761 b = 1, 061, 652, 293, 520 c = 4, 687, 298, 610, 289

The next larger solution is so large it cannot be written in any book. Note that

there were no computers during Fermats lifetime.

Example 4-3.

Find the area and perimeter of an equilateral triangle.

Solution:

Let � denote the length of any side of the equilat-

eral triangle �ABC illustrated. Drop a perpendicular

line from the vertex A intersecting the base of the tri-

angle at point D. We know �ADB ∼= �ADC with both

triangles being right triangles. Consequently, one can

show BD = DC = �/2. Use the Pythagorean theorem on

the sides of triangle �ADC to show

h2 +

(
�

2

)2

= �2 ⇒ h =

√
3

2
�

The area of the equilateral triangle is then 1

2
(base)(height)

or

Area =
1

2
(�)(h) =

1

2
(�)(

√
3

2
�) =

√
3

4
�2

The perimeter P associated with the equilateral triangle is given by P = 3�.

Example 4-4.

Find the area and perimeter of an isosceles triangle.

Solution:

Let � denote the length of the equal sides and let b denote the base of the isosceles

4 Pierre de Fermat (1601-1665)
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triangle �ABC illustrated. As in the previous example,

drop a perpendicular from vertex A to the base BC and

show �ADB ∼= �ADC with BD = DC = b/2. Apply the

Pythagorean theorem to the sides of triangle �ADC and

show

h2 +
b2

4
= �2 ⇒ h =

√

�2 − b2

4

The area of the isosceles triangle is then 1

2
(base)(height) or

Area =
1

2
bh =

1

2
b

√

�2 − b2

4

The perimeter P is given by P = 2� + b.

Comment on RHS (Right angle-Hypotenuse-Side proposition)

Note that in a right triangle with sides a, b and hypotenuse c one must have

a2 + b2 = c2. If one knows the hypotenuse c and one side, say a, then the Pythagorean

theorem gives you the other side b =
√

c2 − a2. Consequently, the RHS proposition

for right triangles is really a SSS proposition.

Distance formula

One can use the Pythagorean theorem to find the distance between two points

in Cartesian coordinates. Given the two points (x1, y1) and (x2, y2) one can plot these

points in Cartesian coordinates and then using a straight edge they can be connected

with a line segment. Let d denote the distance of this line segment which represents

the distance between the two given points.

Figure 4 -18. Distance d between two given points.
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To calculate the distance d first calculate the change in the x-values in moving

from (x1, y1) to (x2, y2). This change in x is (x2 − x1) and represents one leg of the

right triangle illustrated in figure 4-18. Next calculate the change in the y-values

in moving from (x1, y1) to (x2, y2). This change in y is (y2 − y1) and represents the

other leg of the right triangle illustrated in the figure 4-18. One can now use the

Pythagorean theorem and write

(x2 − x1)
2 + (y2 − y1)

2 = d2 or d =
√

(x2 − x1)2 + (y2 − y1)2 (4.22)

One takes the positive square root in equation (4.22) because the distance d is always

considered to be a positive distance.

Equation of a circle

Figure 4 -19.

Equation for circle centered at (x0, y0) is (x − x0)
2 + (y − y0)

2 = r2

The figure 4-19 can be used to define the equation of a circle. If (x, y) is a

variable point restricted to remain a fixed distance r from the point (x0, y0), then by

the distance formula the coordinates for points on a circle must satisfy

(x − x0)
2 + (y − y0)

2 = r2 (4.23)

Here (x0, y0) is the center of the circle, r is the radius of the circle and (x, y) is a

variable point on the circle. The top half of the circle is y = y0 +
√

r2 − (x − x0)2 and

the bottom half of the circle is y = y0 −
√

r2 − (x − x0)2.



159

Example 4-5. Show that if A and B are two points on a circle such that the line

segment AB does not pass through the center of the circle, then a line CD through

the center of the circle which passes through the midpoint M of the line segment

AB will be perpendicular to the line segment AB. (Euclid, Book 3, proposition 3)

Solution

x2 + y2 = r2

Let point A have the coordinates

(x1, y1) and let B have the coordinates

(x2, y2). These points must lie on the circle,

hence these coordinates satisfy the equa-

tion of the circle, so that x1, y1, x2, y2 are

restricted so that

x2
1 + y2

1 = r2 and x2
2 + y2

2 = r2 (4.24)

The line segment AB has the slope m1 given by

m1 =
change in y

change in x
=

y2 − y1

x2 − x1

(4.25)

The point-slope equation for the extended line is given by

y − y1 = m1(x − x1) (4.26)

The requirement that the line segment AB not pass through the origin is equivalent

to the requirement that the point (0, 0) is not on the line given by equation (4.26).

Hence, it is necessary to assume that y1 �= m1x1. The midpoint M of the line segment

AB is

M =

(
1

2
(x1 + x2),

1

2
(y1 + y2)

)

(4.27)

which represents the average of the x-values and y-values. One can construct the

line segment 0M and then extend it to intersect the circle at the points C and D.

The slope m2 of the line segment 0M is

m2 =
change is y

change in x
=

1

2
(y1 + y2)

1

2
(x1 + x2)

=
y1 + y2

x1 + x2

(4.28)
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The product of these slopes is

m1m2 =
(y2 − y1)

(x2 − x1)
·

(y1 + y2)

(x1 + x2)
=

y2
1 − y2

2

x2
1 − x2

2

=
r2

− x2
1 − (r2

− x2
2)

x2
1 − x2

2

= −1 (4.29)

where we have used the results from the equations (4.24) to demonstrate that the

product of the slopes equals minus 1. This demonstrates that the line segments AB

and 0M are perpendicular to one another.

Equation of an ellipse

In Cartesian coordinates let the points (c, 0) and (−c, 0) denote the foci associated

with an ellipse. The equation for the ellipse is defined in terms of the motion of a

variable point P (x, y) being a distance d1 from one focus and a distance d2 from

the other focus and restricted such that the sum of

these distances be constant or d1 + d2 = a constant.

Let the constant term be denoted by 2a with a >

c > 0, then the equation for the ellipse is obtained

using algebra. Using the figure on the right, the

distances d1 and d2 of point P from the foci are

obtained by using the Pythagorean theorem and

writing

d2
1 =(x + c)2 + y2

⇒ d1 =
√

(x + c)2 + y2

d2
2 =(x − c)2 + y2

⇒ d2 =
√

(x − c)2 + y2

(4.30)

The definition describing an ellipse requires d1 + d2 = 2a or

√

(x + c)2 + y2 +
√

(x − c)2 + y2 = 2a (4.31)

Express equation (4.31) in the form

√

(x + c)2 + y2 = 2a −

√

(x − c)2 + y2 (4.32)

and then square both sides to show

x2 + 2xc + c2 + y2 = 4a2
− 4a

√

(x − c)2 + y2 + x2
− 2xc + c2 + y2
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which simplifies to the form

a
√

(x − c)2 + y2 = a2 − xc (4.33)

Square both sides of equation (4.33) and simplify the results to the form

(a2 − c2)x2 + a2y2 = a2(a2 − c2) (4.34)

Make the substitution b2 = a2 − c2 and express the result in the form

x2

a2
+

y2

b2
= 1, a > b, b2 = a2 − c2,

This is called the standard form for the equation of an ellipse. Here a is called the

semi-major axis of the ellipse and b < a is called the semi-minor axis of the ellipse.

If the foci are on the y-axis, having coordinates (0, c) and (0,−c), then the roles

of a and b are reversed with the requirement d1 + d2 = 2b. In this case the equation

of the ellipse takes on the form

x2

a2
+

y2

b2
= 1, b > a, a2 = b2 − c2

Observe that in the special case a = b, the equation of an ellipse reduces to the

equation of a circle centered at the origin having radius b.

Thales theorem for circle

Thales of Miletus (624-547) BCE, investigated the construction of triangles

within a circle. Consider the semicircle illustrated in figure 4-20 where the tri-

angle �ABC has vertex angle A at one end of the circle diameter and the vertex

angle B is at the other end of the circle diameter.

Figure 4 -20. Triangle �ABC constructed inside semicircle.
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Let 0 denote the center of the circle and let the vertex angle C be anywhere

on the circumference of the circle. Construct the line segment 0C = r which is the

radius of the semicircle and label the angle ∠AC0 = α and the angle ∠0CB = β. The

triangle �A0C is now an isosceles triangle with equal sides of length r and hence

the angles opposite these sides are equal. That is, α = ∠0AC = ∠AC0. The triangle

�0CB is also an isosceles triangle with equal sides of length r. The angles opposite

these sides must also be equal so that β = ∠0CB = ∠0BC. We know that the sum of

the angles of any triangle must sum to 180◦ so in triangle �ABC one can write

α + (α + β) + β = 180◦ or 2(α + β) = 180◦ or α + β = 90◦ (4.35)

Thales theorem states that whenever two vertices A,B of a triangle lie at the ends

of a circle diameter and the third vertex C lies on the circumference of the circle,

then the vertex angle C must be a right angle.

Consider the triangle �ABC illustrated in the

figure 4-21 and drop a perpendicular line from

vertex C. Use the similar right triangles �ADC ∼

�CDB and show the sides are proportional giving

h

d− a
=

a

h
or h2 = a(d − a) (4.36)

One can show the triangle in figure 4-21 is a right

triangle by using the fact that if two lines are per-

pendicular, then the product of their slopes is mi-

nus 1.

Figure 4 -21.

Use slopes to verify intersection

The slope of line segment AC is mAC =
change in y
change in x

=
h

a

and the slope of the line segment CB is mCB =
change in y
change in x

=
−h

d − a

Using the result from equation (4.36) note that the product of these slopes produces

mAC ·mCB =
−h2

a(d− a)
=

−h2

h2
= −1 (4.37)

which demonstrates the line segment AC is perpendicular to the line segment CB,

verifying our earlier result concerning perpendicular lines and the fact that angle C

is 90◦ or π
2

radians.
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Example 4-6. (Mean proportion) Given two numbers n1 and n2. The mean

proportion of n1 and n2 is defined

m =
√

n1n2 or m2 = n1n2 or
m

n2

=
n1

m
or

m

n1

=
n2

m

This can be illustrated graphically by constructing a line

of length AB = n1 + n2 with the segments n1 and n2 meeting

at point C. One can now calculate the midpoint of AB and

then construct a semicircle as illustrated. This is followed

by the construction of the line segments AD,DB as well as

the line CD of length m which is perpendicular to AB. Here

m represents the mean proportion of n1 and n2.

To prove this assertion examine the angles in the triangles �ACD and �DCB

and show �ACD ∼ �DCB with proportional sides giving
m

n2

=
n1

m
.

Example 4-7.

One can make use of Thales theorem for the circle

and devise a method for constructing a perpendicular at

a specified point on a line. Let P denote a given point

on a line. Select a point 0 not on the line and then use

a drawing compass with radius 0P to draw a circle which

intersects the given line at the points P and A. One can

then construct the diameter of the circle by drawing a line

through point A and the center point 0 to intersect the

circle at point B. The line PB will then be perpendicular

to the given line because of Thales theorem for the circle.

Example 4-8. Let P : (x1, y1) denote any point outside a given circle with

center C : (x0, y0) and radius r. Construct the tangent line to the circle which passes

through the point P and label the point of tangency T . Find the distance of the line

segment PT = d.
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Solution

The triangle �CTP is a right trian-

gle with sides r, the given radius, h the

hypotenuse distance PC and the distance

PT = d. By the Pythagorean theorem

d2 + r2 = h2 The distance PC = h is deter-

mined from the distance formula

h2 = (x1 − x0)
2 + (y1 − y0)

2

which is also a result of using the Pythagorean

theorem.
Consequently,

d2 = h2 − r2 = (x1 − x0)
2 + (y1 − y0)

2 − r2 (4.38)

Take the square root of both sides to solve for d.

Heron’s formula for area of a triangle

The Heron’s formula for the area of a triangle is obtained by knowing only the

sides of the triangle. This area formula was developed by Heron of Alexandria (10-

70)CE and uses the Pythagorean theorem to aid in developing the formula. It is

derived as follows.

Given a general triangle �ABC as illustrated in the figure 4-23 one can construct

a perpendicular line from the vertex C to the base c of the triangle. This construction

forms two right triangles and divides the side c into two parts labeled c1 and c2 such

that c1 + c2 = c. The Pythagorean theorem requires

b2 =c2
1 + h2 and

a2 =h2 + c2
2 where c2 = c − c1

(4.39)

Subtract the upper equation from the lower equation (4.39) and show

a2 − b2 = c2
2 − c2

1 = (c − c1)
2 − c2

1 = c2 − 2cc1 (4.40)
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Figure 4 -23. Constructions to triangle �ABC

Solve equation (4.40) for c1 and show

c1 =
c2 + b2 − a2

2c
(4.41)

One can now do some algebra on the Pythagorean equation h2 = b2−c2
1 from equation

(4.39). Substitute for c1 from equation (4.41) and show

h2 =b2 − c2
1 = b2 −

(
c2 + b2 − a2

2c

)2

h2 =
4b2c2 − (c2 + b2 − a2)2

4c2

(4.42)

We will now use the algebraic equation (A2−B2) = (A−B)(A+B) for different selections

for the quantities A and B. Observe that with A = 2bc and B = c2+b2−a2 the equation

(4.42) can be expressed

h2 =
(2bc + a2 − b2 − c2)(2bc− a2 + b2 + c2)

4c2
(4.43)

The terms in equation (4.43) can be rearranged into the form

4c2h2 =
(
a2 − [b2 − 2bc + c2]

) (
[b2 + 2bc + c2] − a2

)

4c2h2 =
(
a2 − [b− c]2

) (
[b + c]2 − a2

) (4.44)

Note the terms in equation (4.44) have the form A2 −B2 for different values of A and

B. Therefore, equation (4.44) can be factored into the form

4c2h2 = (a − (b − c)) (a + (b + c)) ((b + c) − a) ((b + c) + a) (4.45)
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The equation (4.45) can be expressed in a more symmetric form by defining the

quantity

s =
a + b + c

2
= the semi-perimeter of triangle ABC (4.46)

One can then write
2s =a + b + c

2(s − a) =b + c − a

2(s − b) =a + c − b

2(s − c) =a + b − c

These equations can now be substituted in the equation (4.45) to obtain

c2h2 = 4s(s − a)(s − b)(s− c) where s =
a + b + c

2
(4.47)

The area [ABC] of the triangle �ABC is half the base c times the height h or

[ABC] = 1

2
ch. Therefore, the equation (4.47) becomes

4[ABC]2 =c2h2 = 4s(s − a)(s − b)(s − c)

or [ABC] =
√

s(s − a)(s − b)(s − c) where s =
a + b + c

2

(4.48)

The equation (4.48) is known as Heron’s formula for the area of a triangle where

s = a+b+c
2

is the average perimeter of the triangle �ABC having the sides a,b and c.

It is required that the quantity under the square root symbol must be positive in

order for the area to be positive. It turns out that this is equivalent to requiring

that the triangle inequality be satisfied in order for a triangle to exist.

Then and now

The following presentation is a comparison of the way things were done thou-

sands of years ago compared to modern day methods. The presentation selected is

the proposition 9, from Euclid’s Elements, Book 2. A picture of Euclid’s presen-

tation of proposition 9, is given in the figure 4-24, which comes from the Richard

Fitzpatrick translation, ”Euclid’s Elements of Geometry”, found on the internet.

The figure 4-24 is given as an illustration of ideas presented thousands of years ago

to be used for comparison with a more modern presentation of the same ideas.
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Figure 4 -24. Euclid’s Proposition 9, from Richard Fitzpatrick translation.
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Then

To simplify the proposition 9 of Euclid’s book, I will resort to modern day

methods to represent the ideas presented.

Proposition 9, book 2, compares the division of a line segment AB (i) into two

equal parts by point C and (ii) into two unequal parts by point D. Euclid claims

that

AD
2

+ DB
2

= 2
[

AC
2

+ CD
2
]

(4.49)

This situation is illustrated in the figure 4-25.

Figure 4 -25. Line segment divided into equal and unequal parts.

Euclid’s Proof

Construct the line CE which is perpendicular to AB such that CE = AC = CB.

Now construct the lines EA and EB followed by the lines DF perpendicular to AB

and parallel to EC. Another construction GF perpendicular to CE and parallel to AB

followed by the construction of line AF.

We know AC = CE so that the angles ∠CAE = ∠CEA = π
4

are equal. Similarly,

CE = CB implies the angles ∠CBE = ∠CEB = π
4
. Therefore, ∠AEB is a right angle.

Observe that ∠GEF = ∠GFE = π
4

so that EG = GF. By the same reasoning one can

show ∠DFB = ∠DBF = π
4

and therefore FD = DB.

We now have several equalities

AC = CE = CB, ∠AEB =
π

2
, EG = GF = CD, FD = DB
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and two right triangles to work with, namely �AEF and �ADF . Using the above

identities and the Pythagorean theorem one can discern the following results.

(i) AC
2

+ CE
2

= 2AC
2

(ii) AE
2

= AC
2
+ CE

2
= 2AC

2

(iii) EG
2

= GF
2

and GF = CD

(iv) EF
2

= EG
2

+ GF
2

= 2GF
2

= 2CD
2

(v) EF
2

+ AE
2

= AF
2

= 2CD
2

+ 2AC
2

= 2
[

AC
2

+ CD
2
]

(vi) AF
2

= FD
2

+ AD
2

= AD
2

+ DB
2

Therefore, by using (v) and (vi) with things equal to the same thing are equal to one

another, one finds the truth of Euclid’s claim. In Euclid’s proposition 9 all of the

above statements (i) through (vi) are written out in sentences with reasons for each

statement. This makes the proof of the claim quite long.

Now

For a more modern approach to

the above problem. Let a symbol

represent an idea!

Let AC = CB =x

Let CD =y

Let DB = x − y

Euclid wanted to show (x + y)2 + (x − y)2 = 2
[
x2 + y2

]

Use algebra and expand the left-hand side of the above equation to show

x2 + 2xy + y2 + x2 − 2xy + y2 = 2[x2 + y2]

which establishes Euclid’s claim.

As an exercise examine other propositions in Euclid’s Book 2 and give an alge-

braic interpretation to the results. For example, the proposition 4, book 2 of the

Elements states: If a straight line be cut at random, the square on the whole is equal

to the squares on the segments and twice the rectangle contained by the segments.

This is equivalent to the algebraic statement

x2 = y2 + (x − y)2 + 2(x− y)y

as being an identity.
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The above proof from Euclid’s Elements shows that thousands of years ago they

used geometry to prove algebraic identities. Make note of the fact that algebra5

wasn’t used much until about the 16th century when it started to gain acceptance.

We have demonstrated that by defining symbols one can use algebra to produce some

of the results found in Euclids Elements. In dealing with mathematical symbols in

equations, you must learn to understand the meaning of the symbols as well as being

able to write out in words what the symbols are trying to tell you. For example,

if you are given a right triangle with sides a, b, c and you know a2 + b2 = c2, write

out in words all that this equation is telling you and what is implied by knowing

the equation is true. Too many students memorize equations without having any

understanding of what the equations represent. The memorization of equations is

not what mathematics is about. The secret to success in mathematics is definitions,

understanding them and recognizing them when they arise in the application of

mathematics and employing them to make new discoveries, prove theorems and

expand the knowledge about various subjects.

Cevians of a triangle

By definition any line segment in a triangle running from a vertex to a point

on the side opposite the vertex is called a cevian. Named after Giovanni Benedetto

Ceva (1647-1734) an Italian mathematician and engineer.

Stewart’s theorem

Matthew Stewart6 investigated the length d of a cevian from the vertex A to

side BC of a general triangle �ABC. The cevian AA′ divides the side a = BC into

two parts labeled αa and (1−α)a, where 0 ≤ α ≤ 1. The situation is illustrated in the

5 The name ”algebra” comes from the Arabic ”Al-jabr”. The beginnings of algebra were developed around

700 CE by a Persian mathematician by the name of Abu Jáfar Muhammad ibn Mūsā al-Khwārizmī.
6 Matthew Stewart (1717-1785) A Scottish mathematician.
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figure 4-26 which illustrates the cases for an acute and obtuse triangle. Stewart’s

theorem states that the cevian d = AA′ is obtained from the relation

(1 − α)b2 + αc2 = d2 + α(1 − α)a2 (4.50)

Figure 4 -26. Cevian AA′ divides BC into two parts.

We use the Pythagorean theorem together with some algebra to prove Stewart’s

result. First drop a perpendicular from vertex A to the triangle base and label the

point of intersection D, then

acute

From �ADA′ h2 + x2 = d2

From �ADC h2 + (αa + x)2 = b2

From �ADB h2 + ((1 − α)a − x)2 = c2

obtuse

From �ADA′ h2 + x2 = d2

From �ADC h2 + (x − αa)2 = b2

From �ADB h2 + (x + (1 − α)a))2 = c2

Multiply the middle equation by v = (1−α)a and the bottom equation by u = αa

to show
acute

vb2 =vh2 + v
(
u2 + 2ux + x2

)

uc2 =uh2 + u
(
v2 − 2vx + x2

)

obtuse

vb2 =vh2 + v
(
x2 − 2xu + u2

)

uc2 =uh2 + u
(
x2 + 2xv + v2

)

Addition of these equations followed by simplification using the results u+ v = a and

h2 + x2 = d2, there results the Stewart formula

vb2 + uc2 = a
(
d2 + uv

)
or (1 − α)b2 + αc2 = d2 + α(1 − α)a2 (4.51)
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Special case cevian is a median

In the special case the cevian is a median, then the

side a of triangle �ABC is divided into two equal parts.

In this special case u = v or α = 1

2
or v = a

2
, so that

Stewart’s formula becomes

v(b2 + c2) = a
(
d2 + v2

)
⇒ 2(b2 + c2) = 4d2 + a2 ⇒ d2 =

2b2 + 2c2 − a2

4
(4.52)

Special case cevian is an altitude

In the special case the cevian is an altitude, then the

cevian AA′ is perpendicular to the side CB associated with

triangle �ABC and there is created two right triangles so

that the length of the cevian can be obtained from either

of the Pythagorean relations

d2 + v2 = c2 ⇒ d2 = c2 − v2

d2 + u2 = b2 ⇒ d2 = b2 − u2

In this case the Stewart formula for the length of the cevian becomes an identity.

The length of the cevian can be obtained in terms of the semiperimeter s = a+b+c
2

as

follow. The area of the triangle squared is written

[ABC]2 =

(
1

2
ad

)2

=
1

4
a2d2 (4.53)

By Heron’s formula the area squared is written

[ABC]2 = s(s − a)(s − b)(s− c) (4.55)

Things equal to the same thing are equal to one another so that one finds the length

of the cevian, when it is an altitude, can be obtained from the alternative formula

d =
2

a

√

s(s − a)(s − b)(s − c) (4.55)
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Ceva’s theorem
Ceva’s theorem is a condition that must be sat-

isfied if the three cevians associated with the three

vertices of a triangle meet at a point of concurrency

somewhere inside the triangle as illustrated in the

accompanying figure. Ceva’s condition is that the

cevians are concurrent at point 0 if the product of

the ratios associated with each side of the triangle

equals unity or

AD

DB
· BF

FC
· CE

EA
= 1

Figure 4 -27. Ceva’s triangle
Note the cevians divide the sides of the triangle

into six parts as illustrated in the accompanying

figure. The Ceva’s theorem can then be expressed

in the alternate form
x1

x2

x3

x4

x5

x6

= 1

Knowledge of the following two mathematical facts makes the proof of Ceva’s theo-

rem easy.

Fact 1:

If
a

b
=

c

d
, then

a

b
=

c

d
=

a − c

b − d
for b �= d.

Proof:

If
a

b
=

c

d
, then

a

b
=

a + λc

b + λd
for any constant λ because the cross ratio produces an

identity. That is,

ab + λad = ab + λbc ⇒ ad = bc ⇒ a

b
=

c

d

In the special case λ = −1, the above ratio results.
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Fact 2:

If CC ′ is a cevian of triangle �ABC, then it

divides the side AB into two parts x and y where

the ratio x
y

equals the ratio of the areas associated

with triangles �ACC ′ and �CC ′B.

x

y
=

[ACC ′]

[CC ′B]
Recall the notation [ABC] = Area of triangle �ABC as we will be using this

notation in proving Ceva’s theorem. For example, the cevian CC ′ divides the given

triangle into two triangles where the area of each triangle is given by 1

2
(base)(height)

so that their ratio becomes
[ACC ′]

[CC ′B]
=

1

2
hx

1

2
hy

=
x

y

Proof of Ceva’s theorem

Figure 4 -28. Triangles within triangles for determining ratios.
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Refer to the figure 4-28 to verify the following ratio of areas

[ACD]

[CDB]
=

1

2
ADh1

1

2
DBh1

=
AD

DB

[AD0]

[DB0]
=

1

2
ADh2

1

2
DBh2

=
AD

DB

[A0C]

[B0C]
=

[ACD] − [AD0]

[CDB]− [DB0]
=

AD

DB

[ABF ]

[AFC]
=

1

2
BF h3

1

2
FC h3

=
BF

FC

[0BF ]

[0FC]
=

1

2
BF h4

1

2
FC h4

=
BF

FC

[B0A]

[A0C]
=

[ABF ] − [0BF ]

[AFC] − [0FC]
=

BC

FC

[CEB]

[EAB]
=

1

2
CE h5

1

2
EA h5

=
CE

EA

[CE0]

[EA0]
=

1

2
CE h6

1

2
EA h6

=
CE

EA

[B0C]

[B0A]
=

[CEB]− [CE0]

[EAB]− [EA0]
=

CE

EA

Consequently,
AD

DB
· BF

FC
· CE

EA
=

[A0C]

[B0C]
· [B0A]

[A0C]
· [B0C]

[B0A]
= 1 (4.56)

because the ratio of areas divide out leaving unity.

Converse of Ceva’s theorem

Assume in triangle �ABC one can find points D, E, F on the triangle sides

AB, AC, BC such that
AD

DB
· BF

FC
· CE

EA
= 1 (4.57)

then this implies the cevians AF, BE, CD meet at a point of concurrency.

Proof:

Assume the cevians AF and BE meet at a point

0 as illustrated in the accompanying figure. Con-

struct the line C0 and extend it to intersect the side

AB at a point G. By Ceva’s theorem one must have

AG

GB
· BF

FC
· CE

EA
= 1 (4.58)

Equate equations (4.57) and (4.58) to obtain

AD

DB
· BF

FC
· CE

EA
=

AG

GB
· BF

FC
· CE

EA
⇒ AD

DB
=

AG

GB

Add 1 to both sides of this equation and show

AD

DB
+ 1 =

AG

GB
+ 1 ⇒ AD + DB

DB
=

AG + GB

GB

which simplifies to the requirement

AB

DB
=

AB

GB



176

This equation can only hold true if the points G and D are concurrent. This requires

AD = AG for the requirement that the three cevians meet at a point of concurrency.

Ratios of lengths created by cevians of a triangle

Whenever three cevians all pass through an interior point of a triangle, various

ratios of the lengths are created. Associated with the figure 4 -29 are the following

ratio properties. 0F

CF
+

0D

AD
+

0E

BE
= 1

C0

CF
+

A0

AD
+

B0

BE
= 2

C0

0F
=

CD

DB
+

CE

EA

A0

0D
=

AE

EC
+

AF

FB

B0

0E
=

BD

DC
+

BF

FA

(4.59)

Figure 4 -29. Triangle with concurrent point associated with three cevians.

Proof:

The following is an example of, ”What has been done once can be done again,”

which is used quite often in mathematics.

Procedure A

In the figure 4 -29 examine the triangles �A0B and �ABC and construct the

altitudes CG and 0H as illustrated and note that CG is parallel to 0H (CG ‖ 0H). The
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triangles �CGF and �0HF are right triangles and they are similar (�CGH ∼ �0HF ).

Therefore, one can write the ratio

0H

CG
=

0F

CF
(4.60)

One can also examine the ratio of triangle areas associated with triangles having the

same base. For example, using the notation

[ABC] = [BCA] = [CAB] = [ACB] = [BAC] = [CBA] = Area of the triangle �ABC

one finds
[0AB]

[CAB]
=

1

2
(AB)(0H)

1

2
(AB)(CG)

=
0H

CG
=

0F

CF
(4.61)

End of procedure A

By rotating triangle �ABC so that BC is the base and doing exactly the same

steps as was done in procedure A, with the symbols changed, one can show

[0CA]

[ABC]
=

0D

AD
(4.62)

Rotate the triangle again so that AC is the base and again use the procedure A, with

the symbols changed, to show
[0CA]

[BCA]
=

0E

BE
(4.63)

By addition of the equations (4.61), (4.62), (4.63) there results

0F

CF
+

0D

AD
+

0E

BE
=

[0AB]

[CAB]
+

[0BC]

[ABC]
+

[0CA]

[BCA]
= 1 (4.64)

Note that in the equation (4.64) the denominators are all equal to the area of triangle

�ABC and the summation of the numerators in equation (4.64) represents the sum

of the triangles interior to �ABC. The whole being the sum of its parts.

Using the subtraction of line segments, which are all positive in length, one can

write

C0

CF
=

CF − 0F

CF
= 1 − 0F

CF
(4.65)

A0

AD
=

AD − 0D

AD
= 1 − 0D

AD
(4.66)

B0

BE
=

BE − 0E

BE
= 1− 0E

BE
(4.67)
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Adding the equations (4.65), (4.66), (4.67) there results

C0

CF
+

A0

AD
+

B0

BE
= 3 −

[
0F

CF
+

0D

AD
+

0E

BE

]

Using the results from the equation (4.64) the above result becomes

C0

CF
+

A0

AD
+

B0

BE
= 2 (4.68)

Using the results from Ceva’s theorem, given by equation (4.56) which is written

in terms of the notation of triangle �ABC of figure 4 -29 one can verify that

AF

FB
· DB

CD
· CE

EA
=

[A0C]

[CB0]
· [A0B]

[AC0]
· [BC0]

[A0B]
= 1 (4.69)

which implies
AF

FB
=

[A0C]

[CB0]
,

DB

CD
=

[A0B]

[AC0]
,

CE

EA
=

[BC0]

[A0B]
(4.70)

Recall that the ratio of triangle areas, using triangles having the same height, pro-

duces the ratio of the bases. Then an examination of the triangles to the left and

right of the cevian CF one can verify

C0

0F
=

[AC0]

[A0F ]
=

[BC0]

[B0F ]
(4.71)

Also note the theory of proportions produces the ratio

C0

0F
=

[AC0] + [BC0]

[A0F ] + [B0F ]
=

[AC0] + [BC0]

[A0B]
=

[AC0]

[A0B]
+

[BC0]

[A0B]
(4.72)

where now one can use the results from equation (4.70) to show equation (4.72)

reduces to the desired equation

C0

0F
=

CD

DB
+

CE

EA
(4.73)

The above result is cyclic in nature so it follows that the following ratios are also

true.
A0

0D
=

AE

EC
+

AF

FB
and

B0

0E
=

BD

DC
+

BF

FA
(4.74)

Example 4-9. Prove the medians of a triangle meet at a point of concurrency.

Solution:

This is a special case where x1 = x2, x3 = x4 and x5 = x6 (See figure 4-27) and Ceva’s

theorem holds showing the medians of a triangle produce a point of concurrency

called the centroid.
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Example 4-10. Prove the altitudes of a triangle meet at a point of concurrency.

Solution

Use similar triangles �AFC ∼ �BDC to show

CD

FC
=

BC

AC
(4.75)

Use similar triangles �ABD ∼ �AEC to show

AE

DA
=

AC

AB
(4.76)

Use similar triangles �ABF ∼ �BCE to show

BF

EB
=

AB

BC
(4.77)

Take the products of equations (4.75), (4.76), (4.77) to show

CD

FC
·
AE

DA
·
BF

EB
=

BC

AC
·
AC

AB
·
AB

BC
= 1 (4.78)

Changing the numerator of the left hand side of equation (4.78) gives Ceva’s theorem

and demonstrates the altitudes must meet at a point of concurrency called the

orthocenter.

Example 4-11. Prove the angle bisectors in a triangle meet at a point of

concurrency called the incenter.

Solution:

Each cevian divides the triangle into two parts.

Use Thales theorem of proportion associated with

each angle bisector to show the following.

BF

FC
=

AB

AC
,

CD

DA
=

BC

AB
,

AE

EB
=

AC

BC

Multiply these ratios and show

BF

FC
·
CD

DA
·
AE

EB
=

AB

AC
·
BC

AB
·
AC

BC
= 1

which is Ceva’s theorem and demonstrating that the angle bisectors meet at a point

of concurrency.
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Exercises

� 4-1. Write down two numbers which are coprime.

� 4-2. Find the distance between the given points.

(a) (1, 2) (5, 5)

(b) (1, 2) (13, 7)

(c) (1, 2) (9, 8)

(d) (1, 2) (25, 9)

(e) (1, 2) (2, 3)

(f) (1, 2) (1 + a, 2 + b)

� 4-3. Sketch the given ellipse

(a)
x2

9
+

y2

16
= 1 (b)

x2

16
+

y2

9
= 1

� 4-4.

Given the semicircle y =
√

r2 − x2, −r ≤ x ≤ r as

illustrated. Let P denote the point (x0, y0) on the semi-

circle where y0 =
√

r2 − x2
0.

(a) Find the equation of the line �1 passing through

(−r, 0) and P .

(b) Find the equation of the line �2 passing through

(r, 0) and P .

(c) Show �1 ⊥ �2

� 4-5. Find the area of the given triangles.

� 4-6. Given triangle �ABC with sides a, b, c. What kind of triangle results if

(a) a2 + b2 < c2 (b) a2 + b2 = c2 (c) a2 + b2 > c2

� 4-7. Find the length of the diagonal of a square with side of length s.
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� 4-8.

Given the obtuse triangle �ABC with p the pro-

jection of side a onto the side AB extended.

Show that b2 = a2 + c2 + 2cp

(Euclid, Book 2, Proposition 12)

Here b equals the side opposite the obtuse angle, a, c

are the other two sides and 2pc is twice the product of

the projection length and c the length of the triangle side used for the projection.

� 4-9.

Given an acute triangle �ABC with side a being

projected onto the side AB giving a length p.

Show that b2 = a2 + c2 − 2cp

(Euclid, Book 2, Proposition 13)

Here b is the side opposite the acute angle, a, c are the

other two sides and 2pc is twice the product of the

projection length and c the side used for the projection.

� 4-10.

Assume the earth is a sphere and point p is a distance h

above the earth. Let 0 denote the center of the earth, r ≈ 3960

miles, the radius of the earth and point A a point on the horizon

as viewed from point p. Assume all units are in miles and

answer the following questions.

(a) Find a formula to calculate the distance PA to the horizon.

(b) If h is very small compared to the radius of the earth and h is converted to units

of feet, show that

PA ≈
√

(2)(3960) h

5280
h in units of feet and PA in units of miles.

� 4-11. Find the length of the diagonal of a rectangle having sides of length 5 and

10 meters.

� 4-12. A room in a certain house for sale measures 24 by 34 by 8 feet. Find the

distance from one corner on the floor to the opposite corner on the ceiling.
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� 4-13.

Given the right triangle �ABC with sides x, y

and hypotenuse r. There is some type of figure at-

tached to each side of the triangle. The attached

figures have the attachment lengths BC, AB and CA

respectively. Examine the area of figure 1 in com-

parison to the the sum of the areas from figures 2

and 3 in the following cases.

(a) Each figure is a square.

(b) Each figure is a pentagon.

(c) Each figure is a hexagon.

(d) Each figure is an n-gon.

(e) Each figure is a semicircle.

(f) Each figure is an equilateral triangle.

� 4-14. Given a circle of radius R meters. Find the length of the chord AB which is

(R − a) meters from the center of the circle.

� 4-15. Given a circle of radius R meters. A chord AB is constructed having a length

(2R − a) meters. How far from the circle center is the chord?

� 4-16. Given a chord AB of length �1 meters which is �2 meters from the center of

the circle. Find the radius of the circle.

� 4-17.

Use the distance formula to show that in a right tri-

angle the length of the median from the right angle to the

hypotenuse will always equal one-half the length of the hy-

potenuse.

� 4-18.

Given a trapezoid ABCD with M1, M2 the mid-

points of the bases b1 and b2. If the base angles α,

β satisfy α + β = π
2

show that M1M2 = 1

2
(b2 − b1).

Hint: See the previous problem.
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� 4-19.

Let CD denote the altitude of triangle �ABC and let

P denote an arbitrary point on CD. Use the Pythagorean

theorem to show

AC
2 − AP

2
= CB

2 − PB
2

� 4-20.

Given the triangle �ABC with cevian CD.

Express Stewarts theorem in terms of the lengths

a, b, c, d, c1, c2.

� 4-21.

Given the triangle �ABC with AC = 5, BC = 8,

AB = 16 and DB = 3AD. Find the length of the cevian

CD.

� 4-22.

Given the triangle �ABC with CA = 8,

BC = 10, C ′A = 2 and BA = 13 +
√

205. Find the

length of the cevian CC ′.

� 4-23. Given an isosceles triangle with vertex angle C and cevian CC ′ = 19. The

base AB of the isosceles triangle is divided into two parts by the cevian such that

AC ′ = 3 and C ′B = 13. Find the length of the sides associated with the isosceles

triangle.

� 4-24. Apply a cyclic rotation of symbols to the equation (4.52) to find the length

of the medians BB′ and CC ′ associated with triangle �ABC.

� 4-25. Apply a cyclic rotation of symbols to the equation (4.55) to find the length

of the altitudes BB′ and CC ′ associated with triangle �ABC.
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� 4-26. Equation of a sphere

A sphere is defined as the locus of points equidis-

tant from a fixed point. If (x, y, z) denotes a variable

point which is always a distance r from a fixed point

(x0, y0, z0), then use the Pythagorean theorem to show

the equation of the sphere centered at (x0, y0, z0) is

given by (x − x0)
2 + (y − y0)

2 + (z − z0)
2 = r2

� 4-27. Find the distance between the given points.

(0, 0, 0) to (3, 4, 5)

(1, 2, 3) to (3, 4, 5)

(3, 4, 5) to (20, 32, 18)

(12, 35, 8) to (20, 45, 58)

� 4-28.

Consider a regular pentagon with unit sides inscribed

within a circle as illustrated. Extend the unit sides of the

pentagon to form a pentagram and then connect the points

AGBCH with straight lines to form a larger pentagon. Let

x = AD and demonstrate that

(a) the radius of the circumscribe circle is r =
√

5+
√

5

10

(b) the quadrilateral AFBG is a rhombus.

(c) one side of the larger pentagon is BG = 1 + x

(d) the triangles �ADE and �ACB are similar.

(e)
x

1
=

2x + 1

x + 1
(f) x = φ is the golden ratio.

� 4-29.

Given the equilateral triangle �ABC with side s

inscribed in a circle of radius r.

(a) Show the altitude is h =
√

3

2
s

(b) Show the area of the triangle is [ABC] =
√

3

4
s2

(c) Show the perimeter of the triangle is p = 3s

(d) Show the centroid gives r = 2

3
h

(e) Show the apothem of the equilateral triangle is

0P =
√

3

6
s

(f) Show s =
√

3r
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Geometry

Chapter 5

Properties of geometric figures

A proof by contradiction is an indirect proof where one begins with a hypothesis

which is contrary to that which you want to prove. One then shows that this

assumption leads to a contradiction. This type of proof is known as reductio ad

absurdum which is Latin for reduction to absurdity.

Example 5-1. Theorem If two circles touch one another externally, the

straight line joining the centers will pass through the point of contact. (Euclid,

book 3, proposition 12)

Proof:

Let A denote the point of contact of the two circles and assume that the line

connecting the centers c1, c2 of the circles does not pass through the point A.

If this hypothesis is true, then the line connecting the centers is divided into the

three segments

c1B + BC + Cc2 = c1c2 (5.1)

If c1 is the center of the first circle, then c1A = c1B because both line segments are

radii of circle 1. Similarly, for circle 2 one can say, c2A = c2C since both segments

are radii of circle 2. Observe that from these equalities and the equation (5.1) one

can write the inequality

c1A + c2A < c1c2 (5.2)
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By proposition 20, book 1 of Euclid’s Elements, the sum of two sides of a triangle

is always greater than the third side so that one can write

c1A + c2A > c1c2 (5.3)

Both the inequalities (5.2) and (5.3) cannot hold simultaneously, so the original

assumption is false and the line segment c1c2 does pass through the point of contact

of the two circles.

Construct line through given point P which is parallel to a given line �

(Euclid, Book 1, Proposition 31)

Here it is assumed that the given point P is non collinear with the given line �.

1) Construct a line L through point P which intersects the given line � at some

point A and making a positive angle with line �, as illustrated in the figure 5 -1.

2) Place the needle of the compass at point A and draw an arc which intersect

line � at point C and intersects line L at point B.

Figure 5 -1.

Steps for constructing parallel line.

3) Using the same compass distance, place the compass needle at point P and

make the same type of arc that you made in step 2 above and call the point of

intersection with line L the point D.
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4) Adjust the compass to measure the distance BC and then put the needle of

the compass at point D and make an arc which intersects the previous arc at a point

labeled E. Note that the distance DE = BC in figure 5 -1.

5) Use a straight edge to construct line through the points P and E and call this

line �′.

6) The line � and �′ are parallel because the angles ∠DPE and ∠BAC are corre-

sponding angles and are therefore equal. See figure 5 -2 for details.

Figure 5 -2.

Constructing parallel line to given line � through given point P.

Divide a line segment into three equal parts

(Euclid, Book 6, Proposition 9)

1) Given the line segment AB one can construct a line � which passes through

point A as illustrated in the figure 5 -3.

2) Set compass distance greater than what you think is 1/3 of the length AB.

Then place the needle of the compass at point A and make an arc on line � and label

it point C. Without changing the distance setting on the compass place the needle

of the compass at point C and make a mark on line � labeling it point D. Now place

needle of compass at point D and make another mark on line � labeling the mark

point E. Examine figure 5 -3 and note that the lengths AC = CD = DE are all equal

if you haven’t changed the compass spacing.

3) Put the needle of the compass at point E and widen the compass to make an

arc which passes through the point B. Then without changing the compass spacing

move the needle to point A and make a circular arc as illustrated in the figure 5 -3.
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4) Reset compass length by placing the needle at point A and the pencil point

at point E so that the compass radius is set equal to the length AE. After having set

the compass distance, move the needle point to B and make an arc which intersect

the arc constructed from 3) above and label the intersection point F as illustrated

in figure 5 -3.

5) Using a straight edge construct the line through points F and B and label

this line �′. Note that �′ is parallel to line �.

Figure 5 -3.

Constructions for dividing a line segment.

6) Reset compass distance to the length AC and the place the compass needle

at point F and make the marks G,H,I so that the distances AC, FG, CD, GH, DE, HB

are all equal to one another.

Figure 5 -4.

Final steps for dividing line segment AB.
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7) Use a straight edge and construct the line segments AF, CG, DH, EB. These

line segments intersect the line segment AB and divide it into three equal parts.

Note that this construction can be generalized so that the line segment AB can

be divided into as many parts as you wish.

Example 5-2. Given a line segment AB, find the point P between the points A

and B such that the ratio
AP

PB
=

3

2
Solution

Start at the point A and construct a line making an acute angle with the seg-

ment AB as illustrated in the figure 5 -5. Then use a drawing compass with fixed

distance between needle point and pencil point to mark off the 5 equal distances

AA1 = A1A2 = A2A3 = A3A4 = A4A5.

Figure 5 -5.

Dividing line segment AB into two parts with ratio 3/2.

Connect the point A5 with point B using a straight edge and then construct the

parallel lines A4P4 ‖ A5B, A3P3 ‖ A5B, A2P2 ‖ A5B, A1P1 ‖ A5B. The point P = P3 then

divides the line segment AB into the 3/2 ratio requested.

Section formula

The previous example can be generalized into the problem of dividing a line

segment AB into two parts having a specified ratio r1/r2. That is, find the coordinates

of a point P between the endpoints A(x1, y1) and B(x2, y2) of a line segment, such that

the ratio
AP

PB
=

r1

r2

is satisfied, where r1 and r2 are specified numbers. The resulting

formula for the coordinates of the point P is called a section formula, because it

divides the given line segment into specified section lengths.
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A section formula is also known as a ratio of divi-

sion. A point P is selected between two known points A

and B, then one can form the ratio of the positive line

segments AP and PB to obtain the ratio
AP

PB
=

r1

r2

which

is called the ratio of division and the point P is called

the point of division.
The ratio of division will always be positive if P is between A and B.

Figure 5 -6. Dividing line segment AB into two parts with ratio AP

PB
= r1

r2

As illustrated in the figure 5 -6, construct the right triangles �ABD and �APC

which are similar triangles with proportional sides. Examine these triangles and

show
x − x1

x2 − x1

=
AP

AB
and

y − y1

y2 − y1

=
AP

AB
(5.4)

It is required that
AP

PB
=

r1

r2

. This can be expressed in the form

AP

PB
+

PB

PB
=

r1

r2

+ 1 ⇒ AB

PB
=

r1 + r2

r2

=
AB

AB − AP
=

1

1 − AP
AB

or
AP

AB
= 1− r2

r1 + r2

=
r1

r1 + r2

so that one can rewrite the equations (5.4) as

x − x1

x2 − x1

=
r1

r1 + r2

and
y − y1

y2 − y1

=
r1

r1 + r2

(5.5)
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Use algebra to solve for x and y and show

x =
r2x1 + r1x2

r1 + r2

, y =
r2y1 + r1y2

r1 + r2

(5.6)

The equations (5.6) are called the section formulas for determining the coordinates

of the point P given the values (x1, y1), (x2, y2) together with the specified ratio r1/r2.

Note the special case where r2 = r1 = 1 so that the point P is the midpoint of

the line segment AB. In this special case the equation (5.6) reduces to the midpoint

formula produced in chapter 1.

x =
1

2
(x1 + x2), y =

1

2
(y1 + y2) (5.7)

Example 5-3. The median of a triangle is a line segment that joins a vertex

of the triangle to the midpoint of the opposite side of the triangle. Every triangle

has three medians. (Theorem) Show that the median of a triangle divides the area

of the triangle into equal halves.

Solution

Figure 5 -7. Median line from vertex C to midpoint M of AB

Given the triangle ABC, find the midpoint M of AB and construct the median line

CM . Next construct a line through the vertex C which is parallel to the segment

AB as illustrated in the above figure. If h is the distance between the parallel line

segments DE and AB, then one can write

Area �ABC = [ABC] =
1

2
AB · h =

1

2

(

AM + MB
)

· h

=
1

2
AM · h +

1

2
MB · h

Area �CAM = [CAM ] =
1

2
AM · h

Area �CBM = [CBM ] =
1

2
MB · h
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Note that AM = MB because M is the midpoint of the segment AB by construction.

Therefore,

Area �CAM = Area �CBM =
1

2
Area �ABC

This demonstrates that the median of a triangle divides the triangle into two equal

areas. These equal areas have equal bases AM = MB and the same height h.

Example 5-4. (Theorem) Show the three medians of a triangle meet at a point

of concurrency. This point of common intersections is called the centroid of the

triangle or center of gravity and is sometimes referred to as the barycenter of the

triangle.

Solution

Use Cartesian coordinates and represent the triangle as illustrated.

Figure 5 -8. Median lines �1, �2, �3 from each vertex to midpoint of opposite sides.

Construct a general triangle �ABC as illustrated in the figure 5 -8 having Cartesian

coordinates (x1, y1) for vertex A, (x2, y2) for vertex B and (x3, y3) for the vertex C.

Recall that the midpoint of a line segment is determined by taking the average of the

endpoint x-values and average of the endpoint y-values. This gives the coordinates

of the midpoints as
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M1 =

(

1

2
(x2 + x3),

1

2
(y2 + y3)

)

M2 =

(

1

2
(x1 + x3),

1

2
(y1 + y3)

)

M3 =

(

1

2
(x1 + x2),

1

2
(y1 + y2)

)

Using the point-slope formula one can determine the equations of the median

lines �1, �2 and �3 as follows.

Line �1 : slope of line �1 = m1 =
change in y
change in x

=

[ 1
2
(y2 + y3) − y1

1
2
(x2 + x3) − x1

]

(5.8)

point-slope formula for equation of line �1

y − y1 =

[ 1
2
(y2 + y3) − y1

1
2
(x2 + x3) − x1

]

(x − x1) (5.9)

Line �2 : slope of line �2 = m2 =
change in y
change in x

=

[ 1
2
(y1 + y3) − y2

1
2
(x1 + x3) − x2

]

(5.10)

point-slope formula for equation of line �2

y − y2 =

[ 1
2
(y1 + y3) − y2

1
2
(x1 + x3) − x2

]

(x − x2) (5.11)

Line �3 : slope of line �3 = m3 =
change in y
change in x

=

[

y3 − 1
2
(y1 + y2)

x3 − 1
2
(x1 + x2)

]

(5.12)

point-slope formula for equation of line �3

y − y3 =

[

y3 − 1
2
(y1 + y2)

x3 − 1
2
(x1 + x2)

]

(x − x3) (5.13)

To show that the median lines meet at a point of concurrency P , first find where

the lines �1 and �2 intersect by solving the simultaneous equations (5.9) and (5.11).

Next, determine the intersection of the lines �1 and �3. This requires one to solve

the simultaneous equations (5.9) and (5.13).

One can now verify that the intersection of the lines �2 and �3 occurs at the point

satisfying the simultaneous equations (5.11) and (5.13).

One finds, after some algebra, that the above simultaneous equations all have

the same solution for the coordinates of the point of concurrency as

xG =
1

3
(x1 + x2 + x3), yG =

1

3
(y1 + y2 + y3) (5.14)

This demonstrates that the point of concurrency of the three lines �1, �2 and �3

occurs at the point P having the coordinates (xG, yG), where the xG and yG values
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are obtained from equation (5.14). This point of concurrency is called the centroid

of the triangle ABC.

Let points D and E denote the midpoints of the line segments AP and CP. The

coordinates of these points are obtained from the midpoint formula as

D :

[

1

2

(

x1 +
1

3
(x1 + x2 + x3)

)

,
1

2

(

y1 +
1

3
(y1 + y2 + y3)

))

and

E :

[

1

2

(

x3 +
1

3
(x1 + x2 + x3)

)

,
1

2

(

y3 +
1

3
(y1 + y2 + y3)

)]

Knowing these coordinates we can calculate the slopes of the line segments M1E and

M1D to show these line segments are parallel. One finds

Slope M1E =
change in y-values
change in x-values

=
y1 − 2y2 + y3

x1 − 2x2 + x3

Slope M3D =
change in y-values
change in x-values

=
y1 − 2y2 + y3

x1 − 2x2 + x3

provided x1−2x2+x3 �= 0. If it is zero, then rotate the triangle to remove this problem.

Figure 5 -9.

Quadrilateral M3DEM1 is a parallelogram

The above calculations demonstrate the line segments M1E and M3D are parallel.

By the midpoint parallel line theorem M3M1 ‖ AC. Also the line segment DE is

parallel to AC and 1/2 its length by the mid segment theorem. Therefore DE ‖ M3M1

and consequently the quadrilateral M3DEM1 is a parallelogram where we know the

diagonals of a parallelogram meet at a point and bisect one another.
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Therefore one can write

M3P = PE = EC =
1

3
CM3 or AP =

2

3
AM1

By rotating the triangle one can repeat what has just been done and verify that

M2P =PE = FB =
1

3
BM2 or BP =

2

3
BM2

M1P =PD = DA =
1

3
AM1 or CP =

2

3
CM3

This demonstrates the medians of a triangle will always meet at a point of

concurrency, called the centroid, which is located two thirds of the distance along

the lines from each vertex to the midpoints of the opposite sides.

Centroid of any figure

The centroid of any plane figure is the average position of

all the points of the figure. For example, the centroid of a

quadrilateral is the average of all points within the quadrilat-

eral and so one could balance the quadrilateral on a pin placed

at the centroid.

Thale’s intercept theorem

Given two parallel lines which are in-

tersected by two lines �1 and �2 intersecting

at point P as illustrated in the figure 5 -

10. Thales theorem of intercepts consists

of three ratio properties associated with

the given situation.

(i) The ratio of any two line segments

on line �1 must equal the corresponding ra-

tio on line �2. For example,

Figure 5 -10.

Two lines intersecting parallel lines.

PB

PA
=

PD

PC
,

PA

BA
=

PC

DC
,

PB

BA
=

PD

DC

(ii) The ratio of any two line segments on line �1 starting at P, equals the ratio

of the segments on the parallels.
PB

PA
=

PD

PC
=

BD

AC
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(iii) If more than two lines cross the

parallel lines and intersect at a point P,

then the ratio of any two segments on one

parallel line is in the same ratio as the cor-

responding segment on the other parallel

line.

BA

EF
=

BC

ED
,

BA

BC
=

EF

ED
Figure 5 -11.

Three lines intersecting parallel lines.

Proof of the above theorem is based upon producing similar triangles from which

all of the above proportions are obtained.

Figure 5 -12.

Bisection of angle

Bisect a given angle

(Euclid, Book 1, Proposition 9)

1) Place the needle of the compass at the vertex

A and sketch the arc
�
CB where the points B and

C are where the arc intersects with the initial and

terminal sides of the given angle.

2) Select a constant compass distance and place

the needle point at B and construct a small arc fol-

lowed by placing the needle point at C and con-

structing an intersecting arc as illustrated in the

figure 5-12. Label the point where the arcs inter-

sect as point D.

3) Construct line segment AD which bisects the

angle ∠BAC

The reason why the above construction bisects the angle is because the line

segments AB, BC, DC, CA form a kite with diagonal AD. Then triangle ABD is con-

gruent to triangle ACD (�ABD ∼= �ACD) because of side-side-side, where AD is a

common side to both triangles. Therefore, angle α = ∠DAC = ∠DAB which implies

2α = ∠BAC or α = 1
2
∠BAC.
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Example 5-5. (Theorem) Show that in an isosceles triangle the angles opposite

the equal sides are equal. These angles are called the base angles associated with an

isosceles triangle. (Euclid, Book 1, Proposition 5)

Solution

Consider the isosceles triangles sketched in the figure 5-13. Construct the bi-

sector of the vertex angle A of the isosceles triangle illustrated in the figure 5-13.

This bisector intersects the base line BC at the point M as illustrated in the fig-

ure 5-13. The two triangles formed by the angle bisection are congruent. That

is, �AMB ∼= �AMC because of side-angle-side, with AM a common side to both

right triangles. Here AB = AC because the given triangle is isosceles. The angles

α = ∠BAM = ∠CAM are equal because AM is an angle bisector.

Figure 5 -13. Isosceles triangles

Since the triangles are congruent all the corresponding interior angles are equal so

the base angles ∠ABM = ∠ACM = β. Note also that the angle bisector intersects

the base line BC perpendicularly. This is because the angles ∠AMB and ∠AMC are

equal and they are supplementary. Let γ = ∠AMB = ∠AMC, then one can write

γ + γ = 180◦ or γ = 90◦.

Conversely, if the base angles ∠ABM and ∠ACM are equal, then the triangle must

be an isosceles triangle. (Euclid, Book 1, Proposition 6) Let us assume these base

angles are equal and show that this implies that AB = AC or the sides opposite the

base angles are equal. To prove this, construct the line through vertex A which is

perpendicular to the triangle base BC. One can then say that the triangles �ABM

and �ACM are congruent because of angle-side-angle with AM the common side and

the angle α are known since there has to be 180◦ in every triangle. If �ABM ∼= �ACM ,

the side AB = AC or the sides opposite the equal base angles are equal.
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Note also that the line AM is called the altitude of the isosceles triangle. This

altitude is the perpendicular bisector of the base BC and also is the angle bisector

of the vertex angle A.

Two column proof of isosceles triangle properties

The construction of an altitude from the vertex an-

gle ∠A0C of the isosceles triangle illustrated produces

two right triangles �0BA and �0BC. One can state that

these triangles are congruent (�0AB ∼= �0BC) because

of the RHS (Right triangle-Hypotenuse-Side) proposi-

tion, where the altitude OB is a shared side of the two

right triangles.

One can then conclude that for an isosceles triangle

1) The angles α = ∠A0B = ∠C0B, so that the altitude bisects the vertex angle

∠A0C

2) The base of the isosceles triangle is bisected AB ∼= BC

3) The base angles are equal β = ∠0AB = ∠0BC

The following is a (Statement | Reason) two column proof of the above facts.

Statements Reasons

1. 0B is altitude of �0AC By construction

2. 0B is common to two right triangles By construction

3. OA = 0C Given �0AC is isosceles

4. �A0B ∼= �C0B SAS (side-angle-side)

postulate

5. AB = BC Corresponding parts of congruent

triangles are equal

6. ∠A0B = ∠C0B = α Corresponding parts of congruent

triangles are equal

7. ∠BA0 = ∠BC0 = β Corresponding parts of congruent

triangles are equal
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Construction of an equilateral triangle

An equilateral triangle has three equal sides and

three equal vertex angles To construct an equilateral

triangle having all sides of some given length BC = �,

set the drawing compass needle at point B and widen

the compass until the pencil point is at the endpoint C,

then make a circular arc with radius � above the line.

Next move the needle point of the compass to point

C and construct another circular arc of radius � which

intersects the first arc at the point labeled A. Finally

construct the line segments AC and AB to produce the

equilateral triangle.

Figure 5 -14.

Equilateral triangle

Consider the equilateral triangle �ABC illustrated in the figure 5 -15. Let the

sides have length s and denote the interior angles by the Greek letter α. We know

that the interior angles of the equilateral triangle are equal because they are all

opposite equal sides. We also know the sum of the interior angles of a triangle is

180◦, so 3α = 180◦ or α = 60◦. We also know that if an angle bisector AD is constructed,

then triangles �ABD and �ACD are congruent (�ABD ∼= �ACD) because of SAS

(side-angle-side) with AD the common side. Therefore, BD = DC =
s

2
and the angles

∠ADB = ∠ADC =
π

2
so the line AD is perpendicular to BC.

Figure 5 -15.

Equilateral triangle �ABC

Examine the figure 5 -15 and remember the following fact.

In a 30◦− 60◦ right triangle, the side opposite the 30◦ angle will always be half the

hypotenuse.
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The Viviani theorem

Vincenzo Viviani (1622-1703) was a contemporary of Galileo who studied equi-

lateral triangles and came up with the following observation. In an equilateral trian-

gle with all sides of length s, one can select any interior point P and then construct

the perpendicular distances from point P to each side of the triangle as illustrated

in the figure 5 -16. Label the lengths of these perpendicular distances as h1, h2 and

h3 and call the height of the equilateral triangle h. The Viviani theorem states that

h1 + h2 + h3 = h or the height of the equilateral triangle must equal the sum of the

perpendicular distances from point P . To prove this theorem, construct the line

segments PA, PB, PC which represent the lines from point P to each vertex of the

equilateral triangle. Note that

Area triangle �ABC = A =
1

2
hs

This area is the sum of the three smaller triangles having the common vertex at

point P .

A =Areas of �APC + �PBC + �BPA

A =
1

2
h1s +

1

2
h2s +

1

2
h3s =

1

2
(h1 + h2 + h3) s

Things equal to the same thing are equal to one another

or
1

2
hs =

1

2
(h1 + h2 + h3)s

which simplifies to the result

h = h1 + h2 + h3

proving the Viviani theorem.

Figure 5 -16.

Equilateral triangle

Angle bisector theorem
(Euclid, Book 6, Proposition 3)

The angle bisector theorem involves a line bisecting an interior angle of a triangle

and cutting the side opposite the angle at a point such that the triangle is divided

into two parts where the sides of the two parts are proportional to one another. To

illustrate where these ratios come from, consider the triangle ABC illustrated in the

figure 5-17.
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If the line which bisects the angle ∠CAB intersects side CB at the point D, then

the following ratio must hold true

AB

AC
=

BD

CD

Proof

Construct a line through the vertex C which is parallel to the triangle base AB

and then extend the line AD to intersect this line at point E. The line AE is a

transversal line cutting two parallel lines and so angle ∠DEC = α. Similarly, the line

BC is a transversal line cutting two parallel lines and so angle ∠ECD = ∠ABD = γ.

Figure 5 -17.

Line segment AE bisects angle ∠CAB

The triangle �AEC is an isosceles triangle with base angles α so one can say

that the sides opposite these angles are equal or AC = CE. Also the triangles

�CED and �ABD are similar triangles because all three interior angles are the

same. Consequently, the sides of these triangles are proportional giving the ratios

AB

CE
=

BD

CD

However, CE = AC giving the ratio

AB

AC
=

BD

CD

Make note that this theorem is employed in many problems where an angle

bisector is involved.
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Example 5-6. Special case cevian is angle bisector

In the special case the cevian of a triangle is also an

angle bisector of the vertex angle A, then one can simplify

the Stewart’s formula for the length of the cevian AA′.

One can employ the angle bisector theorem that states
b

u
=

c

v
. Write Stewart’s formula as

b2 +
u

v
c2 =

a

v

(

d2 + uv
)

then use
u

v
c = b to obtain b2 + bc =

a

v

(

d2 + uv
)

(5.15)

Modify the angle bisector theorem

c

b
+ 1 =

v

u
+ 1 ⇒ b + c

b
=

u + v

u
⇒ (b + c)2 =

a2b2

u2
(5.16)

to simplify equation (5.15) as follows.

b(b + c) =
a

v

(

d2 + uv
)

(b + c)2 =
a

bv

b(u + v)

u

(

d2 + uv
)

(b + c)2 =
a2

uv

(

d2 + uv
)

(5.17)

The results from equation (5.16) can now be used to show

a2b2

u2
=

a2

uv

(

d2 + uv
)

b2v

u
=bc = d2 + uv

This gives the angle bisector form of Stewart’s formula as

d2 = bc− uv = bc− a2α(1 − α), u = αa, v = (1− α)a (5.18)

The equation (5.18) can be expressed in terms of the semiperimeter of the tri-

angle �ABC. Let s =
a+b+c

2
denote the semiperimeter and show that

s(s − a) =
(b + c)2 − a2

4
(5.19)

Note that the equation (5.17) can be rearranged into the form

(b + c)2 − a2 =
a2d2

uv
(5.20)
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where now the equation (5.19) can be used to obtain a semiperimeter form for the

distance of the cevian d = AA′ as

d =
2
√

bc s(s − a)

b + c
(5.21)

As a final note in this special case, we find from the angle bisector theorem

u

v
=

b

c
=

αa

(1 − α)a
=

α

(1 − α)

which shows that the side a of the triangle is split by the cevian into two parts

having the ratio b
c
.

Exterior angle bisectors

Examine the exterior angle bisector associated with the

exterior angle C of the isosceles triangle �ABC illustrated.

Note that the angle bisector of this exterior angle is parallel

to the base AB. Consequently the exterior angle bisector

will never intersect the extended base AB.

One can examine the angle bisectors of the exterior an-

gles of any given non-isosceles triangle �ABC as illustrated

in the figure 5-18. One can show that when the exterior

angles of a non-isosceles triangle are bisected, the bisector lines will intersect with

an extended side of the triangle. These points of intersection are illustrated by the

points P, Q, R in figure 5-18. Note that any exterior angle bisector associated with

a given triangle will always intersect with an extended opposite side of the triangle

and create two line segments. For example, the bisector of angle (π − A) intersects

the extended side BC at point P to create the two segments CB and CP. The ratio

CP

CP + CB
=

CP

BP

is proportional to the lengths of the other two sides of the triangle or
AC

AB
.
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Figure 5 -18.

�ABC with extended sides and exterior angle bisectors

One can express the external angle bisector theorem for the exterior angles as

producing the ratios

bisector of angle (π −A) creates the ratio
CP

BP
=

AC

AB
�PAB

bisector of angle (π −B) creates the ratio
CQ

AQ
=

CB

AB
�AQB

bisector of angle (π −C) creates the ratio
BR

AR
=

CB

AC
�ACR

To prove the last ratio construct a line through point B which is parallel to the

angle bisector CR and intersects side AC at point D as illustrated below.

Observe that CB becomes a transversal so that one can show the triangle �DCB is

isosceles. This implies CD = CB. The parallel lines cut the triangle �ACR so that

the sides are proportional giving

CA

CD
=

AR

BR
⇒ CA

CB
=

AR

BR

since CD = CB.

Similar arguments produce the other ratios associated with the bisection of the

external angles.
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Excircles

Any circle which is tangent to both the extended

sides of a triangle and a side of the triangle is called

an excircle. The centers of excircles occur at the

intersection of the exterior angle bisectors and are

called excenters. The radius of an excircle is called

an exradius. Every non-isosceles triangle has three

excircles.

Example 5-7. (Theorem) Show that a point P which lies on an angle bisector

must be equidistant from the sides defining the angle.

(Illustrated in Euclid, Book 4, Proposition 4)

Solution

Construct the lines PE and PF in figure 5-19 which are perpendicular to the

sides defining the angle A. The resulting triangles �APE and �APF are right angle

triangles and are such that

∠APE = ∠APF = 90◦ − α = β

since there must be 180◦ in every triangle. Note also the line segment AP is common

to the triangles �APF and �APE and consequently one can state that these triangles

are congruent.

Figure 5 -19.

Point P on angle bisector.
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The statement �APE ∼= �APF is true because of the angle-side-angle (ASA)

postulate. Therefore, PE = PF demonstrating that the point P is equidistant from

the angle sides.

Note also that the converse of the above theorem also holds true.

If a point P on a line through angle A is equidistant from the sides defining the angle,

then P must lie on an angle bisector.

In figure 5-19 construct the line EF as illustrated in the figure 5-20. This con-

struction forms an isosceles triangle �PFE with equal base angles ∠PFE = ∠PEF = γ.

The complementary angles 90◦ − γ = δ associated with the angle γ are also equal to

one another so that

∠AFE = ∠AEF = δ = 90◦ − γ

The sides opposite these angles must be equal. This produces another isosceles

triangle �AFE with sides opposite the base angles being equal (AF = AE). The side

AP is a common side and consequently one can write �APF ∼= �APE because of SSS

(side-side-side postulate). Therefore, the angles ∠FAP and ∠EAP are equal and so

the line AP is the angle bisector of the vertex angle A.

Figure 5 -20.

Sides PE = PF
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Example 5-8. (Theorem) Show the angle bisectors of a triangle meet at point of

concurrency, called the incenter, which is equidistant from the sides of the triangle.

Solution

Given the triangle ABC construct the angle bisectors AF, BE and CH. The

angle bisectors AF and BE intersect at a point P. We have shown that the point

P, lying on an angle bisector, must be equidistant from the angle sides. Construct

the perpendicular segments PG, PI, PD from the point P to the sides of the triangle.

The point P lying on the angle bisector AF produces the equality PI = PD. The

point P lying on the angle bisector BE produces the equality PI = PG. Therefore,

PD = PI because things equal to the same thing are equal to each other. This shows

the point P is equidistant from the sides CB and CA and so it must lie on the angle

bisector CH.

The point P is a point of concurrency associated with the angular bisectors of

triangle ABC and is called the incenter. Drawing a circle with center P having the

radius PI = PD = PG produces an inscribed circle within the given triangle ABC.

This result is related to Euclid, Book 4, Proposition 4.

Figure 5 -21.

Triangle ABC with point of concurrency.
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Let r = PI = PD = PG denote the radius of the inscribed circle, then observe that

the three triangles �PAB, �PBC, �PCA have the respective areas

[PAB] =
1

2
rc, [PBC] =

1

2
ra, [PCA] =

1

2
rb (5.22)

where a, b, c are the lengths of the triangle sides. The total area of the triangle is

then the sum of these smaller areas giving the area of triangle �ABC as

[ABC] =
1

2
r(a + b + c) = r s where s =

1

2
(a + b + c) (5.23)

is the semiperimeter of the triangle and r is the radius of the inscribed circle. The

equation (5.23) represents the area of a general triangle as a product of the radius

of the inscribed circle times the semiperimeter of the triangle.

Example 5-9. As a corollary to the previous example, show that the area of

any polygon circumscribed about a circle is given by the formula

Area of circumscribed polygon =
1

2
(perimeter of polygon) · (radius of circle) (5.24)

Solution:

Consider the quadrilateral ABCD circumscribing a

circle as illustrated in the accompanying figure. One can

construct line segments from the center of the circle to

each vertex of the polygon. This creates four triangles

as illustrated. By using the results from the previous

example, the area of each triangle is given the formula

Triangle Area =
1

2
(base)(height)

The total area of the quadrilateral is then the sum of

the areas of each triangle or

Area quadrilateral =
1

2
�1r +

1

2
�2r +

1

2
�3r +

1

2
�4r =

1

2
(�1 + �2 + �3 + �4)r =

1

2
rp (5.25)

where p is the perimeter of the quadrilateral circumscribing the circle.

If you replace the quadrilateral with an n-gon then there results n-triangles and

the perimeter of the n-gon becomes

p = �1 + �2 + �3 + · · ·+ �n

with the area of the n-gon still given by the formula 1
2
rp, where r is the radius of the

circle.
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Example 5-10. Using Cartesian coordinates show the angle bisectors of the

vertex angles A,B,C of a general triangle �ABC meet at a point of concurrency

called the incenter. Find the coordinates of this point.

Solution

Assume the vertices A, B, C have the Cartesian coordinates (x1, y1), (x2, y2), (x3, y3)

and the angle bisector of the vertex angle A intersects the side CB at the point D

with coordinates (x4, y4). The situation is illustrated in the figure 5-22. Using the

angle bisector theorem one knows that the ratio

BD

DC
=

c

b
(5.26)

must be satisfied. The coordinates of the point D can be determined by using

the section formula (3.15) from chapter 3, with r2 = b and r1 = c. One finds the

coordinates of the point (x4, y4) are given by

x4 =
bx2 + cx3

b + c
and y4 =

by2 + cy3

b + c
(5.27)

The line bisecting the vertex angle B intersects the line segment AD at the point P

called the incenter of triangle �ABC.

Figure 5 -22. Angle bisectors of a triangle meet at a point P of concurrency.
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This bisector of angle B divides the line AD into two parts AP and PD. Em-

ploying the angle bisector theorem again, these two parts must be in the ratio

AP

PD
=

c

BD
(5.28)

Write equation (5.26) in the form

DC

BD
=

b

c

and note that

DC

BD
+ 1 =

b

c
+ 1 equals added to equals the results are equal

DC + BD

BD
=

BC

BD
=

a

BD
=

b + c

c

which simplifies to

BD =
ac

b + c
(5.29)

Substituting the results from equation (5.29) into the equation (5.28) one finds that

AP

PD
=

b + c

a
(5.30)

One can now employ the section formula with r2 = a and r1 = (b + c) to find the

coordinates (x, y) of the point P is given by

x =
ax1 + (b + c)x4

a + b + c
, y =

ay1 + (b + c)y4

a + b + c
(5.31)

Substitute the values for (x4, y4) from the equations (5.27) into the equations (5.31)

and show the incenter coordinates (xI , yI) of the point P are

xI =
ax1 + bx2 + cx3

a + b + c
, yI =

ay1 + by2 + cy3

a + b + c
(5.32)
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Cavalieri’s principle for the plane
Given two plane figures located between two parallel lines �a and �b a distance h

apart, as illustrated in the figure 5-24. Consider a third line � between and parallel

to both �a and �b. The line � cuts the figures to form the line segments AB and CD

as illustrated.

Figure 5 -24.

Figures between two parallel lines cut by a third parallel line.

If for every parallel line �, between �a and �b, the line segments AB and CD are

equal, then the two regions have equal areas. This is known as Cavalieri’s principle,

developed by Bonaventura Francesco Cavalieri (1598-1647) an Italian mathemati-

cian.

The reason why Cavalieri’s principle holds is that one can divide the distant h

into n-parts of length ∆h = h
n
. At each height hi = ih

n
, for i ranging from 1 to n,

one can calculate the cross-sections ABi and CDi at height hi. Next calculate the

sandwich type elements of area given by Ai = ABi · ∆h and Ai = CDi · ∆h associated

with the given figures. A summation of these area elements from i = 1 to i = n, for

both figures, will produce equal areas even in the limit as n → ∞ and ∆h becomes

very small, since by hypothesis CDi = ABi for all values of the index i.

Example 5-11. Consider the two triangles illustrated in the figure 5-25. We

have demonstrated earlier that these triangles have the same area. We can now
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demonstrate by Cavalier’s principle that these areas are the same.

Figure 5 -25.

Triangles cut by parallel line.

We employ Cartesian coordinates and some simple algebra to show that for all

lines y = y0, 0 ≤ y0 ≤ h, that AB = CD which satisfies Cavalier’s condition for equal

areas associated with the figures given. Begin by moving both triangles with equal

bases to the origin.

Consider the Cartesian representation of the lines �1, �2, �3, �4 which form the sides

of the given triangles. Assume lines �1 and �2 intersect at the point (x0, h) and the

lines �3 and �4 intersect at the point (x1, h) as illustrated in the figure 5-26. Using

the point-slope formula for the equation of a line, the above lines can be shown to

have the equations

Figure 5 -26.

Triangles formed by lines �1, �2, �3, �4
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�1 : y =
h

x0

x

�2 : y =
−h

(b − x0)
(x − b)

�3 : y =
h

x1

x

�4 : y =
h

(x1 − b)
(x − b)

(5.33)

The line y = y0, 0 ≤ y0 ≤ h, y0 constant, cuts the two triangles to form the line

segments AB and CD. Substituting the value y = y0 into the equations (5.33) one

obtains
�1 : y0 =

h

x0

x ⇒ x =
x0y0

h

�2 : y0 =
−h

(b− x0)
(x − b) ⇒ x = b − y0

h
(b − x0)

The difference in these x-values gives

AB = b− y0

h
(b− x0) −

x0y0

h
= b

(

1 − y0

h

)

(5.34)

and for the lines �3, �4 one finds that when y = y0 there results

�3 : y0 =
h

x1

x ⇒ x =
x1y0

h

�4 : y0 =
h

x1 − b
(x − b) ⇒ x = b +

y0

h
(x1 − b)

The difference in these x-values gives

CD = b +
y0

h
(x1 − b)− x1y0

h
= b

(

1 − y0

h

)

(5.35)

Comparing the equations (5.34) and (5.35) one finds AB = CD for all values y0

satisfying 0 ≤ y0 ≤ h. Therefore, by Cavalier’s principle the areas of the triangles are

the same.
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Example 5-12.

For the rectangle and parallelogram illustrated in the figure 5-27 one can say

that if the line segments AB = CD for all lines y = � between y = 0 and y = h, then by

Cavalier’s principle the area of the two figures are the same.

Figure 5 -27.

Rectangle and parallelogram with same base and height.

Sketching these figure on a Cartesian axes one obtains the figure 5-28 where the

bases of both figures are made to coincide.

Figure 5 -28.

Cartesian coordinates for rectangle and parallelogram.

In this figure the rectangle has sides given by the lines �1 and �2 while the paral-

lelogram has sides described by the lines �3 and �4. The equations of these lines

are
�1 : x = 0

�2 : x = b

�3 : y =
h

x0

x

�4 : y =
h

x0

(x − b)

(5.36)
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The line y = y0, where y0 is a constant value between 0 and h, cuts the figures at the

x-values
�1 : x = 0

�2 : x = b
⇒ AB = b = change in x-values (5.37)

and

�3 : y0 =
h

x0

x ⇒ x =
x0y0

h

�4 : y0 =
h

x0

(x − b) ⇒ x = b +
x0y0

h

⇒ CD =
(

b +
x0y0

h

)

− x0y0

h
= b (5.38)

where CD represents the change in the x-values. Comparing the equations (5.37)

and (5.38) we find AB = CD and by Cavalier’s principle the area of both these figures

are the same.

Note a parallelogram and rectangle with the same base and height have the same

area. Area=(base)(height).

Example 5-13. The figures used in Cavalier’s principle for determining area

don’t have to have the same shape as can be seen by examining the figure 5-29.

Figure 5 -29.

Circle and half of ellipse.
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For those of you willing to get involved in the subject you can verify that the

illustration above is associated with the unit circle (x − 1)2 + (y − 1)2 = 1 centered at

(1, 1) and half of the ellipse (y − 1)2 + x
2

4
= 1. These figures have then been translated

to the positions illustrated. The area associated with both figures is π.

Menelaus theorem

The Menelaus’1 theorem concerns the selection of points, one point on each side

or extended side of a general triangle �ABC and finding a condition that these

points lie on the same straight line. Remember that Ceva’s theorem investigates

concurrency and Menelaus theorem investigates collinearity.

Figure 5 -30.

What condition is required for points P, Q, R to lie on same line?

Consider points P, Q, R which lie on different sides or extended sides of triangle

�ABC as illustrated in figure 5-30 where P is on side AC, Q is on side AB and R is

on side BC. If there exists a line through the points P, Q, R which does not intersect

any of the triangle vertices, then one can show the ratio condition

AQ

QB
·
BR

RC
·
CP

PA
= −1 (5.39)

or

AQ · BR · CP = −QB · RC · PA (5.40)

must hold.

1 Menelaus of Alexandria (70-130)CE was a Greek mathematician and astronomer.
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Note that there is no standard ordering or notation for representing the line

segments in the equations (5.39) and (5.40). However there is a sign convention.

Sign convention

For a given line segment AB on a line � and a point

F on the line � then, the ratio of line segments AF
FB

is

defined

AF

FB
=

{

a positive value if F is between the points A and B

a negative value otherwise

For example
AF ′

F ′B
< 0,

AF ′′

F ′′B
> 0,

AF ′′′

F ′′′B
< 0

The equation (5.39) can be thought of as consisting of a product of line segment

ratios resulting from the sequential movement of a point from a triangle vertex to

a point of intersection followed by the movement of the point from the point of

intersection to the next triangle vertex. When this is performed in a cyclic fashion

the following ratios result.

(i) Move from vertex A to point of intersection F followed by motion from F to next

vertex B giving the first ratio.

(ii) Move from vertex B to point of intersection E followed by motion from E to next

vertex C giving the middle ratio.

(iii) Move from vertex C to point of intersection D followed by motion from D to

next vertex A giving the last ratio.

When these ratios are multiplied the product is -1. Note for the line illustrated

in figure 5-30 the first ratio is negative and the other two ratios are positive.

Proof of the Menelaus theorem:

There is a case where the line is outside

the triangle and the sides of the triangle

�ABC must be extended.

In this case all three of the ratios are negative

AQ

QB
< 0,

BR

RC
< 0,

CP

PA
< 0
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Consider now the case where the transversal cross two sides of triangle �ABC

as in figure 5 -30 where

AQ

QB
> 0,

BR

RC
< 0,

CP

PA
> 0

In order to avoid keeping track of signs we will deal with absolute values and put

the correct sign on when we finish.

Construct in figure 5 -30 the perpendiculars from the vertices A, B, C to the line

and call these perpendiculars a, b, c respectively.

Figure 5 -31.

Perpendiculars from vertices to transversal line.

Using similar right triangles from the figure 5 -31 one finds the ratios

Figure 5 -32.

Similar triangles (not to scale)

∣
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∣

∣

AQ

QB

∣

∣

∣

∣

=
∣

∣

∣

a

b

∣

∣

∣

∣

∣

∣

∣

BR

RC

∣

∣

∣

∣

=

∣

∣

∣

∣

b

c

∣

∣

∣

∣

∣

∣

∣

∣

CP

PA

∣

∣

∣

∣

=
∣

∣

∣

c

a

∣
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∣
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The product of these ratios gives
∣

∣

∣

∣

AQ

QB

∣

∣

∣

∣

·
∣

∣

∣

∣

BR

RC

∣

∣

∣

∣

·
∣

∣

∣

∣

CP

PA

∣

∣

∣

∣

=

∣

∣

∣

∣

a

b
· b

c
· c

a

∣

∣

∣

∣

= 1

Using the appropriate signs for the above ratios gives one the Menelaus theorem.

The converse of Menelaus theorem is that if one selects points P, Q, R on the

triangle sides or extended sides AC, AB , BC such that

AQ

QB
· BR

RC
· CP

PA
= −1 (5.41)

then the points P, Q, R are collinear.

Proof:

Assume that equation (5.41) holds and show the points P, Q, R are on the same

line. We know two points defines a line, so let � be the line through the points Q

and R. The line � and the triangle side AC intersect in a single point which we label

as D′. The point D′ is on the line � so Menelaus’ theorem must hold so that

AQ

QB
· BR

RC
· CD′

D′A
= −1 (5.42)

However, our assumption is that the equation (5.41) holds true. Therefore, one can

equate equations (5.41) and (5.42) to obtain

AQ

QB
· BR

RC
· CD′

D′A
=

AQ

QB
· BR

RC
· CP

PA
⇒ CD′

D′A
=

CP

PA
(5.43)

The equation (5.43) can also be expressed in the form

CD′

D′A
+ 1 =

CP

PA
+ 1 or

CD′ + D′A

D′A
=

CP + PA

PA
or

CA

D′A
=

CA

PA

which implies that D′A = PA or D′ = P . That is, there is only one point that can cut

the segment AC to produce the required ratio. Consequently, the points P, Q, R are

collinear.

The Simson line (It should be the William Wallace line.)
Simon’s theorem2 (should be the Wallace theorem) concerns a triangle circum-

scribed by a circle. One can select any point P on the circumference of the cir-

cumcircle and from point P construct three perpendicular lines, one to each side

2 Robert Simson(1687-1768) a famous English geometer was given credit for a theorem published by William

Wallace (1768-1843). This mistake has been perpetrated throughout the mathematical literature on geometry for

well over a hundred years. I think it is about time that this mistake be corrected.
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or extended side of the triangle (red lines in figure). The three points of intersec-

tion of the perpendicular lines with the sides of the triangle will be collinear. The

line through these points of intersection has since the 18th century been called the

Simson line.

Proof:

Using the figure on the right we have constructed

the lines from point P to each of the vertices of the

triangle �ABC and have constructed the Simson line

through the points where the perpendiculars meet the

sides of the triangle. Observe that the angles

∠PAD = ∠PBC = α

since both angles subtend the same arc
�
PC .

It can be verified that the triangles �APD and �PBF are right triangles which

are similar (�APD ∼ �PBF). Therefore, one can write the proportion

BF

AD
=

PF

PD
(5.44)

representing the similarity associated with the triangle sides.

Note also that the angles

∠PBA = ∠PBA = β

since both angles subtend the same arc
�
PA . Therefore the triangles �PDC and

�PEB are right triangles and similar (�PDC ∼ �PEB) and so one can form the

ratio
CD

EB
=

PD

PE
(5.45)

associated with the sides of these similar triangles.

Making use of the property that the opposite interior angles of a quadrilateral

inside a circle must equal π, then from quadrilateral PABC

∠PAB + ∠PCB = π



221

and since angle ∠BAE is a straight angle

∠PAB + ∠PAE = π

which implies

∠PCB = ∠PAE = γ

Therefore, the right triangles �PEA and �PFC are similar (�PEA ∼ �PFC) so that

one can write the following proportion for the sides of these triangles

AE

FC
=

PE

PF
(5.46)

Multiply the left and right-hand sides of the equations (5.44), (5.45), and (5.46)

to show
BF

AD
· CD

EB
· AE

FC
=

PF

PD
· PD

PE
· PE

PF
= −1

or

AE · BF · CD = −EB · FC ·DA

which is Menelaus’ result needed to show the points D, E, F are collinear. Make note

of the fact that the point E in the figure is outside the segment AB which produces

the minus sign.

Euler line
Any triangle which is not equilateral has the property that the points defined by

the orthocenter, centroid and circumcenter are collinear. These points all lie on a

line called the Euler line which is named after its discoverer Leonhard Euler (1707-

1783 ) a famous Swiss mathematician. Whenever the triangle becomes equilateral,

then the orthocenter, centroid and circumcenter coalesce into a single point.

Recall a triangle �ABC with vertices A, B, C having coordinates (x1, y1), (x2, y2), (x3, y3)

respectively, has the centroid

xG =
1

3
(x1 + x2 + x3) yG =

1

3
(y1 + y2 + y3) (5.47)

orthocenter

xH =
λ(y1 − y3) + µ(y3 − y2) + ν(y2 − y1)

y2(x1 − x3) + y1(x3 − x2) + y3(x2 − x1)

yH = − λ(x1 − x3) + µ(x3 − x2) + ν(x2 − x1)

y2(x1 − x3) + y1(x3 − x2) + y3(x2 − x1)

where

λ =x3x1 + y3y1

µ =x2x3 + y2y3

ν =x1x2 + y1y2

(5.48)
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and circumcenter given by

xO =
(x2

1 + y2
1)(y3 − y2) + (x2

2 + y2
2)(y1 − y3) + (x2

3 + y2
3)(y2 − y1)

2 (x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1))

yO = − (x2
1 + y2

1)(x3 − x2) + (x2
2 + y2

2)(x1 − x3) + (x2
3 + y2

3)(x2 − x1)

2 (x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1))

(5.49)

Figure 5 -33.

The Euler line

The line through the orthocenter and circumcenter is found using the point-slope

formula. One finds the equation for this line is

y − yH =

(

yO − yH

xO − xH

)

(x − xH) (5.50)

To demonstrate the point (xG, yG) is on this line, substitute into the equation (5.50)

the values y = yG and x = xG from equation (5.47) and show

yG − yH −
(

yO − yH

xO − xH

)

(xG − xH) = 0

is satisfied. This is messy algebra which can be done on a computer.
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The nine point circle

Consider a general triangle with altitudes

given by the line segments APA, BPB , CPC

where the points PA, PB, PC denote the points

where the altitudes intersect the side oppo-

site the vertex angles. These altitudes meet

at a point of concurrency called the ortho-

center and denote by H in the accompanying

sketch. Examine the line segments AH, BH, CH

which denote the line segments from each ver-

tex to the orthocenter. Define the points

PAH , PBH , PCH as the midpoints of these line

segments. Also label the midpoints of the tri-

angle sides as PmAC , PmBC , PmAB.

Three points determine a circle. The circle which passes through the points

PA, PB, PC at the base of the altitudes also passes through the points PAH , PBH, PCH

and PmAC , PmBC , PmAB . This circle is known as the nine point circle. One can

construct the line segment HO connecting the orthocenter and circumcenter, then

the midpoint of this line segment is the center of the nine point circle. This center

lies on the Euler line of the triangle.

Cevians

Recall that through the vertices of every triangle one can construct a cevian.

These cevians may or may not meet at a point of concurrency. Note that altitudes,

medians and angle bisectors are all special cases of cevians.

Figure 5 -34. Cevians AA′, BB′, CC ′
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Ratio of areas theorem
The cevian of a triangle from vertex A divides the

triangle into two smaller triangles. It also divides the

side opposite vertex A into two parts λa and (1 − λ)a.

If [ADB] = area of �ADB, [ADC] = area of �ADC, and

[ABC] = area of �ABC, then the ratio of areas theorem

states

[ADB]

[ADC]
=

BD

DC
=

λ

1 − λ
and

[ABC]

[ADC]
=

BC

DC
=

1

1 − λ

Proof: Construct a line through the vertex A which is

parallel to the triangle base and let h denote the height

of the triangle. One can then write

[ADB]

[ADC]
=

1
2
(BD)h

1
2
(DC)h

=
λ

1 − λ
and

[ABC]

[ADC]
=

1
2
(BC) h

1
2
(DC) h

=
BC

DC
=

1

1 − λ

since the area of a triangle is one-half its base times height.

Routh’s theorem

Consider a general triangle �ABC

with area [ABC]. If one constructs three

general cevians which intersect to form

a triangle �DEF , then the area [DEF ]

becomes a fraction of the area [ABC].

Routh’s theorem determines a general

formula for this fraction.

Using the Menelaus theorem, let line

C ′C intersect triangle �ABA′ at the points

C ′, D so that one can write

AC ′

C ′B
· BC

CA′ ·
A′D

DA
= 1 (5.51)

which implies
A′D

DA
=

CA′

BC
· C ′B

AC ′ =
α2

α1 + α2

· γ2

γ1

(5.52)
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In triangle �AA′C there is the sub-triangle [ADC] and the ratio of the areas of these

triangles is given by
[ADC]

[AA′C]
=

DA

AA′ (5.53)

Similarly, in triangle �ABC there is the sub-triangle AA′C with ratio of areas given

by
[AA′C]

[ABC]
=

A′C

BC
(5.54)

Combining the equations (5.54) and (5.53) one can write

[ADC] =
DA

AA′ ·
A′C

BC
[ABC] (5.55)

Observe that
DA

AA′ =
DA

A′D + DA
=

1
A′D
DA

+ 1
(5.56)

so that equation (5.55) can be expressed in the form

[ADC] =
1

[

α2γ2

γ1(α1+α2)
+ 1

] · α2

(α1 + α2)
[ABC] =

γ1α2

α2γ2 + γ1(α1 + α2)
[ABC] (5.57)

which demonstrates that the area [ADC] is a fraction of the area of [ABC]. This

fraction can be expressed

f =
γ1α2

α2γ2 + γ1(α1 + α2)
(5.58)

Case 1:

Let α2 = xα1, β2 = yβ1, γ2 = zγ1 and verify

the equation (5.57) becomes

[ADC] =
x

xz + x + 1
[ABC] (5.59)

In a similar manner one can show that the

areas [BEA] and [CFB] are fractions of the

area [ABC] and these areas can be repre-

sented

[BEA] =
y

xy + y + 1
[ABC] (5.60)

[CFB] =
z

yz + z + 1
[ABC] (5.61)



226

Note the cyclic changing of the symbols xyz can be used to obtain the other

area equations. Knowing the area of the triangles �BEA, �CFB and �ADC one can

express the area of triangle �DEF as

[DEF ] = [ABC] − [ADC] − [BEA]− [CFB] (5.62)

Case 2:

Let

α1 =αa,

α2 =(1 − α)a,

β1 =βb,

β2 =(1 − β)b,

γ1 =γc

γ2 =(1 − γ)c

where a, b, c are the triangle sides and then

verify the equations (5.59), (5.60), (5.61)

become

[ADC] =
γ(1− α)

α(γ − 1) + 1
[ABC] (5.63)

[BEA] =
α(1 − β)

β(α − 1) + 1
[ABC] (5.64)

[CFB] =
β(1 − γ)

γ(β − 1) + 1
[ABC] (5.65)

with the area of triangle �DEF again given by equation (5.62).

Harmonic division
Given two points a and b on a line � one can select a third point x on line � and

define the ratio

r(x) = r(x; a, b) =
x − a

x − b
(5.66)

Note that

(i) If a < x < b, then r(x) is negative.

(ii) If x < a or x > b, then r(x) is positive.

(iii) In the special case x = a+b
2

is the midpoint of ab, then r
(

a+b
2

)

= −1

(iv) If there exists points c and d such that

r(c; a, b)

r(d; a, b)
= −1
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then the points a, b are said to be divided harmonically by the points c and d. Har-

monic ratios occur in many areas of geometry and music.

Figure 5 -35. Line segments used in harmonic ratio

In terms of positive line segments, the condition for a harmonic ratio is

r(c; a, b) =
c − a

c − b
=

AC

−BC
, r(d) =

d − a

d − b
=

AD

BD
(5.67)

and the condition

r(c)

r(d)
= −1 becomes

r(c)

r(d)
=

−AC
BC
AD
BD

= −AC

BC
· BD

AD
= −1 (5.68)

Thus, if r(c)

r(d)
= −1, it is required that

AC

BC
=

AD

BD
or AC · BD = AD ·BC (5.69)

Reciprocal property

If the points a, b are fixed and r(c;a,b)

r(d;a,b)
= −1, then the points c, d are said to divide

the segment ab harmonically. If the points c, d are fixed and r(a;c,d)

r(b;c,d)
= −1, then the

points a, b are said to divide the segment cd harmonically. This reciprocal relationship

exists between the points a, b, c, d.

Example 5-14.

Given a triangle �PAB with side AP extended to illustrate the interior angle Pi

and exterior angle Pe = π − Pi. Construct the angle bisectors of both the interior

angle Pi and exterior angle Pe. These are the lines PC and PD illustrated in the

figure 5-36, where points C and D are the intersection points of the angle bisectors

with the side AB (extended if necessary).
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Figure 5 -36. Harmonic ratio occurs

(i) Show the line PC is perpendicular to the line PD. The proof follows from the

fact that Pi + Pe = π so that Pi

2
+ Pe

2
= π

2
.

(ii) Show
PA

PB
=

AD

BD
(5.70)

This can be demonstrated by constructing a line through point B which is parallel

to line PD and intersecting side PA at the point F as illustrated. It follows that

triangle �FBP is isosceles so that PB = PF.

In triangle �ADP one can use the Thales intercept theorem to show

PA

PF
=

AD

BD
(5.71)

Using the result that PB = PF the equation (5.71) becomes

PA

PF
=

AD

BD
=

PA

PB
(5.72)

which was to be demonstrated
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(iii) Show
AC

BC
=

AD

BD
(5.73)

Using the angle bisector theorem in triangle �ABP one finds

PA

PB
=

AC

BC
(5.74)

The equation (5.74) combined with equation (5.72) completes the proof

The equation (5.73) shows that the side AB has been divided harmonically. See

the equations (5.69).

Exercises

� 5-1. Determine the point P which divides the given line AB into the ratio specified.

(a) A : (0, 0), B : (100, 0),
AP

PB
=

3

5

(b) A : (0, 0), B : (0, 50),
AP

PB
=

2

5

(c) A : (0, 0), B : (81, 81),
AP

PB
=

2

7

(d) A : (0, 2), B : (100, 6),
AP

PB
=

3

5

� 5-2.

Show that three or more straight lines

through a point P which also intersect parallel

lines, then there is produced proportional par-

allel line segments. For the illustration given

show
A′B′

AB
=

B′C ′

BC

� 5-3.

Find the centroid of the given triangle if

(a) a = 3, b = 4 (b) a = 8, b = 15 (c) a = 9, b = 40

� 5-4. Given the parallel lines y = 0 and y = 10 along with the lines

�1 : y = 3x, �2 : y = −4(x − 8)

(a) Find the point P where the two lines meet.

(b) Find where the line �1 intersects the parallel lines.

(c) Find where the line �2 intersects the parallel lines.

(d) Sketch the above lines and points and verify Thales intercept theorem.
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� 5-5.

For the triangle illustrated, show the centroid is

located at

x̄ =
b + �

3
and ȳ =

h

3

� 5-6.

Give the right triangle �ABC with sides

AB =
√

3, AC = 2, BC = 1

The bisector of the vertex angle A divides the side BC

into two parts of lengths d1 and d2. Find the lengths

d1 and d2 and the length of the angle bisector.

� 5-7.

Given the triangle �ABC with DG = x, EG = y, GF = z

and lines AE, BD, CF medians. The label G denoting the

centroid of the triangle.

(a) Find GB in terms of x

(b) Find GA in terms of y

(c) Find GC in terms of z

(d) Show the line segment DE is parallel to AB

(e) What is the ratio of distance of G from a vertex to distance of median from same

vertex.

� 5-8. Apply a cyclic rotation of symbols to the equations (5.18) and (5.21) to find

the length of the cevians BB′ and CC ′ which are angle bisectors associated with the

vertex angles B and C of triangle �ABC.

� 5-9.

Examine figure 5-18 and prove that the points P, Q, R are collinear.

� 5-10. Find the incenter of an equilateral triangle with

sides of length s and height
√

3s
2

.

� 5-11. Find the incenter of an isosceles triangle with equal sides of length 100, base

equal to 100
√

3 and height equal to 50.
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� 5-12.

Given triangle �ABC with cevian AA′ representing

the angle bisector of the vertex angle A. Use the angle

bisector theorem and Stewarts theorem to show

(AA′)2 = (AB)(AC) − (BA′)(A′C)

� 5-13.

Find the incenter of the triangle �ABC illus-

trated where α is a parameter restricted to the values

0 < α < 1.

� 5-14. Find the orthocenter, centroid and circumcenter associated with an equilat-

eral triangle having a side of length s.

� 5-15.

For the right triangle illustrated.

(a) Find the radius r0 of the circumscribed circle.

(b) Find the radius rI of the inscribed circle.

� 5-16.

Given the right triangle �ABC with line �1 dividing

the hypotenuse such that DB = 4
√

2
3

and DA = 20
√

2
3
.

Point B has the coordinates (0, 8), point A has the coor-

dinates (8
√

5, 0), point M has the coordinates (4
√

5, 0) and

P has the coordinates (0, y). Use Menelaus’s theorem to

find y such that the points P, D, M are collinear.

� 5-17.

Given the triangle �ABC illustrated.

(a) Find the orthocenter.

(b) Find the circumcenter.

(c) Find the centroid.

(d) Find the Euler line.
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� 5-18.

For the given equilateral triangle �ABC find the

point where the orthocenter, centroid and circumcen-

ter coalesce.

� 5-19. Given a triangle �ABC inside the circle x2 + y2 = 1. The vertices of the

triangle have the coordinates

A(−1, 0), B(
1√
2
,− 1√

2
), C(0, 1)

Select point P ( 1√
2
, 1√

2
) on the circle and

(a) find the points associated with the Simson line (William Wallace line).

(b) find the equation of the Simson line (William Wallace line).

� 5-20.

Use the Menelaus theorem to find the point R if

points P, Q, R are to be collinear. Using the distances

AQ =
10

3

QB =
25

3

BR =8 + x

RC = − x

CP =2
√

41

PA =
√

41

� 5-21.

Use the Menelaus theorem to determine the point

P so that the points P, Q, R are collinear. Use the fol-

lowing distances for the triangle given.

AQ =2

QB =8

BR =10

RC = − 2

CP =x

PA =9− x

� 5-22.

The triangle illustrated has the sides

AB = 6, BC = 10, CA = 8

(a) Find the area of triangle �ABC

(b) Find the area of triangle �DEF

(c) Find the ratio
[DEF ]

[ABC]
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Geometry

Chapter 6

Introduction to Mathematical Fundamentals

Generalization and abstraction

By observing mathematical operations certain concepts lead to abstractions and

generalizations. For example 2 + 3 = 5 is a special case of x + y = z for the values

x = 2, y = 3 and z = 5. The equation x + y = z is an abstraction of the concept

of addition. It represents all possible sums of two quantities to produce a third

quantity. In mathematics, ”Everything is a special case of something more general.”

Many mathematicians search for the more general concepts in order to classify and

correlate mathematical concepts and ideas into some kind of an organized structure.

The study of triangles, squares, pentagons, hexagons,. . ., n-gons illustrates the

search for generalized concepts concerning all polygons. This is a way of collecting

facts about polygons and organizing these facts to enlarge our data base of knowl-

edge.

Organization of knowledge

The building of a foundation of knowledge is composed of definitions, axioms and

postulates and then the organization and formalization of the knowledge to obtain an

understanding of the basic material in order to generate by deductive arguments new

ideas and concepts represented by theorems, corollaries and lemmas. These facts

can be generalized and organized into various categories and subcategories. This is

what Euclid started some 2300 years ago and is still done today in mathematics.

The theorems, corollaries and lemmas introduce new ideas and illustrate how the

new ideas logically follow from using the fundamentals and previously develop old

facts which have already been verified. The proofs of the theorems are usually given

by the presentation of a sequence of steps which produce the conclusion stated by

the theorem. Euclid and his followers were the first to organize how mathematics

was to be approached in a logical way and to develop the concept of a proof.

The wonderful thing about theorems and proofs is that they are timeless. What

Euclid proved 2300 years ago is still valid today. Theorems build on our data base

of knowledge and the advancement of the sciences.

Euclid’s introduction of a proof has been modified in the modern era of com-

puters. Computer calculations, simulations, modeling using Monte Carlo techniques
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and statistics along with numerical methods are some of the more modern accept-

able proofs describing what is happening in various fields of science. Mathematics

is now used in all areas of physics, engineering, science and business.

Logic symbols

Let letters of the alphabet A, B, . . . , P, Q, . . . denote sentences or statements that

are either true or false, but not both. Composite statements or compound statements

consist of sub-statements along with different types of connectives. The truth or

falseness property of a compound statement depends upon the truth of the sub-

statements and how the sub-statements are connected.

Negation (∼ A)

Given the statement

A: It is raining outside.

The negation of the statement A is written (∼ A) which is read as � not A � and

is constructed by inserting the word � not � into the statement A.

∼ A: It is not raining outside.

If A is true, then ∼ A is false and if A is false, then ∼ A is true. A truth table

for ∼ A is the following table where T represents true and F represents false.

Truth Table

A ∼ A ∼ (∼ A)

T F T

F T F

Note that ∼ (∼ A) = A. That is, the negation of any statement is always the

opposite truth value of the original statement.

Conjunction (A ∧ B)

Whenever two statements A and B are combined using the word � and �,

then a compound statement is formed. The compound statement (A ∧ B), read

as � A and B �, is called the conjunction of the original statements A and B.

A: John has a cell phone.

B: Mary has a cell phone.

A ∧ B: John has a cell phone and Mary has a cell phone.

or John and Mary have cell phones.

The truth table for the above compound statement A ∧ B is as follows
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Truth Table

A B A ∧ B

T T T

T F F

F T F

F F F
The T and F values in a truth table represent the truth values for A and B in a

compound sentence. Note that A∧B is true, only when both A and B are true. The

first line of the truth table is read � If A is true and B is true, then A∧B is true.�

Disjunction (A ∨ B)

Whenever two statements A and B are combined using the word � or � to

form a compound statement, then the new statement is called a disjunction of the

original two statements and written as A ∨ B and read as � A or B �.

Be careful, the word � or � can be used in different ways. For example, A ∨ B

could mean

(i) A or B or both (at least one of the two alternatives occurs)

(ii) A or B, but not both (only one of the two alternatives can occur)

The use of the word � or � is to be used in the sense of ”and/or” as given in (i)

above.

A truth table for the compound statement A ∨ B is as follows
Truth Table

A B A ∨ B

T T T

T F T

F T T

F F F
Here A ∨ B is false only when both A and B are false.

Implication

In mathematics one can come across statements or expressions such as:

(i) if-then statement. If (hypothesis A is true), then (conclusion B is true)

(ii) A implies B

(iii) B is a necessary condition for A

(iv) A is a sufficient condition for B

(v) B follows from A

Each of the above statements all mean that the truth of statement B follows from

the truth of statement A. In these statements A is called the premise or hypothesis
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and B is called the conclusion or result. Each of the above statements can be written

symbolically by using one of the notations A ⇒ B or A → B, which is read using one

of the interpretations given by (i) through (v) above. For example, A ⇒ B could be

interpreted as � If A, then B �.

Converse

When two parts of a sentence are interchanged or turned about, one part is called

the converse of the other part. In mathematics a necessary and sufficient condition

for the completeness of a definition is that its converse is also true. For example the

definition, ” The centroid of a triangle is defined as the point of intersection of the

medians of the triangle. ” has the converse statement, ”The point of intersection of

the medians of a triangle defines the centroid of a triangle. ” If one has a theorem

A ⇒ B (If A, then B), then its converse is B ⇒ A (If B, then A). The converse

of an if-then statement is obtained by interchanging the hypothesis (A) and the

conclusion (B). Note that the converse of a true statement may or may not be true.

For example, the statement, ”If a quadrilateral is a square, then all the sides must

be equal” has the converse, ”If all the sides of a quadrilateral are equal, then the

quadrilateral must be a square”, is a false statement because the quadrilateral could

be a rhombus. The law of detachment states that if the statement, ”If hypothesis,

then conclusion” (if A, then B) is accepted as being true, then when you know

condition A holds, a valid logical conclusion is B.

The law of syllogism states that if A ⇒ B and B ⇒ C are true statements, then

the statement A ⇒ C is also a true statement. If you have a hypothesis H and

conclusion C, so that H ⇒ C, (H implies C), then the contrapositive of this statement

is obtained by negating both the hypothesis and conclusion and then interchanging

the results. For example,

H ⇒ C has the contrapositive statement ∼ C ⇒∼ H

Remember that

(i) If the original statement is true, then the contrapositive statement is also true.

(ii) If the original statement is false, then the contrapositive statement is also false.
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Example 6-1.

Consider the statements {A: The computer is working.}

and {B: I’ll solve your problem.} and the following if-then combinations.

Original A ⇒ B

If the computer is working
︸ ︷︷ ︸

A

, then I’ll solve your problem.
︸ ︷︷ ︸

B

Converse B ⇒ A

If I solve your problem
︸ ︷︷ ︸

B

, then the computer is working.
︸ ︷︷ ︸

A

Inverse ∼ A ⇒∼ B

If the computer is not working
︸ ︷︷ ︸

∼A

, then I will not solve your problem.
︸ ︷︷ ︸

∼B

Contrapositive ∼ B ⇒∼ A

If I don’t solve your problem
︸ ︷︷ ︸

∼B

, then the computer is not working.
︸ ︷︷ ︸

∼A

Example 6-2.

The following statements are all true.

Original (A ⇒ B) If �ABC and �DEF are similar, then their corresponding sides

are proportional.

Converse (B ⇒ A) If the corresponding sides of �ABC and �DEF are propor-

tional, then the triangles are similar.

Inverse (∼ A ⇒∼ B) If �ABC and �DEF are not similar, then their corresponding

sides are not proportional.

Contrapositive (∼ B ⇒∼ A) If the corresponding sides of �ABC and �DEF are

not proportional, then the triangles are not similar.

Example 6-3.

If two sides of a triangle are unequal, then the

angles opposite these sides are also unequal with the

larger angle opposite the larger side.

(Euclid, Book 1, Propositions 18,19)

Proof: Given triangle �ABC with larger side AB. Measure the distance BC and

mark off the distance DB = BC on side AB. We know the angles opposite equal sides
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are equal. Therefore, ∠DCB = ∠CDB = α. Hence one can conclude

Statement Reason

∠ACB > α The whole is greater than any of its parts.

α > ∠DAC Exterior angle greater than any single opposite interior angle.

∠ACB > ∠DAC law of syllogism

Example 6-4.

If two angles of triangle �ABC are unequal, the

sides opposite these angles are also unequal with the

greater side opposite the greater angle.

(Euclid, Book 1, Propositions 18,19)

Proof: Assume angle β is the greater than angle α.

One can then state that one of the following conditions

must hold.

b < a, b = a, or b > a

Statement Reason

β > α Assumption

a = b cannot be true If true, then α = β contradicts original assumption.

b < a cannot be true If true, then β < α contradicts original assumption.

b > a must be true Only remaining case

This type of proof is known as, a proof by exclusion. As Sherlock Holmes would

say, ”When you have ruled out all the other possibilities, whatever remains must be

the truth.”

Biconditional

If the connective between statements of facts A and B is expressed in any of the

forms

(a) A is true if and only if B is true.

(b) A is equivalent to statement B.

(c) A is a necessary and sufficient condition for B.

then this is referred to as a biconditional connective between statements.
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Some examples of biconditional compound statements are:

(i) A quadratic equation having rational coefficients can be factored if and only

if its discriminant is a perfect square.

(ii) Two polynomials are equal if and only if their difference produces the zero

polynomial.

(iii) A necessary and sufficient condition for two planes

Ax + By + Cz + D = 0 and αx + βy + γz + δ = 0

to be parallel is for the coefficients to satisfy
A

α
=

B

β
=

C

γ

Sometimes biconditional statements are used in definitions.

(i) A triangle is isosceles if and only if the triangle has two equal sides.

(ii) The absolute value of x is | x |, by definition | x |= 0 if and only if x = 0.

(iii) If a > 0, then | x |< a if and only if −a < x < a.

Biconditionals are expressed mathematically using the symbol ( ⇐⇒ ). The

expression A ⇐⇒ B, is interpreted using one of the statements (a),(b) or (c) above.

For example, one could read A ⇐⇒ B as � A is true if and only if B is true.� Here

the connective between statements A and B is � if and only if � or one of the above

statements (b) or (c) above. Sometimes the expression ”if and only if” is expressed

using the shorthand notation ”iff”.

The following is a truth table for a biconditional if and only if statement.

Truth Table

A B A ⇐⇒ B

T T T

T F F

F T F

F F T

A biconditional (fact 1 ⇐⇒ fact 2) is true when the truth or falseness of both

facts are the same. Either both facts are true or both facts are false.
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Example 6-5. Show that for a,b,c,d integers different from zero, then the equal-

ity a
b

= c
d

is true if and only if ad = bc.

Solution

Assume that a
b

= c
d

is a true statement. Then multiply both sides of this relation

by the non zero product bd. One then obtains the result that equals multiplied by

equals the results are equal. This gives

a

b
bd =

c

d
bd which simplifies to ad = bc

Conversely, assume that ad = bc is true and multiply both sides by the non zero

identity 1
bd

= 1
bd

. Equals multiplied by equals gives the result

ad

bd
=

bc

bd
which simplifies to

a

b
=

c

d

Hence one can write
a

b
=

c

d
⇐⇒ ad = bc

Indirect poofs

Indirect proofs, sometimes referred to as proof by exclusion, consists of assum-

ing a contradiction to the conclusion of a proposition and then showing that this

assumption leads to a contradiction. For example, to prove a statement such as

A = B, one can make the assumption A �= B. If such is the case, then either A > B

or A < B. If one can then show that both the statements A < B and A > B are false,

then the only case left is A = B which contradicts the original assumption. This type

of proof is known as reductio ad absurdum.

Inductive and Deductive reasoning
Inductive reasoning is starting with a conjecture, hypothesis or a statement of

general behavior arrived at because of

(i) pattern recognition

(ii) observation of data changes

(iii) belief obtained from experience

One can use written out statements, numbers, diagrams, tables and patterns

associated with a given problem to try and discover a way of obtaining a solution.

One tries to formulate a general conjecture or hypothesis concerning the solution

to the problem and then from this starting point prove to everyones satisfaction, if

possible, that your conjecture is true. Note that to disprove a conjecture one need

only find one counterexample to show the conjecture is false.
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Example 6-6. The hypothesis that f(n) =
1

6

(
18 − 14n + 9n2 − n3

)
produces a

prime number for integers n = 1, 2, 3, . . . can be shown to be false by substituting in

the integer n = 5 as a counterexample. One can show that

n = 1, f(1) = 2

n = 2, f(2) = 3,

n = 3, f(3) = 5,

n = 4, f(4) = 7,

n = 5, f(5) = 8

n = 6, f(6) = 7

Remember it doesn’t matter how many times you show something to be true—

that is not a proof. It only takes one time to show something is false to have a

counterexample.

The ancient Greeks asked the question, “What are correct reasoning and incor-

rect reasoning techniques used in solving problems?” In proving something is true

(i) There must not be any ambiguity in the statement of a problem or in the pre-

sentation of its solution. Hence the need for definitions, axioms, postulates and

understanding of basic knowledge associated with a given problem.

(ii) One must show a step-by-step methodology in arriving at a solution.

(iii) Principles of logic should be applied correctly.

(iv) There can be no flaws, inconsistencies or contradictions in any of the assump-

tions made to solve a problem or to prove a theorem.

Deductive reasoning

Deductive reasoning uses a premise, axiom, postulate, theorems or facts which

are accepted as true and then using these facts as a starting point begin a step-

by-step process marching toward some conclusion. As you proceed to prove your

conclusion verify the truth of each step of your reasoning process. Deductive rea-

soning is starting with a premise and then taking logical steps toward a conclusion.

Deductive reasoning uses the law of syllogism to arrive at a conclusion. That is, if

A → B, B → C, C → D is true, then one can conclude from these facts that A → D

is true. The two column ( Statements | Reasons ) proofs used in geometry is an

example of this law of syllogism.

Note that sometimes in solving problems there may occur a mixture of inductive

and deductive reasoning techniques. New ideas in mathematics different from axioms

or postulates must be proven using precise statements. The two column (Statments
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| Reasons) approach is one way to introduce the rigor of a mathematical proof. All

of modern mathematics require proofs when new concepts, ideas or methods are

introduced.

Occam’s Razor

Occam’s razor is a principle of logic which states- Any proof should use the least

set of postulates and rules of logic. This principle was set forth by William of Occam

(1288-1348) as a way to minimize internal contradictions in a proof and to make

clear where ones starting points for ideas originate.

Mathematical induction

The method of mathematical induction is a deductive method of reasoning used

to prove propositions or formulas which depend upon positive integers n being used

to determine the solution. Mathematical induction requires three conditions to be

satisfied.

(i) The proposition or formula can be verified to be true for small values of n. Usually

one shows the proposition or formula holds for the values n = 1, n = 2, and sometimes

n = 3 just to verify the results hold for small values of n.

(ii) One next extends the range of n for which the formula or proposition holds. One

tries to prove that if the formula holds for n equal to a positive integer k > 2, then it

must also hold for the next integer k + 1.

(iii) Make use of the results from part (i) and (ii) to prove the truth of the case n = k

implies the truth of the case (k + 1), then the proposition or formula will hold for all

values of n = 1, 2, 3, . . ..

The method of mathematical induction is somewhat like having an infinite set

of dominos standing on end. If you knock down the first domino and the second

domino falls, does this mean all the dominos will fall? If you assume the kth domino

falls and prove that this implies the (k + 1)st domino falls, then you can substitute

k = 1, 2, 3, . . . , n, . . . into the formula for dominos falling, the idea being that if the kth

domino falling guarantees that the (k + 1)st domino will also fall, then this implies

that all the dominos must fall.

Example 6-7. Let Sn denote the sum of the geometrical series

Sn = a + ar + ar2 + · · ·+ arn−1, n a positive integer, a is constant (6.1)

where r is called the common ratio associated with consecutive terms.



243

Prove by mathematical induction that the sum of this series is given by the

formula

Sn =
a(1 − rn)

1 − r
, for r �= 1 (6.2)

and n = 1, 2, 3, . . . is an integer.

Solution

In the case n = 1 equation (6.1) becomes S1 = a and equation (6.2) becomes

S1 = a1−r
1−r

= a and so equation (6.2) is true for this case.

In the case n = 2 equation (6.1) becomes S2 = a + ar and equation (6.2) becomes

S2 = a
1 − r2

1 − r
= a

(1 − r)(1 + r)

1 − r
= a(1 + r) = a + ar

and so equation (6.2) also holds for the next integer 2.

Assume equation (6.2) holds for n = k and write

Sk = a + ar + ar2 + · · ·ark−1

︸ ︷︷ ︸

k terms

=
a(1 − rk)

1 − r
(6.3)

Using the assumption that equation (6.3) is true, show that this guarantees that the

formula

Sk+1 = a + ar + ar2 + · · ·+ ark−1 + ark

︸ ︷︷ ︸

(k+1) terms

=
a(1 − rk+1)

1 − r
(6.4)

must also hold true.

To prove that this is indeed the case, write

Sk+1 = Sk + ark =
a(1 − rk)

1 − r
+ ark add fractions

=
a − ark + ark − ark+1

1 − r

=
a − ark+1

1 − r
=

a(1− rk+1)

1 − r

(6.5)

Here we have added equals to equals to obtain, after simplification, equal results.

Hence the truth of the n = k case implies the truth of the n = k+1 case. This implies

the given equation is true for all values of the integer n.
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Example 6-8. Show that the sum Sn = 1 + 2 + 3 + · · ·+ (n − 1) + n

of the first n integers is given by Sn =
n(n + 1)

2
Solution

To verify that the formula

Sn = 1 + 2 + 3 + · · ·+ (n − 2) + (n − 1) + n =
n(n + 1)

2
(6.6)

is true for all values of n, one must first show the validity of the formula for small

values of n.

For n = 1 equation (6.6) reduces to S1 = 1 =
1 · 2
2

= 1

For n = 2 equation (6.6) reduces to S2 = 1 + 2 =
2 · 3
2

= 3

and so the equation (6.6) is valid for the small values of n = 1 and n = 2.

Next assume the given equation holds for some positive integer n = k so that

Sk = 1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
(6.7)

Finally, prove that the assumption of truth for n = k implies the truth of the formula

for n = k + 1. Note that equals added to equals produces equals so that

Sk+1 = Sk + (k + 1) =
k(k + 1)

2
+ (k + 1)

=(k + 1)

(
k

2
+ 1

)

=
(k + 1)(k + 2)

2

(6.8)

which is the formula (6.6) with n replaced by k + 1. Hence, the truth of the kth

statement implies the truth of the (k+1)st statement which implies the given equation

is true for all values of n.

The summation formula in equation (6.6) has been a known formula for over

2000 years. It can be quickly obtained by writing the equation (6.6) followed by the

same equation with the integers written in reverse order. Observe in the right-hand

columns that the numbers adds up to (n+1) and there are n of these numbers. This

gives
Sn = 1 + 2 + 3 + · · ·+ (n − 2) + (n − 1) + n

Sn = n + (n − 1) + (n − 2) + · · ·+ 3 + 2 + 1

2Sn = (n + 1) + (n + 1) + (n + 1) + · · ·+ (n + 1) + (n + 1) + (n + 1)
︸ ︷︷ ︸

n terms

2Sn = n(n + 1)

or Sn =
n(n + 1)

2

(6.9)
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An addition of the sums as written in equation (6.9) together with some algebra

produces the result indicated by equation (6.6).

The summation sign
∑

The mathematical symbol
∑

(Greek letter sigma) is used to denote a summation

of terms. If f = f(x) is a function whose domain contains all the integers and m is

an integer, then the notation

m∑

j=1

f(j) = f(1) + f(2) + f(3) + · · · + f(m) (6.10)

is used to denote the summation of the terms f(j) as j varies from the 1 to m. Here

j = 1 is called the starting index for the sum and the m above the sigma sign is

used to denote the ending index for the sum. The quantity j is called the dummy

summation index because the letter j does not occur in the answer and j can be

replaced by some other index if one desires to do so. The sum is understood to be

zero if the ending index is less than the starting index. If the ending index is ∞, the

series is called an infinite series.

The result for the geometric series in example 6-7 can be expressed

n∑

j=1

arj−1 =
a(1 − rn)

1 − r
(6.11)

The summation of the integers formula from example 6-6 can be written as

n∑

k=1

k =
n(n + 1)

2
(6.12)

The sigma summation convention can save you a lot of writing.

Example 6-9. Calculate the sum

1000∑

m=100

m = 100 + 101 + 102 + · · ·+ 1000 (6.13)

Solution

We know the sum
99∑

m=1

m =
99(100)

2
from equation (6.12) with n = 99 and we know
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the sum
1000∑

k=1

k =
1000(1001)

2
again from equation (6.12) with n = 1000. The difference

gives us
1000∑

j=100

j =
1000∑

j=1

j −
99∑

j=1

j =
1000(1001)

2
− 99(100)

2
= 495 550

This result can be generalized by writing

n∑

j=m

j =
n∑

j=1

j −
m−1∑

j=1

j (6.14)

where m and n can be any integers you want, provided m < n.

Example 6-10. Find the sum of the squares of the first n integers

12 + 22 + 32 + 42 + · · ·+ n2 =
n∑

j=1

j2

Solution

Here we do not have a formula for the sum and so we cannot use the method of

mathematical induction to prove the formula. This is a chance to do some inductive

reasoning. Writing out the squares of the integers

0 1 2 3 4 5 . . . (n − 2) (n − 1) n

one obtains

02 12 22 32 42 52 . . . (n − 2)2 (n − 1)2 n2 (6.15)

Examine what we have and make note that the difference between two consecutive

squares is given by

n2 − (n − 1)2 = n2 − [n2 − 2n + 1] = 2n − 1

which is an odd number for all integers n. Subtract a lower square from the next

higher square in equation (6.15) and show there results the odd numbered differences

listed below
02 12 22 32 42 52 . . . (n − 2)2 (n − 1)2 n2

1 3 5 7 9 . . . (2n − 3) (2n − 1)
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The above differences shows that the square of any integer can be written as the sum

of consecutive odd integers or
n∑

k=1

(2k − 1) = n2

One can construct a table of such sums.

12 =1

22 =1 + 3

32 =1 + 3 + 5

42 =1 + 3 + 5 + 7

52 =1 + 3 + 5 + 7 + 9

...
...

n−1∑

j=1

(2j − 1) = (n − 1)2 =1 + 3 + 5 + 7 + · · ·+ (2n − 3)

n∑

j=1

(2j − 1) = n2 =1 + 3 + 5 + 7 + · · ·+ (2n − 3) + (2n − 1)

(6.16)

Examine the sum of the terms that are to the left of the equal signs in the equations

(6.16). This is the sum of integers squared that we desire. On the right hand side

of the equal signs is a triangular array of numbers. This triangle array of numbers

represents the answer that we desire. If we can sum these numbers we have our

answer.

Here we have used pattern recognition to come up with an answer. If we can

write the answer for specific values of n and then try to obtain a more general form

of the answer for any integer n, then we can use mathematical induction to prove the

more general result. Playing around with the triangular array of numbers one might

discover the following more general method of obtaining the desired summation.

The triangular array of numbers from equation (6.16) can be written in three

different ways, as illustrated by the following listings.

1
1 3
1 3 5
1 3 5 7
...

...
...

...
. . .

1 3 5 7 · · · (2n − 3)
1 3 5 7 · · · (2n − 3) (2n − 1)
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1
3 1
5 3 1
7 5 3 1
...

...
...

...
. . .

(2n − 3) (2n − 5) · · · 5 3 1
(2n − 1) (2n − 3) · · · 7 5 3 1

(2n − 1)
(2n − 3) (2n − 3)
(2n − 5) (2n − 5) (2n − 5)

...
...

...
. . .

5 5 5 · · · 5
3 3 3 · · · 3 3
1 1 1 · · · 1 1 1

The sum of the numbers in each array represents the sum S =
n∑

j=1

j2 that we are

trying to calculate. Add the numbers from each array which come from the same

position in each of the triangular arrays listed above and find that in all of the sums

from the same positions is given by (2n + 1). We can then write the sums from all

three arrays as

3S = (2n + 1)times( number of positions in the triangular array)

The number of positions in each array is

1 + 2 + 3 + 4 + · · ·+ n =
n(n + 1)

2

Therefore,

3S =
(2n + 1)n(n + 1)

2
or S =

n

6
(n + 1)(2n + 1)

so that

12 + 22 + 32 + 42 + · · ·+ n2 =
n∑

j=1

j2 =
n

6
(n + 1)(2n + 1) (6.17)

Lets see if we can prove this formula is true for all values of n by using math-

ematical induction. Let n = 1 in equation (6.17) and find 12 =
1

6
(2)(3) = 1 and

so the formula is true for n = 1. Substitute n = 2 into equation (6.17) and find
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12 + 22 =
2

6
(3)(5) = 5 and so the formula is also true for n = 2. Assume the formula is

true for n = k. Let

Sk = 12 + 22 + · + k2 =
k

6
(k + 1)(2k + 1) (6.18)

denote the sum of integers squared through n = k and show by adding (k + 1)2 to

both sides of equation (6.18) one obtains

Sk+1 = Sk + (k + 1)2 =
k

6
(k + 1)(2k + 1) + (k + 1)2

=(k + 1)

[
k

6
(2k + 1) + (k + 1)

]

=(k + 1)

[
2k2 + 7k + 6

6

]

=
(k + 1)

6
(k + 2)(2k + 3)

representing the sum of the squares through k +1. Here the truth of the kth formula

implies the truth of the (k + 1)st formula. Therefore, equation (6.17) is valid for all

values of n.

Example 6-11.

Let S denote the sum of the cubes of the first n integers, written

S =
n∑

m=1

m3 = 13 + 23 + 33 + · · ·+ n3 Find S

Solution

Examine the telescoping series

n∑

m=1

[m4 − (m − 1)4] = [14 − 04] + [24 − 14] + [34 − 24] + [44 − 34] + · · ·+ [n4 − (n − 1)4]

and note that for every integer j < n, when a term j4 occurs it is followed by a

term −j4 and so these terms always add to zero. This is why the series is called

a telescoping series. All the terms in the telescoping series add to zero except one

term. Study this series and show

n∑

m=1

[m4 − (m − 1)4] = n4
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Now we can do some deductive reasoning using just plain ordinary algebra. We

will make use of known facts to combine the facts and solve the problem.

Use some algebra and show

m4 − (m − 1)4 =m4 − [m4 − 4m3 + 6m2 − 4m + 1]

=4m3 − 6m2 + 4m − 1
(6.19)

Now sum each term in equation (6.19) from m = 1 to m = n and show

n∑

m=1

[m4 − (m − 1)4] = n4 = 4
n∑

m=1

m3 − 6
n∑

m=1

m2 + 4
n∑

m=1

m −
n∑

m=1

1 (6.20)

Examine the last three summations in equation (6.20) and show

n∑

m=1

1 =1 + 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n ones
= n

n∑

m=1

m =1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
from equation (6.12)

n∑

m=1

m2 =12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
from equation (6.17)

(6.21)

Substitute the value of these sums into the equation (6.20) and verify that

n4 = 4
n∑

m=1

m3 − n(n + 1)(2n + 1) + 2n(n + 1) − n

which simplifies to

4
n∑

m=1

m3 = n4 + n(n + 1)(2n + 1) − 2n(n + 1) + n

= n
[
n3 + 2n2 + n + 2n + 1 − 2n − 2 + 1

]

= n[n3 + 2n2 + n]

= n2[n2 + 2n + 1]

= n2(n + 1)2

or

S =

n∑

m=1

m3 = 13 + 23 + 33 + 43 + · · ·+ n3 =

[
n(n + 1)

2

]2

= (1 + 2 + 3 + · · ·+ n)2 (6.22)
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Examining the sum of cubes

Examine the sums
13 =1

13 + 23 =9

13 + 23 + 33 =36

13 + 23 + 33 + 43 =100

13 + 23 + 33 + 43 + 53 =225

13 + 23 + 33 + 43 + 53 + 63 =441

and observe that the sums are all square numbers. This is a further indication that

the formula we derived is correct.

One can double check our results, in case we made an algebra mistake, by using

mathematical induction. Examine the equation (6.22) for n = 1 and n = 2 by showing

for n = 1, 13 = (
1(2)

2
)2 = 1

and for n = 2, 13 + 23 =

(
2(3)

2

)2

= 32 = 9

are both true statements.

Assume equation (6.22) is true for a positive integer n = k so that

13 + 23 + 33 + · · ·+ k3 = (1 + 2 + 3 + · · ·+ k)
2

(6.23)

then add (k + 1)3 to both sides of equation (6.23) and obtain the equation

13 + 23 + 33 + · + k3 + (k + 1)3 = (1 + 2 + 3 + · · ·+ k)
2
+ (k + 1)3 (6.24)

to be verified as having the same form as equation (6.22) with n replaced by k + 1.

Let Sk+1 denote the sum (1 + 2 + 3 + · · ·+ k + (k + 1)) and write equation (6.24) in the

form

13 + 23 + 33 + ·+ k3 + (k + 1)3 =(1 + 2 + 3 + · · ·+ k)
2

+ (k + 1)3

=



1 + 2 + 3 + · · ·+ k + (k + 1) − (k + 1)
︸ ︷︷ ︸

add and subtract





2

+ (k + 1)3

=(Sk+1 − (k + 1))
2
+ (k + 1)3

=S2
k+1 − 2Sk+1(k + 1) + (k + 1)2 + (k + 1)3
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Replace Sk+1 by its equivalent
[

(k+1)(k+2)
2

]

to find

13 + 23 + 33 + · + k3 + (k + 1)3 =S2
k+1 − 2

[
(k + 1)(k + 2)

2

]

(k + 1) + (k + 1)2 + (k + 1)3

=S2
k+1 − (k + 1) (k + 1 + 1)

︸ ︷︷ ︸

1+1=2

(k + 1) + (k + 1)2 + (k + 1)3

=S2
k+1 − (k + 1)3 − (k + 1)2 + (k + 1)2 + (k + 1)3

which simplifies to equation (6.23) with k replaced by k + 1 everywhere. Hence the

truth of the kth formula implies the truth of the (k + 1)st formula.

Example 6-12. (Sum of cubes)

Examine the representations

13 =1

23 =3 + 5

33 =7 + 9 + 11

43 =13 + 15 + 17 + 19

53 =21 + 23 + 25 + 27 + 29

(6.25)

Do you recognize any patterns? It appears that n3 would have n-terms, but what is

the beginning term for n3? Examine the following patterns.

The numbers being cubed are

1 2 3 4 5 . . . n

and the starting values on the right-hand sums are

1 3 7 13 21 31 . . . ?

Taking difference between consecutive starting values gives

2 4 6 8 10 . . . ?

and taking differences of the differences one finds

2 2 2 2 2 . . . 2

Mathematicians who examine patterns have discovered that when differences of

differences are all constant, then the original pattern must have the form

f(n) = c0 + c1(n − 1) + c2(n − 1)(n − 2) (6.26)
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where c0, c1 and c2 are constants to be determined. We can find the values for these

constants by substituting the values n = 1, 2 and 3 into the formula (6.26). Here f(n)

represents the first term of the summations on the right-hand side of the equations

(6.25) and so we require

For n = 1 f(1) =c0 = 1

For n = 2 f(2) =c0 + c1(2 − 1) = 3 ⇒ c1 = 2

For n = 3 f(3) =c0 + c1(3 − 1) + c2(3 − 1)(3 − 2) = 7 ⇒ c2 = 1

giving the equation f(n) =1 + 2(n − 1) + (n − 1)(n− 1) = n2 − n + 1

We now can generalize the listing (6.25) by making the following observations

13 =1

23 =3 + 5

33 =7 + 9 + 11

43 =13 + 15 + 17 + 19

53 =21 + 23 + 25 + 27 + 29

...
...

n3 =(n2 − n + 1) + (n2 − n + 3) + (n2 − n + 5) + · · ·+ (n2 − n + (2n − 1))
︸ ︷︷ ︸

n−terms

(6.27)

n n(n+1)
2

1 1
2 3
3 6
4 10
5 15
6 21

A summation of the results given in the equations (6.27) can be expressed using

our Σ summation convention. On the right-hand side of the equations (6.27) there

is a summation of odd numbered terms. Odd numbers are represented 2i − 1 for

i = 1, 2, 3, . . . , m where the last odd integer is 2m−1 which we want to equal n2−n+2n−1.

This requires that we select m to satisfy

2m − 1 = n2 − n + 2n − 1 ⇒ m =
n(n + 1)

2
(6.28)

A summation of the terms on the left-hand side of the equal signs from the

equations (6.27) followed by a summation of terms on the right-hand side of the

equal signs gives the result
n∑

i=1

i3 =

n(n+1)
2∑

i=1

(2i − 1) (6.29)

where the right hand side is a summation of odd numbers 2i−1 with index i ranging

from 1 to n(n+1)
2

. Suppose we add and then subtract all the missing even numbers
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to equation (6.29). This will change the equation (6.29) into a form where previous

summation formulas can be used to obtain our answer. For example,

add 2 + 4 + 6 + · · ·+ (n2 + n)

to change the right hand side into the form

n2+n∑

m=1

m = 1 + 2 + 3 + · · ·+ (n2 + n) (6.30)

Here we have added the even numbers to change the summation (6.29) into a

form where we know the answer. In order not to change equation (6.29) after adding

the even numbers we must now subtract what we have just added. That is

subtract 2

[

1 + 2 + 3 + · · ·+ n2 + n)

2

]

(6.31)

We can now use the first summation formula from the equations (6.23) to sum the

equations (6.30) and (6.31). The equation (6.29) can now be written as

n∑

i=1

i3 =

n(n+1)
2∑

i=1

(2i− 1) =
n2+n∑

i=1

i − 2

n(n+1)
2∑

i=1

i (6.32)

The first sum is

n2+n∑

i=1

i =
(n2 + n)(n2 + n + 1)

2
=

2n2(n + 1)2

4
+

n(n + 1)

2
(6.33)

and the second sum is

2

n(n+1)
2∑

i=1

i = 2





(
n(n+1)

2

) (
n(n+1)

2
+ 1

)

2



 =
n2(n + 1)2

4
+

n(n + 1)

2
(6.34)

Subtracting the equation (6.34) from equation (6.33) gives the final result

S =
n∑

i=1

i3 =
n2(n + 1)2

4
(6.35)

or

13 + 23 + 33 + 43 + · · ·+ n3 =
n2(n + 1)2

4
(6.36)
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All of the summations

n∑

i=1

1 =1 + 1 + 1 + · · ·+ 1 = n

n∑

i=1

i =1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

n∑

i=1

i2 =12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

n∑

i=1

i3 =13 + 23 + 33 + · · ·+ n3 =

[
n(n + 1)

2

]2

= (1 + 2 + 3 + · · ·+ n)2

(6.37)

were known to the famous mathematician, physicist, engineer and astronomer

Archimedes of Syracuse (287-212) CE. Archimedes used these formulas to make

many discoveries about various shapes in geometry. We will also use these results

to make our own discoveries.

In particular, given a plane or solid figure one can cut the figure into many small

slices to form elements of area or volume. The summation formulas (6.37) can then

be used to sum these small elements to calculate the area or volume.

Example 6-13.

Find the area of a right triangle by slicing it up into small pieces.

Figure 6 -1. Right triangle sliced into n-parts.

Solution

Given the right triangle illustrated in the figure 6-1. The equation of the hy-

potenuse is given by the point-slope formula y − y0 = m(x − x0) where

m =
change in y values
change in x values

= −h

b
and (x0, y0) = (b, 0) ⇒ y = −h

b
(x − b)
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Slice the triangle into n-parts. The distance between each slice being ∆x =
b

n
.

Start at x =0 with y = h

The first slice is at x1 =
b

n
with height y1 = −h

b
(x1 − b)

The second slice is at x2 =2
b

n
with height y2 = −h

b
(x2 − b)

...
...

The ith slice is at xi =i
b

n
with height yi = −h

b
(xi − b)

The (i + 1)st slice is at xi+1 =(i + 1)
b

n
with height yi+1 = −h

b
(xi+1 − b)

...
...

The last slice is at xn−1 =(n − 1)
b

n
with height yn−1 = −h

b
(xn−1 − b)

The slice at x = xi produces an element of area in the shape of a trapezoid. The

area of this trapezoid is the average of the bases times the height or

area of ith trapezoid = Ati =
1

2
(yi + yi+1) ∆x

=
1

2

[

−h

b
(i

b

n
− b)− h

b
((i + 1)

b

n
− b)

]
b

n

=
1

2

[

(2n − 1)
bh

n2
− 2bh

n2
i

]

Perform a summation on all the elements of area and note that we have created a

situation where the equations (6.37) can be employed to evaluate the sums. Here

we have

Sum of area elements =
n−1∑

i=0

bh

n
−

n−1∑

i=0

1

2

bh

n2
−

n−1∑

i=0

bh

n2
i (6.38)

Here only the i terms are being summed with n some fixed integer, so that equation

(6.38) simplifies to

Sum of area elements =
bh

n

n−1∑

i=0

1 − 1

2

bh

n2

n−1∑

i=0

1 − bh

n2

n−1∑

i=0

i (6.39)

From the equations (6.37) select the summations

n∑

i=1

1 = n and
n∑

i=1

i =
n(n + 1)

2
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and modify them to read

n−1∑

i=0

1 = n and
n−1∑

i=0

i =
(n − 1)n

2

Now substitute these results into the equation (6.39) and show there results

Sum of area elements = bh − bh

2n
− bh

2
+

bh

2n
=

1

2
bh (6.40)

and consequently the equation (6.40) reduces to the result that the area of the

triangle is one-half the base times the height.

This is an example of what can be done in future chapters to calculate areas

and even volumes of complicated figures.

Introduction to determinants
A two by two (2x2) array of elements having the form

M2x2 =

[
a11 a12

a21 a22

]

(6.41)

is called a two by two (2x2) square matrix. A three by three (3x3) array of elements

having the form

M3x3 =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 (6.42)

is called a three by three (3x3) square matrix. In this introduction we will only

consider square matrices Mnxn for n = 2 and n = 3 and leave square matrices Mnxn

associated with n > 3 for another time. Associated with every square matrix is

a single scalar quantity called the determinant of the square array. Matrix arrays

which are not square do not have determinants.

The determinant of the two by two (2x2) array given by equation (6.41) can be

calculated by the shortcut method1

∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣

= a11a22 − a21a12 (6.43)

which represents the product of the numbers along the main diagonal minus the

product of the numbers along the secondary diagonal as illustrated in the figure 5-2.

1 The determinant of a Mnxn matrix is a single number calculated by considering all possible products having

n-factors obtained by selecting one and only one number from each row and each column. There are n! =
n(n− 1)(n− 2) · · ·3 · 2 · 1 such products. Each product is assigned a plus or minus sign which depend upon how
the numbers 123 . . .n are arranged. A summation of all these products, with the correct sign, produces the single

number called the determinant.
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Figure 6 -2. Determinant of two by two square array.

One method for calculating the determinant of the three by three (3x3) array

given by equation (6.42) is the method using an expansion involving the elements

in the first row. This method is called expansion by cofactors and is defined
∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣

= a11

∣
∣
∣
∣

a22 a23

a32 a33

∣
∣
∣
∣
− a12

∣
∣
∣
∣

a21 a23

a31 a33

∣
∣
∣
∣
+ a13

∣
∣
∣
∣

a21 a22

a31 a32

∣
∣
∣
∣

(6.44)

Here one starts with the first row of elements. Take the first element a11 and then

cross out all the numbers in the first row and first column which leaves a (2×2) array.

Next select the middle element from first row and change its sign giving −a12. Now

cross out all the elements in the first row and second column leaving another (2× 2)

array. Repeating this process, select the last element in the first row and then cross

out the elements in the first row and last column. This gives the final (2 × 2) array.

The determinants of the (2 × 2) arrays are then multiplied by there corresponding

elements from the first row followed by a summation of these products as illustrated

in the equation (6.44).

For example,
∣
∣
∣
∣
∣
∣

2 8 3
5 6 4
8 7 9

∣
∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣

6 4
7 9

∣
∣
∣
∣
− 8

∣
∣
∣
∣

5 4
8 9

∣
∣
∣
∣
+ 3

∣
∣
∣
∣

5 6
8 7

∣
∣
∣
∣
= (2)(26)− (8)(13) + (3)(−13) = −91

Properties of determinants

1)

One can interchange the rows and columns of a determinant without changing

the value of the determinant.
∣
∣
∣
∣
∣
∣

a b c
d e f
g h i

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

a d g
b e h
c f i

∣
∣
∣
∣
∣
∣



259

2)

If two rows or columns of a determinant are changed, then the value of the

determinant will change sign.

∣
∣
∣
∣
∣
∣

a b c
d e f
g h i

∣
∣
∣
∣
∣
∣

= −

∣
∣
∣
∣
∣
∣

b a c
e d f
h g i

∣
∣
∣
∣
∣
∣

3)

Multiplying all the elements of a row or column of a determinant by a constant

k produces a new determinant with a value equal to k times the value of the original

determinant. ∣
∣
∣
∣
∣
∣

a b c
d e f

k · g k · h k · i

∣
∣
∣
∣
∣
∣

= k

∣
∣
∣
∣
∣
∣

a b c
d e f
g h i

∣
∣
∣
∣
∣
∣

This means that if a row or column has a common factor k, then you can factor out

the common factor.

4)

If all the elements in any row or column of a determinant are zero, then the

value of the determinant will be zero.

5)

You can multiply the numbers in any row (or column) of a determinant by a

constant value k and then add the results to some different row (or different column)

without changing the value of the determinant.

∣
∣
∣
∣
∣
∣

a b c
d e f
g h i

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

a b c
d + ka e + kb f + kc

g h i

∣
∣
∣
∣
∣
∣

6)

If the elements of a row or column of a determinant can be written as the sum of

two quantities, then the determinant can be written as the sum of two determinants

∣
∣
∣
∣
∣
∣

a + 3x b c
d + x e f
g + 2x h i

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

a b c
d e f
g h i

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

3x b c
x e f
2x h i

∣
∣
∣
∣
∣
∣

7)

If two rows or columns of a determinant are the same, then the value of the

determinant is zero.
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Solution of system of equations by determinants
Cramer’s2 rule for the solution of 2x2 and 3x3 systems of equations has the

following representation.

The solution to the system of two equations in two unknowns x and y

a1x + b1y =c1

a2x + b2y =c2

is given by

x =

∣
∣
∣
∣

c1 b1

c2 b2

∣
∣
∣
∣

∣
∣
∣
∣

a1 b1

a2 b2

∣
∣
∣
∣

and y =

∣
∣
∣
∣

a1 c1

a2 c2

∣
∣
∣
∣

∣
∣
∣
∣

a1 b1

a2 b2

∣
∣
∣
∣

The solution of the system of three equations in three unknowns x, y and z

a1x + b1y + c1z =d1

a2x + b2y + c2z =d2

a3x + b3y + c3z =d3

is given by

x =

∣
∣
∣
∣
∣
∣

d1 b1 c1

d2 b2 c2

d3 b3 c3

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣
∣
∣
∣
∣
∣

, y =

∣
∣
∣
∣
∣
∣

a1 d1 c1

a2 d2 c2

a3 d3 c3

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣
∣
∣
∣
∣
∣

, z =

∣
∣
∣
∣
∣
∣

a1 b1 d1

a2 b2 d2

a3 b3 d3

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣
∣
∣
∣
∣
∣

The determinant in the denominator is called the determinant of the coefficients

associated with the given system of equations. Observe the determinants in the

numerators have a pattern to be recognized. That is, to solve for x, the first column

of the determinant of the coefficients is replaced by the right-hand side values and

to solve for y the second column of the determinant of the coefficients is replaced by

the right-hand side values. Similarly, when solving for z the third column is replaced

by the right-hand side values. The pattern continues for higher ordered systems of

equations.

2 Gabriel Cramer (1704-1752) a Swiss mathematician.
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Calculating an estimate for π

Archimedes (287-212)BCE, one of the worlds greatest minds in mathematics

and science determined an estimate for the value of π by examining the perimeters

of both inscribed and circumscribed polygons associate with a circle.

Figure 6 -3.

Inscribed and circumscribed polygons for circle with radius 1/2.

The following estimate for π is a demonstration of Archimedes method which

is modified slightly. Consider a circle with diameter 1 or radius 1/2 as illustrated

in the figure 6 -3 and let pn denote the perimeter of an inscribed regular polygon

with n-sides and let Pn denote the perimeter of a circumscribed regular polygon with

n-sides. The circle with radius 1/2 has a circumference of π and so one can write

the inequality

pn < π < Pn (6.45)

Let us examine the inequality (6.45) as n increases in size.

If you start with two squares, one inscribed within the circle and one circum-

scribed outside the circle and ask the question, What happens when the number of

the polygon sides are doubled? Let xn denote the length of one side associated with

a regular polygon having n sides and let x2n denote the length of one side associated

with a regular polygon having 2n sides. There are two cases to consider. The first

case you start with a circumscribed square and start the doubling process keeping

track of the resulting regular polygon perimeters. The second case you start with

an inscribed square and start the doubling process keeping track of the resulting
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regular polygon perimeters. In each of the two cases one can find a relation between

the size of the sides xn and x2n and one can solve for x2n in terms of xn. The resulting

formula can then be used in an iterative way to find the value of π.

An iterative procedure consists of having a starting value substituted into an

equation to produce a result1, the process is repeated by substituting result1 into

the same equation to produce result2. This process of taking an old result and

substituting it back into an equation to get a new result is called an iterative or

cyclic way of repeating what you have just done.

As an example of an iterative process is to put the

number 8 into your hand held calculator and then con-

tinue to hit the square root button until you obtain the

number 1. When you do this, you are using the itera-

tive equation xn+1 =
√

xn , with x0 = 8 the starting value,

to solve the equation x2 = x. This iterative procedure

produces the positive root x = 1.

Circumscribed polygons

Let
xn

2
= AB denote half the length of one side asso-

ciated with a polygon with n-sides which circumscribes

a circle with radius 1/2. The perimeter of the polygon

with n-sides is then given by pn = nxn. Similarly, let
x2n

2
= AC denote the half length of one side associated

with a polygon with 2n-sides which circumscribes the

same circle. The perimeter of this second polygon is

P2n = 2nx2n. We wish to find a relation between the

side length x2n in terms of the side length xn as the

circumscribed polygon doubles in the number of sides.

The accompanying figure shows what happens when the number of sides of the

circumscribed polygon is doubled. Observe that the line segment 0C divides triangle

�0AB into two parts where one can employ Thales theorem to obtain the ratios

AC

A0
=

CB

B0
(6.46)
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where
CB =

xn

2
− x2n

2

A0 =
1

2

AC =
x2n

2

AB =
xn

2

(6.47)

and B0
2

= AB
2

+ A0
2

by the Pythagorean theorem. Therefore,

B0 =

√

AB
2
+ A0

2 ⇒ B0 =

√
(xn

2

)2

+
1

4
(6.48)

Substitute the results from the equations (6.47) and (6.48) into the equation (6.46)

and then simplify the results to verify that

x2n =
xn

1 +
√

1 + x2
n

(6.49)

The equation (6.49) tells you that if you start with a square with 4 sides where

you know each side of the circumscribing square has a length x4 = 1, then the next

circumscribed polygon, which has double the number of sides, has the length of each

side given by

x8 =
x4

1 +
√

1 + x2
4

=
1

1 +
√

1 + 1
= 0.414214

and the perimeter is P8 = 8(0.401214) = 3.313708. The value for x8 can now be used to

calculate x16 and P16 and this process can be repeated using the equation (6.49) in

an iterative fashion.

Inscribed polygons

Consider the same circle as above with unit di-

ameter as illustrated. Examining the inscribe poly-

gons we want to find a formula expressing side x2n in

terms of side xn. The accompanying figure illustrates

the changes when the number of sides of the inscribed

polygon doubles. By Thales theorem the triangle �EBC

is a right triangle and so it is similar to the right tri-

angle �CDB (�EBC ∼ �CDB), as illustrated in the

accompanying figure. The sides of these triangles are

proportional so that

x2n

CD
=

CE

x2n

⇒ x2
2n = CD · CE (6.50)
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The diameter of the circle is 1 = CE so that equation (6.50) simplifies to

x2
2n = CD = C0 −D0 (6.51)

The radius C0 = 1
2 and from the Pythagorean theorem applied to triangle �0DB one

finds

D0
2
+ DB

2
= 0B

2 ⇒ D0 =

√

1

4
−

(xn

2

)2

(6.52)

since DB = xn

2
and 0B = 1

2
. Substituting the results from the equations (6.52) into

the equation (6.51) and simplifying the result one finds

x2n =

√

1 −
√

1 − x2
n

2
(6.53)

The equation (6.53) tells you that if you start with an inscribed square with 4

sides, where you know the size x4, then the equation (6.53) gives the size x8 of each

of the sides of the next regular inscribed polygon having double the number of sides.

This is followed by the calculation of the new inscribed perimeter p8. For example,

to start the process, the side of the inscribed square is x4 which by the Pythagorean

theorem must satisfy x2
4 + x2

4 = 1 or x4 = 1√
2

since the diameter of the circle is the

hypotenuse having the value 1. The equation (6.53) then gives

x8 =

√

1 −
√

1− x2
4

2
=

√
√
√
√
√1 −

√

1 −
(

1√
2

)2

2

and the perimeter of the polygon with this side is p8 = 8x8 = 3.06147. The value for x8

is now used to substitute into the equation (6.53) to find x16 and p16, then one can

continue this iterative process until you exceed the accuracy of your calculator. The

results from the equations (6.50) and (6.53) are summarized by the table of values

on the next page. This table gives a comparison of sides and perimeters associated

with various inscribed and circumscribed polygons. One finds the inscribed and

circumscribed polygons approach the perimeter length π which is the circumference

of the circle. If the circles in the above figures had a radius r, then the circumference

would approach 2πr.

Recall the area of a regular n-sided polygon is given by

Area of polygon =
1

2
(pn)(a)
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where pn is the perimeter and a is the apothem. In the limit as n increases in size

the apothem approaches the radius r of the circle and the perimeter pn approaches

2πr. Therefore, in the limit as n becomes very large, the polygons approach a circle

with area

Area of circle =
1

2
(2πr)(r) = πr2

The following table gives the results of using equations (6.49) and (6.53) in an

iterative fashion to calculate lower and upper bounds for the estimate of π.

number Inscribed Polygon Circumscribed Polygon
of sides Side Perimeter pn Side Perimeter Pn

4 x4 = 1√
2

4√
2

x4 = 1 4

x2n =

√
1−

√
1−x2

n

2
x2n = xn

1+
√

1+x2
n

8 0.382683432 3.06146746 0.414213562 3.31370850

16 0.198912367 3.18259788 0.198912367 3.18259788

32 0.0980171403 3.13654849 0.0984914034 3.15172491

64 0.0490676743 3.14033116 0.0491268498 3.14411839

128 0.0245412285 3.14127725 0.0245486221 3.14222363

256 0.0122715383 3.1415138 0.0122724624 3.14175037

512 0.00613588465 3.14157294 0.00613600016 3.14163208

1024 0.00306795676 3.14158773 0.0030679712 3.14160251

2048 0.00153398019 3.14159142 0.00153398199 3.14159512

4096 0.000766990319 3.14159235 0.000766990544 3.14159327

8192 0.000383495188 3.14159258 0.000383495216 3.14159281

16384 0.000191747597 3.14159263 0.000191747601 3.14159269
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The value of π to 10 decimal places is

3.1415926535

Note that the top line in the above table gives you the sides of the inscribed and

circumscribed squares which are used as the starting values for using the equations

(6.49) and (6.53) in an iterative fashion which is associated with doubling the sides

of the inscribed and circumscribed polygons. The left side of the above table lists

inscribed polygons, the length of one side and the perimeter length associated with

the polygon of n-sides. The right side of the table lists circumscribed polygons, the

length of one side and the perimeter length associated with the polygon of n-sides.

As the number of sides increases the inscribed perimeter approaches π from below

and the circumscribed perimeter approaches π from above. This method sandwiches

π between an upper and lower values getting closer and closer to the actual value.
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Exercises

� 6-1. If two triangles are similar, then their corresponding sides are proportional,

is of the form A ⇒ B.

(a) Write the converse B ⇒ A

(b) Write the opposite ∼ A ⇒∼ B

(c) Write the contrapositive ∼ B ⇒∼ A

� 6-2. If two sides of a triangle are congruent, then the angles opposite these sides

are also congruent, is of the form A ⇒ B

(a) Write the converse B ⇒ A

(b) Write the opposite ∼ A ⇒∼ B

(c) Write the contrapositive ∼ B ⇒∼ A

� 6-3. Fill in the following truth table.

Truth Table

A B ∼ A ∼ B ∼ A ∨ ∼ B ∼ A ∧ ∼ B

T T

T F

F T

F F

� 6-4. Write the given sums using the
∑

summation sign and then prove the state-

ments using mathematical induction.

(a) 1 + 5 + 9 + · · ·+ (4n − 3) = n(2n − 1)

(b) 1 · 2 + 3 · 4 + 5 · 6 + · · ·+ (2n − 1) · (2n) = 1
3n(n + 1)(4n− 1)

(c) 1 + 2 + 22 + 23 + · · ·+ 2n−1 = 2n − 1

� 6-5. Use mathematical induction to prove the following statements.

(a) Prove the number of diagonals in a regular n-gon is 1
2
n(n − 3)

(b) Prove the interior angles of a regular n-gon sum to (n − 2)π radians.
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� 6-6.

(a) Use slicing to find an estimate for the area

bounded by the x-axis, the lines x = 1 and x = 4 and

the parabola y = x2.

(b) Show that as n increases without bound the

area is 21 square units.

Hint: Let ∆x = 3

n
be width of each trapezoid.

� 6-7.

Use horizontal slicing of the given right triangle

and summation to find the area.

Hint: Elements of area are trapezoids with ∆y = h

n
.

� 6-8. What kind of volume element would result if the figures below were sliced

horizontally by parallel planes?

� 6-9. Evaluate the following determinants

(a)

∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

(b)

∣

∣

∣

∣

10 5
3 −2

∣

∣

∣

∣

� 6-10. Evaluate the following determinants

(a)

∣

∣

∣

∣

∣

∣

1 3 5
−2 3 0
−1 3 6

∣

∣

∣

∣

∣

∣

(b)

∣

∣

∣

∣

∣

∣

3 −1 2
0 0 4
1 1 3

∣

∣

∣

∣

∣

∣

� 6-11. Prove that the value of the determinant is unchanged if the rows and columns

are interchanged.

(a) Prove
∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

=

∣

∣

∣

∣

a c

b d

∣

∣

∣

∣

(b) Prove

∣

∣

∣

∣

∣

∣

a b c

d e f

g h i

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a d g

b e h

c f i

∣

∣

∣

∣

∣

∣
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� 6-12. Solve the 2 × 2 system of equations using determinants

(a) 3x − 4y = − 5

2x + 3y =93

(b) 5x + 4y =59

7x − 5y =19

(c) 2x − 3y = − 6

3x + 2y =17

� 6-13. Solve the 3 × 3 system of equations using determinants

(a) 2x + 3y − z =5

5x − 3y + 2z =5

2x − 2y + 3z =8

(b) x + y − z =7

2x − 3y + 2z =3

3x − 2y + 3z =12

(c) 6x − y + 2z =25

4x + 2y − 3z =16

x − 3y + 3z =1

� 6-14. Given the iterative equation xn+1 = xn − (x2
n
−10)

2xn

, n = 0, 1, 2, 3, . . . with the

starting value x0 = 3. Find the iterations x1, x2, x3, x4, x5.

� 6-15. Find the following sums

(a)
100∑

i=1

i (b)
100∑

j=1

j2 (c)
100∑

k=1

k3

� 6-16. Find the following sums

(a)
100∑

i=10

i (b)
100∑

j=10

j2 (c)
100∑

k=10

k3

� 6-17. Find the sum of the given geometric series

(a)
10∑

i=1

2(3)i−1 (b)
5∑

j=1

(
1

2

)

2j−1 (c)
5∑

k=1

3(4)k−1

� 6-18. An arithmetic series has the form

Sn = a1 + (a1 + d) + (a1 + 2d) + (a1 + 3d) + · · ·+ (a1 + (n − 1)d)
︸ ︷︷ ︸

n terms

where a1 is the starting term, d is the common difference between terms and the

last term is an = a1 + (n− 1)d. The arithmetic sum can also be expressed in the form
n∑

j=1

[a1 + (j − 1)d].

(a) Reverse the sum and add to original sum to show 2Sn = n(a1 + an)

(b) Prove by mathematical induction Sn =
n

2
[2a1 + (n − 1)d]
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� 6-19. Show that
m∑

j=k

f(j) =
m−k∑

i=0

f(k + i) This is called shifting the summation index

� 6-20. Find the sum of the arithmetic series

(a)
5∑

j=0

[3 + 5j] (b)
6∑

j=0

[4 + 3j] (c)
14∑

k=2

[3 + 3k]

� 6-21. Find a formula to calculate the summation
n∑

k=m

[a0 + kd]

� 6-22. Find the following sums

(a)

(n−1)∑

m=1

m (b)

(n−1)∑

m=1

m2 (c)

(n−1)∑

m=1

m3

� 6-23. Use multiplication to show

1 + x + x2 + · · ·+ x(n−2) + x(n−1) =

(n−1)∑

m=0

xm =
xn

− 1

x − 1

� 6-24.

Given a circle with radius r = 0A. Rotate the ra-

dius 0A through a 60◦ angle to end in position 0B as

illustrated.

(a) Find the length of the chord AB.

(b) Find the area of triangle �0AB.

(c) How many triangles �0AB will fit inside of the circle?

Historical note

George Cantor, a German mathematician who developed set theory, noted that

the Babylonians were aware that the chord AB fits inside the circle six times

and each chord subtends an arc corresponding to 60 degrees. This is possibly

the start of the sexagesimal system.
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Geometry

Chapter 7

Trigonometry I

Trigonometry

The word trigonometry comes from the Greek language and means ’measure of

triangles’. Plane trigonometry deals with triangles in a plane and spherical trigonom-

etry deals with spherical triangles on a sphere.

In plane trigonometry if a line 0A is drawn through the

origin of a coordinate system and then rotated counterclockwise

about the origin to the position 0B, then the positive angle

∠A0B = θ is said to have been generated. If 0B
′
is the reflection

of 0B about the x-axis, then when the line 0A is rotated in a

clockwise direction to the position 0B
′
, a negative angle −θ is said to be generated.

The situation is illustrated in the accompanying figure.

By definition if two angles add to 90◦, then they are called complementary angles

and if two angles add to 180◦, then the angles are called supplementary. Angles are

sometimes measured in degrees (◦), minutes (′), and seconds (′′) where there are 360◦

in a circle, 60 minutes in one degree and 60 seconds in one minute. Another unit

of measurement for the angle is the radian. An angle of one radian subtends an arc

length on the circumference of a circle which has the same length as the radius of

the circle. The circumference of a circle is given by the formula c = 2πr, where r is

the radius of the circle. One finds that the conversion between radians and degrees

is given by

(a) 2π radians = 360◦

(b) π radians = 180◦

(c) 1 radian =
180

π

◦

(d)
π

180
radians = 1◦

(7.1)

Thus, to convert 30◦ to radians, just multiply both sides of equation (7.1) (d) by 30

to get the result that 30◦ = π/6 radians.

An angle is classified as acute if it is less than 90◦ and called obtuse if it lies

between 90◦ and 180◦. An angle θ is called a right angle when it has the value of 90◦

or π
2

radians.

In scientific computing one always uses the radian measure in all calculations.

Also note that most hand-held calculators have a switch for converting from one
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angular measure to another and so owners of such calculators must learn to set

them appropriately before doing any calculations.

Functions

Whenever there is a one-to-one correspondence, where to each value of x there

is one and only one value of y, then y is said to be a function of x, written y = f(x).

Sometimes y is referred to as a single-valued function of x to emphasize the one-to-

one correspondence between x and y.

Figure 7 -1.

Graphic display for representation of a function.

The variable x is called the independent variable and when the values assigned

to x are restricted to some set of values, then these values are said to be the domain

of the function. Usually values assigned to x are restricted so that the values for y

are real numbers. For example, the function y = f(x) =
√

x − 3 must be restricted to

the domain where x− 3 > 0 or x > 3 in order for y to have real values. If y = f(x) is a

single-valued function of x, then the values for y depends upon the values selected

for x and so y is called the dependent variable. The values assigned to y, as x varies

through its values from the domain of the function, is called the range of the function.

The straight line with slope m which passes through the point (x0, y0) is given by

y = f(x) = y0 + m(x − x0)
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is an example of a function. Some other examples of functions are

y = f(x) =x

y = g(x) =x2

y = h(x) =x3

...

y = y(x) =xn











































polynomial functions

y = f1(x) =
√

x square root function

y = f2(x) =2x exponential function

y = f3(x) = | x | absolute value function

y = f4(x) = log(x) logarithmic function

The graph of a function

A pictorial representation of a function y = f(x) can be constructed by creating

a table of (x, y) values

x y = f(x)

x0 y0

x1 y1

x2 y2

...
...

xn yn

where the x-values {x0, x1, x2, . . . , xn} are numbers selected from the domain of the

function and the y-values

{y0 = f(x0), y1 = f(x1), y2 = f(x2), . . . , yn = f(xn) }

are calculated from the given function f(x). One can then plot all the (x, y) points

from the table and then join neighboring points using straight line segments. If

only a few points are plotted the resulting curve will not look very smooth. The

curve will look smoother as the number of points plotted increases. The figure 7-2

illustrates some smooth curves associated with selected functions.
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Figure 7 -2.

Graphs of selected functions

Vertical line test

Remember that in order to have a function it is necessary that for each value

of x there can be only one value for y. The function must be single-valued. This

requirement1 can be tested by constructing various vertical lines. No vertical line

can intersect the graph of the function more than once.

Trigonometric functions

The first recorded trigonometric tables comes from the Greeks around 150 BCE.

However, it is inferred that trigonometry was used in sailing, astronomy and con-

struction going back thousands of years before this time, but only limited records

are available.

The ratio of sides of a right triangle are used to define the six trigonometric func-

tions associated with one of the acute angles of the right triangle. These definitions

can then be extended to apply to positive and negative angles associated with a

point moving on a unit circle.

1 If more than one value for y exists, then the function is called a multi-valued function and steps must be
taken to try and convert it into a singe-valued function. This is usually done by breaking the multi-valued function

up into different parts called branches where in each branch the function is single-valued.
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The six trigonometric functions associated

with the angle θ of a right triangle are

sine

cosine

tangent

cotangent

secant

cosecant

which are abbreviated respectively as

sin, tan, sec, cos, cot , and csc

and are defined2

sin θ =
y

r
=

opposite side

hypotenuse

csc θ =
r

y
=

hypotenuse

opposite side

cos θ =
x

r
=

adjacent side

hypotenuse

sec θ =
r

x
=

hypotenuse

adjacent side

tan θ =
y

x
=

opposite side

adjacent side

cot θ =
x

y
=

adjacent side

opposite side

(7.2)

provided none of the denominators are zero.

Observe that the following functions are reciprocals

sin θ and csc θ, cos θ and sec θ, tan θ and cot θ (7.3)

and satisfy the relations

csc θ =
1

sin θ
, sec θ =

1

cos θ
, cot θ =

1

tan θ
(7.4)

Also note that cos θ = sinψ = sin(
π

2
− θ), where cosine represents the sine of the

complementary angle ψ =
π

2
− θ. Similarly, cot θ = tanψ = tan(π

2
− θ), where cotangent

represents the tangent of the complementary angle. Also csc θ = sec ψ = sec(π
2
− θ),

where cosecant represents the secant of the complementary angle.

The figure 7-3 gives a graphical representation of the above trigonometric func-

tions in terms of distances associated with the unit circle. Note that in figure 7-3

the unit circle has 0D = 0G = 0A = 1 and

2 A mnemonic devise to remember the sine, cosine and tangent definitions is the expression “Some Old Horse

Came A Hopping Towards Our Alley ” (S = O
H

, C = A
H

, T = O
A

)
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In triangle �0FD sin θ =
DF

0D
⇒ sin θ = DF

In triangle �0FD cos θ =
0F

0D
⇒ cos θ = 0F

In triangle �0GC tan θ =
CG

0G
⇒ tan θ = CG

In triangle �0AB cot θ =
AB

0A
⇒ cot θ = AB

In triangle �0GC sec θ =
0C

0G
⇒ sec θ = 0C

In triangle �0BA csc θ =
0B

0A
⇒ csc θ = 0B

Figure 7 -3.

Trigonometric functions in terms of distances associated with the unit circle.

Note that as the angle θ, in radians, varies from 0 to 2π, one finds

−1 ≤ sin θ ≤ 1

−1 ≤ cos θ ≤ 1

−∞ < tan θ < +∞

−∞ < cot θ < +∞
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Also observe that for n an integer one can write

sin(θ ± 2nπ) = sin θ,

cos(θ ± 2nπ) = cos θ,

tan(θ ± nπ) = tan θ

cot(θ ± nπ) = cot θ

The tangent function is not defined for θ =
π

2
± nπ and the cotangent function is not

defined for θ = ±nπ.

Special right triangles

Consider the special right triangles illustrated

Note that in the 45 degree triangle, the sides opposite the 45 degree angles are

equal and so any convenient length can be used to represent the equal sides. If

the number 1 is used, then by the Pythagorean theorem the hypotenuse has the

value
√

2. Similarly, in the 30-60-90 degree right triangle, the side opposite the 30

degree angle is always half the hypotenuse and so by selecting the value of 2 for the

hypotenuse one obtains from the Pythagorean theorem the sides 2, 1,
√

3 as illustrated.

By using the trigonometric definitions given by the equations (7.2) together with

the special 30-60-90, and 45 degree right triangles, the following table of values for

the trigonometric functions result.

Angle θ Angle θ

in degrees in radians sin θ cos θ tan θ cot θ sec θ csc θ

0◦ 0 0 1 0 undefined 1 undefined

30◦ π/6 1/2
√

3/2
√

3/3
√

3 2
√

3/3 2

45◦ π/4
√

2/2
√

2/2 1 1
√

2
√

2

60◦ π/3
√

3/2 1/2
√

3
√

3/3 2 2
√

3/3

90◦ π/2 1 0 undefined 0 undefined 1
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The values for θ = 0 and θ = 90 degrees are special cases

which can be examined separately by examining a trian-

gle which changes as a point P moves around the circum-

ference of a circle having radius r. The 45 degree triangle

being a special case when x = 1, y = 1 and r =
√

2. The

30-60-90 degree triangle is a special case when there is a

circle with x = 1, r = 2 and y =
√

3. The trigonometric

functions associated with the limiting values of θ = 0 and

θ = 90 degrees can be obtained from these special triangles by examining the values

of x and y associated with the point P for the limiting conditions θ = 0 and θ = π/2.

Cofunctions

In the definitions of the trigonometric functions certain combinations of these

functions are known as cofunctions. For example, the sine and cosine functions

are known as cofunctions. Thus the cofunction of the sine function is the cosine

function and the cofunction of the cosine function is the sine function. Similarly,

the functions tangent and cotangent are cofunctions and the functions secant and

cosecant are cofunctions.

Theorem: Each trigonometric function of an acute angle θ in a right triangle

is equal to the cofunction of the complementary angle ψ = π
2
− θ.

Figure 7 -4.

Complementary angles related to cofunctions

The above theorem follows directly from the definitions of the trigonometric

functions giving the results

sin θ =cos(
π

2
− θ)

cos θ =sin(
π

2
− θ)

tan θ =cot(
π

2
− θ)

cot θ =tan(
π

2
− θ)

sec θ = csc(
π

2
− θ)

csc θ = sec(
π

2
− θ)

(7.5)

The above results are known as the cofunction formulas.
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Trigonometric Functions Defined for Other Angles

Consider a circle with radius r constructed with respect to some xy coordinate

system and let P denote a point on the circumference of the circle which moves

around the circle in a counterclockwise direction. The figure 7-5 illustrates the

point P lying in various quadrants of the x, y coordinate system. These quadrants

are denoted by the Roman numerals I,II,III,IV.

Figure 7 -5.

Point P on circle of radius r where P is

in quadrant I, quadrant II, quadrant III and quadrant IV.
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Let θ denote the angle swept out as P moves counterclockwise about the circle

and define the six trigonometric functions of θ as follows

sin θ =
y

r
, cos θ =

x

r
, tan θ =

y

x
, cot θ =

x

y
, sec θ =

r

x
, csc θ =

r

y
(7.6)

Here y denotes the ordinate of the point P , x denotes the abscissa of the point P

and r denotes the polar distance of the point P from the origin. These distances are

illustrated in the figures 6-5. Note that these definitions imply that

tan θ =
sin θ

cos θ
,

cot θ =
cos θ

sin θ
,

sec θ =
1

cos θ
,

csc θ =
1

sin θ
,

cot θ =
1

tan θ
(7.7)

In figure 7-5 there is the angle α called the reference angle associated with the

angle θ. The reference angle is defined to be the positive acute angle formed from

the terminal side of the angle θ and the x-axes.

The value of any trigonometric function of the angle θ equals the same trigono-

metric function of the reference angle α with the appropriate sign attached.

For example, in quadrant I, sin θ = sinα, in quadrant II, sin θ = sin α, in quadrant

III, sin θ = − sinα and in quadrant IV, sin θ = − sinα.

The trigonometric function of θ equals the same trigonometric function of the

reference angle α with the following signs.

In quadrant I

x > 0, y > 0, r > 0

sin θ > 0

cos θ > 0

tan θ > 0

cot θ > 0

sec θ > 0

csc θ > 0

In quadrant II

x < 0, y > 0, r > 0

sin θ > 0

cos θ < 0

tan θ < 0

cot θ < 0

sec θ < 0

csc θ > 0

In quadrant III

x < 0, y < 0, r > 0

sin θ < 0

cos θ < 0

tan θ > 0

cot θ > 0

sec θ < 0

csc θ < 0

In quadrant IV

x > 0, y < 0, r > 0

sin θ < 0

cos θ > 0

tan θ < 0

cot θ < 0

sec θ > 0

csc θ < 0

(7.8)
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Sign Variation of the Trigonometric Functions

In the figure 7-5 make note of the following.

(i) The six trigonometric functions of θ, as the point P moves about the circle, are

sometimes referred to as circular functions.

(ii) The ray 0P defines not only the angle θ but also the angles θ ± 2mπ where m is

a positive integer or zero.

(iii) As P moves around the circle, the radial distance r = 0P always remains constant,

but the values of x and y will change sign as the point P moves through the

different quadrants. An analysis of these sign changes produces the table of

signs given in the figure 7-6.

(iv) The six trigonometric functions take on special values whenever x = 0 or y = 0.

One of these special values will occur whenever θ is equal to some multiple of π
2
.

Figure 7 -6.

Sign variation for the trigonometric functions by quadrant.

(v) The angle α in the figures 7-5 is the smallest nonnegative angle between the line

0P and the x-axis. Limiting values for α are π
2

and 0 radians. The angle α is

called a reference angle. If the reference angle is different from 0 or π
2
, then it

can be viewed as an acute positive angle in the first quadrant. Note that there

is then a definite relationship between the six trigonometric functions of θ and

the six trigonometric functions of the reference angle α. The six trigonometric

functions of the reference angle α are all positive and so one need only add the

appropriate sign change to obtain the six trigonometric functions of θ in the

other quadrants. The appropriate sign changes are given in the figure 7-6.
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(vi)
The figures 7-5 and 7-6 can be com-

bined into one figure so that by using

the definition of the trigonometric func-

tions, the correct sign of a trigonometric

function can be determined correspond-

ing to θ in any quadrant. For example,

in quadrant II the functions sin θ and csc θ

are positive. In quadrant III the func-

tions tan θ and cot θ are positive and in

quadrant IV, the functions cos θ and sec θ

are positive.

(vii)

If the angle θ is a positive acute angle, then

−θ lies in the fourth quadrant. The reference

angle is α = θ is positive and gives the negative

angle formulas

sin(−θ) =− sin θ

csc(−θ) =− csc(θ)

cos(−θ) = cos θ

sec(−θ) = sec θ

tan(−θ) = − tan θ

cot(−θ) = − cot θ
(7.9)

(viii) Any function f(θ) satisfying f(−θ) = f(θ) is called an even function of θ and

functions satisfying f(−θ) = −f(θ) are called odd functions of θ. The above

arguments show that the functions sine, tangent, cotangent and cosecant are

odd functions of θ and the functions cosine and secant are even functions of θ.

These results are sometimes referred to as even-odd identities. If a trigonometric

function y = f(θ) is an even function of θ, then its graph will be symmetric about

the y-axis. If it is an odd function of theta, then the graph will be symmetric

about the origin.
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Special Values–Quadrant I

Angle θ Angle θ

degrees radians sin θ cos θ tan θ cot θ sec θ csc θ

0 0 0 1 0 undefined 1 undefined

90 π/2 1 0 undefined 0 undefined 1

180 π 0 −1 0 undefined −1 undefined

270 3π/2 −1 0 undefined 0 undefined −1

360 2π 0 1 0 undefined 1 undefined

Quadrant II

Angle θ Angle θ Reference

degrees radians angle α sin θ cos θ tan θ cot θ sec θ csc θ

120 2π/3 π/3
√

3/2 −1/2 −
√

3 −
√

3/3 -2 2
√

3/3

135 3π/4 π/4
√

2/2 −
√

2/2 −1 −1 −
√

2
√

2

150 5π/6 π/6 1/2 −
√

3/2 −
√

3/3 −
√

3 −2
√

3/3 2

Quadrant III

Angle θ Angle θ Reference

degrees radians angle α sin θ cos θ tan θ cot θ sec θ csc θ

210 7π/6 π/6 −1/2 −
√

3/2
√

3/3
√

3 −2
√

3/3 −2

225 5π/4 π/4 −
√

2/2 −
√

2/2 1 1 −
√

2 −
√

2

240 4π/3 π/3 −
√

3/2 −1/2
√

3
√

3/3 −2 −2
√

3/3

Quadrant IV

Angle θ Angle θ Reference

degrees radians angle α sin θ cos θ tan θ cot θ sec θ csc θ

300 5π/3 π/3 −
√

3/2 1/2 −
√

3 −
√

3/3 2 −2
√

3/3

315 7π/4 π/4 −
√

2/2
√

2/2 −1 −1
√

2 −
√

2

330 11π/6 π/6 −1/2
√

3/2 −
√

3/3 −
√

3 2
√

3/3 −2

Table 6.1 Special values for the Trigonometric Functions

The Pythagorean identities

Write the Pythagorean theorem x2 + y2 = r2 for the right triangles in each quad-

rant of figure 7-5. Divide each term in the Pythagorean theorem by either x2, y2
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or r2 and show the Pythagorean theorem can be expressed in any of the alternative

forms
(x

r

)2

+
(y

r

)2

= 1, 1 +
( y

x

)2

=
( r

x

)2

,

(

x

y

)2

+ 1 =

(

r

y

)2

which by the above trigonometric definitions become

cos2 θ + sin2 θ = 1, 1 + tan2 θ = sec2 θ, cot2 θ + 1 = csc2 θ (7.10)

These are fundamental relations between the trigonometric functions and are known

as trigonometric identities. The above trigonometric identities are called the

Pythagorean identities.

Other trigonometric identities

The Pythagorean identities and other identities such as

sin θ =
1

csc θ
cos θ =

1

sec θ
tan θ =

1

cot θ

and

tan θ =
sin θ

cos θ
, cot θ =

cos θ

sin θ

are all examples of trigonometric equations called trigonometric identities which are

satisfied for all angles θ whenever both sides of the equations are well defined.

The trigonometric definitions and identities are often used to (i) prove additional

identities (ii) change equations with trigonometric terms into a different form in order

to illustrate some point or express the equation in a simpler form.

Whenever one is asked to prove a trigonometric equation is an identity it is best

to start with one side of the given equation use some algebra together with making

trigonometric substitutions to produce the other side of the equation. If this is

possible then the given trigonometric equation is called a trigonometric identity.

Example 7-1. Prove the trigonometric identity
1 + sin θ

cos θ
=

cos θ

1 − sin θ
Solution

Performing a heuristic examination of the given equation one can see that cross

multiplication produces a Pythagorean identity. We want to start with one side of

the given equation and derive the other side of the equation. Hence start with say

the left side and multiply both numerator and denominator by 1− sin θ and simplify

the result to obtain
(

1 + sin θ

cos θ

) (

1 − sin θ

1 − sin θ

)

=
1 − sin2 θ

cos θ(1 − sin θ)
=

cos2 θ

cos θ(1 − sin θ)
=

cos θ

1 − sin θ
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where we have used the Pythagorean identity 1 − sin2 θ = cos2 θ to simplify the above

expression to verify the given equation is a trigonometric identity.

Example 7-2. Prove the trigonometric identity tan2 α − sin2 α = tan2 α sin2 α is

true for all angles α for which the tangent function is well defined.

Solution

Starting with the left-hand side of the given trigonometric equation write

tan2 α − sin2 α =
sin2 α

cos2 α
− sin2 α = sin2 α

(

1

cos2 α
− 1

)

=sin2 α

(

1 − cos2 α

cos2 α

)

= tan2 α(1 − cos2 α) = tan2 α sin2 α

and so the given equation is a trigonometric identity.

Graphs of the Trigonometric Functions

Consider the special case where the radius r in figure 7-5 is unity. The advantage

of setting r = 1 in the above definitions for the trigonometric functions is that in this

special case the ordinate value y represents sin θ and the abscissa value x represents

cos θ. By plotting y vs θ, as the point P moves counterclockwise around the circle,

one obtains the figure 7-7(a). Similarly, by rotating the unit circle through 90◦ it is

possible to plot a graph of x vs θ, as the point P moves in a counterclockwise direction

about the circle. The plotting of the height of the point P as a function of θ, as the

point P moves in a counterclockwise direction around the circumference of the unit

circle gives rise to the name circular functions for the trigonometric functions. The

graphs of sin θ and cos θ are illustrated in the figures 6-7(a) and 6-7(b). A plot the

ratio tan θ =
sin θ

cos θ
vs θ for the tangent function is illustrated in the figure 7-7(c). The

three functions sine, cosine and tangent are also illustrated in the figure 7-9 over the

domain 0 ≤ x ≤ 4π.

A continuous function y = f(x), which is well defined everywhere, is said to be a

periodic function of period p, if p is the smallest number such that f(x + p) = f(x) is

satisfied for all values of x. In figure 7-8 make note of the following.

(i) The trigonometric functions sin θ, cos θ, and consequently the reciprocal functions

csc θ and sec θ are periodic functions of θ with period 2π and satisfy

sin(θ + 2π) = sin θ, cos(θ + 2π) = cos θ, csc(θ + 2π) = csc θ, sec(θ + 2π) = sec θ
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(ii) Similarly, the tangent and cotangent functions are periodic functions of θ with

period π and satisfy

tan(θ + π) = tan θ, cot(θ + π) = cot θ

(iii) The function tan θ becomes undefined at π
2
, 3π

2
, 5π

2
, . . . This is because tan θ = sin θ

cos θ

and the cosine function takes on the value of zero at these values.

(iv) The sine and cosine functions oscillate between +1 and −1 as well as being

periodic.

(v) Let f denote any trigonometric function of θ, then note that f(θ + 2nπ) = f(θ),

where n is any integer. This is because the angle θ ± 2nπ is coterminal3 with the

angle θ.

Graphs of trigonometric functions

Figure 7 -7.

The trigonometric functions cosecant, secant and cotangent

3 Angles which share the same initial side and terminal side.
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Figure 7 -8.

Graphs of the trigonometric functions sin θ, cos θ and tan θ

Scaling

Curves of the form y = A sin(βx + γ) or y = A cos(βx + γ), with A, β, γ constants, are

said to have an amplitude A and to be periodic of period 2π/β. The graphs of these

functions can be obtained by translation of the graphs y = A sin βx and y = A cosβx by

a distance of γ/β in the negative x-direction. Another way to view these curves is to

set θ = βx + γ and then ask the questions, ”Where is θ equal to zero?”, and ”Where

is θ equal to 2π?”. One finds θ = 0 when x = −γ/β and θ = 2π when x = (2π − γ)/β.

Subtracting these values gives the period 2π/β and the zero value for θ gives the
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translational distance −γ/β. These curves oscillate between +A and −A and are

scaled versions of the basic sine and cosine curves.

Graphs for the reciprocal relations

csc θ =
1

sin θ
, sec θ =

1

cos θ
, and cot θ =

1

tan θ

are illustrated in the figures 7-7 and 7-10.

Figure 7 -9. The trigonometric functions sin(x), cos(x), tan(x), 0 ≤ x ≤ 4π

Figure 7 -10. The trigonometric functions cot(x), sec(x), csc(x), 0 ≤ x ≤ 4π

Trigonometric Functions of Sums and Differences

Consider a unit circle with the points P0, P1, P2 lying on the circumference of

the circle. Let the rays 0P0, 0P1, 0P2 make positive angles of 0, α and α + β radians

respectively with respect to the x-axis, as is illustrated in the figure 7-11(a).
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Figure 7 -11.

Distance between points P0P2 and P ′
0P

′
2 remains invariant under rotation of circle.

The point P0, P1, P2 are on the unit circle so that the Cartesian coordinates of

these points can be written as

P0 : (x0, y0) = (1, 0),

P1 : (x1, y1) = (cos α, sinα),

P2 : (x2, y2) = (cos(α + β), sin(α + β))

(7.11)

If the points in figure 7-11(a) are rotated clockwise through an angle α, the

points P0, P1, P2 move to the primed positions illustrated in the figure 7-11(b). The

coordinates of the primed points are given by

P ′
0 : (x′

0, y
′
0) = (cos α,− sinα),

P ′
1 : (x′

1, y
′
1) = (1, 0),

P ′
2 : (x′

2, y
′
2) = (cos β, sinβ)

(7.12)

Now the distance P2P0 remains invariant under a rotation of axis and so this distance

must be the same as the distance P ′
2P

′
0. This requires that

P2P0 =P ′
2P

′
0

√

(x2 − x0)2 + (y2 − y0)2 =
√

(x′
2 − x′

0)
2 + (y′

2 − y′
0)

2

√

(cos(α + β) − 1)2 + (sin(α + β) − 0)2 =
√

(cos β − cos α)2 + (sinβ − (− sinα))2

(7.13)

Square both sides of equation (7.13) and expand the squared terms to obtain

cos2(α + β) − 2 cos(α + β) + 1 + sin2(α + β) = cos2 β − 2 cosα cos β + cos2 α + sin2 β + 2 sinα cosβ + sin2 α
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Observe the Pythagorean identities cos2(α+β)+sin2(α+β) = 1 as well as cos2 β+sin2 β = 1

and cos2 α + sin2 α = 1. Use these identities to simplify the above result and obtain

the addition formula

cos(α + β) = cos α cosβ − sin α sin β (7.14)

In equation (7.14) replace the angle β by −β to obtain

cos(α + −β) = cos α cos(−β) − sin α sin(−β)

and then use the even-odd identities to obtain

cos(α − β) = cos α cosβ + sinα sin β (7.15)

Observe that a utilization of the cofunction formulas gives

sin(α + β) = cos
[π

2
− (α + β)

]

= cos
[

(
π

2
− α) − β

]

In equation (7.15) replace α by π
2
− α to show

cos(
π

2
− (α + β)) = sin(α + β) = cos(

π

2
− α) cosβ + sin(

π

2
− α) sinβ

which simplifies using the cofunction formulas. This gives the addition rule

sin(α + β) = sin α cos β + cos α sinβ (7.16)

It is an easy exercise to replace β by −β in equation (7.16) and then use the even-odd

properties to show

sin(α − β) = sin α cos β − cos α sinβ (7.17)

Now if cosα �= 0 and cos(α + β) �= 0, then

tan(α + β) =
sin(α + β)

cos(α + β)
=

sin α cos β + cosα sin β

cos α cos β − sinα sin β

Divide each of the terms in the numerator and denominator by cos α cosβ and then

simplify to obtain the result

tan(α + β) =
tanα + tanβ

1 − tan α tanβ
(7.18)
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Replacing β by −β in equation (7.18) and simplifying the result produces the differ-

ence formula

tan(α − β) =
tanα − tan β

1 + tanα tanβ
(7.19)

In a similar fashion, if sin α �= 0 and sin(α + β) �= 0, then

cot(α + β) =
cos(α + β)

sin(α + β)
=

cos α cos β − sin α sin β

sinα cos β + cos α sin β

Now divide each term in the numerator and denominator by sin α sinβ to obtain

cot(α + β) =

cos α

sinα

cos β

sinβ
− 1

cos β

sin β
+

cos α

sinα

which simplifies to the summation formula

cot(α + β) =
cotα cot β − 1

cot β + cotα
(7.20)

Replacing β by −β in equation (7.20) and simplifying produces

cot(α − β) =
cotα cot β + 1

cot β − cotα
(7.21)

In summary, the trigonometric functions sine, cosine and tangent obey the fol-

lowing sum and difference formulas

sin(α ± β) = sinα cos β ± cos α sinβ

cos(α ± β) = cos α cos β ∓ sin α sinβ

tan(α ± β) =
tan α ± tan β

1 ∓ tan α tan β

cot(α ± β) =
cot α cot β ∓ 1

cot β ± cot α

(7.22)

Double-angle Formulas

In the addition formulas (7.14), (7.16), (7.18), and (7.20) make the substitution

α = β to obtain the double-angle formulas

sin 2β =2 sin β cos β (7.23)

cos 2β =cos2 β − sin2 β (7.24)

tan 2β =
2 tan β

1 − tan2 β
(7.25)

cot 2β =
cot2 β − 1

2 cot β
(7.26)
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Using the Pythagorean identity cos2 β + sin2 β = 1 the equation (7.24) can be

expressed in one of the alternative forms

cos 2β = 2 cos2 β − 1 or cos 2β = 1 − 2 sin2 β (7.27)

Multiple angle formulas
Formulas for

sin(3α)

cos(3α)

tan(3α)

sin(4α)

cos(4α)

tan(4α)

sin(5α)

cos(5α)

tan(5α)

can be generated using the previous summation formulas and double angle formulas.

If one substitutes α = A and β = 2A in the equation (7.16), then one obtains

sin(α + β) = sin(A + 2A) = sin(3A) = sin(A) cos(2A) + cos(A) sin(2A)

and then substitute for sin(2A) and cos(2A) from equations (7.23) and (7.27) to pro-

duce the equation

sin(3A) = sin(A)
[

1 − 2 sin2(A)
]

+ cos(A) [2 sin(A) cos(A)]

sin(3A) = sin(A) − 2 sin3(A) + 2 sin(A) cos2(A)

sin(3A) = sin(A) − 2 sin2(A) + 2 sin(A)
[

1 − sin2(A)
]

sin(3A) =3 sin(A) − 4 sin3(A)

(7.28)

In a similar fashion one can derive the following multiple angle formulas

sin 3α =3 sinα − 4 sin3 α

cos 3α = − 3 cos α + 4 cos3 α

tan 3α =
3 tanα − tan3 α

1 − 3 tan2 α

sin 4α =8 cos3 α sinα − 4 cos α sin α

cos 4α =8 cos4 α − 8 cos2 α + 1

tan 4α =
4 tan α − 4 tan3 α

1 − 6 tan2 α + tan4 α

sin 5α =5 cos4 α sinα − 10 cos2 α sin3
α + sin5

α

cos 5α = cos5 α − 10 cos3 α sin2
α + 5 cos α sin4

α

tan 5α =
tan 4α + tan α

1 − tan 4α tan α

(7.29)
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Using the Pythagorean identity sin2 α+cos2 α = 1, the above formulas can be altered to

take on forms which differ from those presented above. These multiple angle formulas

can be used to calculate exact trigonometric values for many special angles.

Example 7-3. Find the exact value for sin π
5
.

Solution:

Use the multiple angle formula

sin 5α =5 cos4 α sin α − 10 cos2 α sin3 α + sin5 α

sin 5α =5(1− sin2 α)(1 − sin2 α) sinα − 10(1 − sin2 α) sin3 α + sin5 α

Let x = sin α and show the above equation becomes

sin 5α = 16x5 − 20x3 + 5x (7.30)

If α = π
5
, then sin 5α = sin π = 0 and equation (7.30) becomes the algebraic equation

16x4 − 20x2 + 5 = 0 (7.31)

The equation (7.31) is a quadratic equation in x2 with solution

x2 =
5

8
±

√
5

8
(7.32)

We know π
5

< π
4

which implies sin π
5

< sin π
4

= 1√
2

so that we want to select the minus

sine in equation (7.32). One finds

x = sin
π

5
=

√

5

8
−

√
5

8
=

1

2

√

5 −
√

5

2
(7.33)

Half-angle Formulas

In the equations (7.27) replace the angle β by α/2 to obtain the half-angle for-

mulas

sin2 α

2
=

1− cos α

2
(7.34)

cos2
α

2
=

1 + cos α

2
(7.35)
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Taking the ratio of the above results gives

tan2 α

2
=

sin2 α
2

cos2 α
2

=
1 − cos α

1 + cos α
provided cos α �= −1 (7.36)

The equations (7.34), (7.35), and (7.36) can be expressed in the alternative forms

sin
α

2
= ±

√

1 − cos α

2

cos
α

2
= ±

√

1 + cos α

2

tan
α

2
= ±

√

1 − cos α

1 + cos α

(7.37)

The correct algebraic sign (+ or −) is determined by the quadrant the angle α/2 lies

in. Also one finds

cot
α

2
=

1

tan α
2

= ±
√

1 + cosα

1 − cosα

There are alternative forms for representing tan α
2

and cot α
2

which are derived by

employing the half angle formulas (7.34) and (7.35) as follows.

tan
α

2
=

sin α
2

cos α
2

=
sin2 α

2

sin α
2

cos α
2

=
1 − cos α

sin α
(7.38)

or

tan
α

2
=

sin α
2

cos α
2

=
sin α

2
cos α

2

cos2 α
2

=
sin α

1 + cos α
(7.39)

In a similar fashion one can show

cot
α

2
=

sin α

1 − cos α
(7.40)

cot
α

2
=

1 + cos α

sin α
(7.41)

Product, Sum and Difference Formula

Products of the sine and cosine functions can be replaced by certain sums or

differences and conversely, sums and differences of sine and cosine functions can be

replaced by certain products. This is accomplished by adding the equations (7.16)

and (7.17) to obtain the sum formula

sin(α + β) + sin(α − β) = 2 sinα cos β (7.42)
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and subtracting the equations (7.16) and (7.17) gives

sin(α + β) − sin(α − β) = 2 sinβ cos α (7.43)

Similarly, by adding the equations (7.14) and (7.15) one obtains the result

cos(α − β) + cos(α + β) = 2 cosα cos β (7.44)

Subtracting these equations gives

cos(α − β) − cos(α + β) = 2 sinα sin β (7.45)

In summary, the product formulas for the trigonometric functions are

2 sinα cosβ = sin(α + β) + sin(α − β) (7.46)

2 sinβ cosα = sin(α + β) − sin(α − β) (7.47)

2 cosα cosβ = cos(α − β) + cos(α + β) (7.48)

2 sinα sinβ = cos(α − β) − cos(α + β) (7.49)

The equations (7.42), (7.43), (7.44), and (7.45) allow one to express certain sine-

cosine products as sums or differences. Make the following substitutions into the

equations (7.42), (7.43), (7.44), and (7.45) ,

α + β = A and α − β = B (7.50)

Adding and subtracting the equations (7.50) implies that

α =
A + B

2
, and β =

A − B

2
(7.51)

The equations (7.42), (7.43), (7.44), and (7.45) then become the summation for-

mulas

sin A + sin B =2 sin

(

A + B

2

)

cos

(

A − B

2

)

(7.52)

sin A − sin B =2 cos

(

A + B

2

)

sin

(

A − B

2

)

(7.53)

cos A + cos B =2 cos

(

A + B

2

)

cos

(

A − B

2

)

(7.54)

cos B − cos A =2 sin

(

A + B

2

)

sin

(

A − B

2

)

(7.55)

Many of the above trigonometric identities can be used in geometry to change

the way results are expressed.
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Inverse Functions

Two functions f(x) and g(x) are said to be inverse functions of one another if

f(x) and g(x) have the properties that

g(f(x)) = x and f(g(x)) = x (7.56)

If g(x) is an inverse function of f(x), the notation f−1, read “f-inverse”, is used to

denote the function g. That is, an inverse function of f(x) is denoted f−1(x) and has

the properties

f(f−1(x)) = x and f−1(f(x)) = x (7.57)

Given a function y = f(x), then by interchanging the symbols x and y there results

x = f(y). This is an equation which defines the inverse function. If the equation

x = f(y) can be solved for y in terms of x, to obtain a single valued function, then

this function is called the inverse function of f(x). There then results the equivalent

statements

x = f(y) ⇐⇒ y = f−1(x) (7.58)

The process of interchanging x and y in the representation y = f(x) to obtain

x = f(y) implies that geometrically the graphs of f and f−1 are mirror images of each

other about the line y = x. In order that the inverse function be single valued it

is necessary that there are no vertical lines, x = constant, which intersect the graph

y = f(x) more than once. An example of a function and its inverse is given in the

figure 7-12.

Figure 7 -12. A function and its inverse.

y = f(x) = x2

Interchange x and y

x = f(y) = y2

Solve for y

y = f−1(x) =
√

x
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Figure 7 -13. A function and its inverse.

A graphical interpretation of the inverse function is given in the figure 7-13. Consider

the graph of a function y = f(x) as illustrated in the figure 7-13(a). On this graph

interchange x and y everywhere to obtain the figure 7-13(b). Flip the figure (b) so

that the x-axis points to the right and obtain the figure 7-13(c). Now place the

figure 7-13(c) on top of the figure 7-13(a) to obtain the last figure (d).

Now do this to all of the graphs associated with the trigonometric functions to

obtain graphs of the inverse trigonometric functions. Make note of the fact that

these inverse functions have angular measure.

Inverse Trigonometric Functions

The notation y = sin−1 x is read as, ”y is the inverse sine of x”. An alternative

notation is to write y = arcsinx. These notations define the angle whose sine is x

Thus,

y = arcsinx = sin−1 x ⇒ siny = x

Here y is the angle whose sine is x. In a similar fashion one can write

y =sin−1 x ⇒ sin y = x y is the angle whose sine is x

y =cos−1 x ⇒ cos y = x y is the angle whose cosine is x

y =tan−1 x ⇒ tan y = x y is the angle whose tangent is x

y =cot−1 x ⇒ cot y = x y is the angle whose cotangent is x

y =sec−1 x ⇒ sec y = x y is the angle whose secant is x

y =csc−1 x ⇒ csc y = x y is the angle whose cosecant is x
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One way to make the inverse trigonometric functions single-valued is given in

the following table.

Inverse Trigonometric Functions

Alternate Interval for

Function notation Definition single-valuedness

arcsinx sin−1 x sin−1 x = y if and only if x = sin y −π
2
≤ y ≤ π

2

arccosx cos−1 x cos−1 x = y if and only if x = cos y 0 ≤ y ≤ π

arctanx tan−1 x tan−1 x = y if and only if x = tany −π
2

< y < π
2

arccotx cot−1 x cot−1 x = y if and only if x = cot y 0 < y < π

arcsec x sec−1 x sec−1 x = y if and only if x = sec y 0 ≤ y ≤ π, y �= π
2

arccsc x csc−1 x csc−1 x = y if and only if x = csc y −π
2
≤ y ≤ π

2
, y �= 0

The inverse trigonometric functions are angles and so are multi-valued functions

and consequently one must define an interval over which single-valuedness occurs.

The defined interval is called a branch of the inverse trigonometric function. When-

ever a particular branch is required for certain problems, then these branches are

called principal branches. The following table gives principal values for the inverse

trigonometric functions.

Principal Values for Regions Indicated

x < 0 x ≥ 0

−π
2
≤ sin−1 x < 0 0 ≤ sin−1 x ≤ π

2

π
2
≤ cos−1 x ≤ π 0 ≤ cos−1 x ≤ π

2

−π
2
≤ tan−1 x < 0 0 ≤ tan−1 x < π

2

π
2

< cot−1 x < π 0 < cot−1 x ≤ π
2

π
2
≤ sec−1 x ≤ π 0 ≤ sec−1 x < π

2

−π
2
≤ csc−1 x < 0 0 < csc−1 x ≤ π

2

The inverse trigonometric functions are obtained by taking the mirror image of

the trigonometric functions about the line y = x. The trigonometric functions and

the inverse trigonometric functions are illustrated in the figures 7-9 and 7-10.

Unless stated otherwise it is implicitly implied that principal values will be used

in dealing with inverse trigonometric functions.
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Figure 7 -14. The inverse trigonometric functions sin−1 x, cos−1 x and tan−1 x

Figure 7 -15. The inverse trigonometric functions cot−1 x, sec−1 x and csc−1 x
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Principal Value Properties

In reference to the right triangle illustrated, ob-

serve that if α = cot−1 x, then cotα = x and tan α = 1
x
.

Consequently, α = cot−1 x = tan−1

(

1

x

)

. Also observe

that α + β =
π

2
and since tanβ = x and cotα = x, there results

α + β = cot−1 x + tan−1 x =
π

2
(7.59)

Other inverse trigonometric relationships can be determined in a similar manner

and are listed below for x > 0.

cot−1 x =tan−1

(

1

x

)

sec−1 x =cos−1

(

1

x

)

csc−1 x =sin−1

(

1

x

)

cot−1 x + tan−1 x =
π

2

cos−1 x + sin−1 x =
π

2

csc−1 x + sec−1 x =
π

2

(7.60)

If θ = sin−1 (−x), then sin θ = −x, and using the result sin(−θ) = − sin θ = −(−x) = x,

one finds θ = − sin−1 x, and consequently, sin−1(−x) = − sin−1 x. In a similar manner

write θ = cos−1(−x), then cos θ = −x, and using cos(π − θ) = − cos θ = −(−x) = x there

results cos−1 x = π − θ = π − cos−1(−x). Similar relationships can be derived and are

summarized below.

sin−1(−x) = − sin−1
x

cos−1(−x) =π − cos−1 x

tan−1(−x) = − tan−1 x

cot−1(−x) =π − cot−1 x

sec−1(−x) =π − sec−1 x

csc−1(−x) = − csc−1 x

(7.61)

The notation for using principal values of the inverse trigonometric functions is

to use capital letters in representing the function. For example, one would write

either
Sin−1 x or Arcsinx

Cos−1 x or Arccosx

Tan−1 x or Arctanx
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Example 7-4. Find tan(cos−1 2
3
)

Solution:
Remember that the inverse functions are angles. Let α = cos−1 2

3

so that cos α = 2
3
. By the Pythagorean theorem one can find the third

side of this right triangle. If y is the third side, then y2 + 22 = 32 or

y =
√

5. Therefore, tan α =
y

2
=

√
5

2
.

Example 7-5. The n-gon

For a regular polygon of n-sides, called a n-gon, let a denote the apothem, which

is the perpendicular distance from the center of the regular n-gon to any side. This

is also the radius of the inscribed circle. Let r denote the radius of the n-gon, which

is the distance from the center of the n-gon to any vertex. The distance r also

represents the radius of the circumscribed circle. Let α = 2π
n

denote the central angle

associated with the n-gon and let sn denote the length of any side of the n-gon. The

above defined quantities are illustrated in the figure 7-16. Dropping a perpendicular

from the center of the n-gon to a side forms a right triangle from which one can

obtain the relations

cos
α

2
=

an

r
, sin

α

2
=

sn/2

r
, tan

α

2
=

sn/2

an
(7.62)

Figure 7 -16.

Section of an n-gon
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Using these relations the total area of a regular n-gon can be expressed in any

of the following forms

Area = n

[

1

2
ansn

]

= n

[

1

4
s2
n cot

α

2

]

= n
[

a2
n tan

α

2

]

= n

[

1

2
r2 sinα

]

(7.63)

which are all representations of n times the area of one triangle.

The first area formula is just n times 1
2

the base times the height, where the

height of the triangle section is the apothem (an) and the base is (sn). Into this first

area formula substitute an = sn/2

tan α

2

to obtain the second area formula. Substitute into

the second area formula for equation (7.63) sn = 2an tan α
2

to obtain the third area

formula. By substituting an = r cos α
2

into the third area formula one obtains the

fourth area formula. All the above substitutions used to change the forms for the

area expressions come from the equations (7.62).

In a similar fashion one can construct various ways to represent the perimeter

P of the n-gon. One can express the perimeter P in any of the forms

Perimeter P = nsn = n
[

2r sin
α

2

]

= n
[

2an tan
α

2

]

(7.64)

Note that the various forms are all constructed from the identities of equation (7.62).

The parallelogram

The parallelogram is a special quadrilateral having both pairs of opposite sides

parallel as illustrated in the top of figure 7-17. One can say that both the opposite

sides and the opposite angles associated with a parallelogram are equal. Note that

by extending the sides of the parallelogram the angles α and β become alternate

interior angles and they are supplementary angles so that α + β = π or α + β = 180◦

depending upon the units you use.

The diagonals of a parallelogram will bisect each other. We have demonstrated

this using Euclidean geometry in an earlier chapter. Lets demonstrate this fact

again using Cartesian coordinates. If a parallelogram has the Cartesian coordinates

as illustrated in the bottom figure 7-17, with top and bottom sides having slope zero

and the sides having slope k
h
, then one can quickly calculate the midpoints of the

diagonals BD and AC as

midpoint of diagonal BD =
1

2
(x1 + h + x2, y1 + y1 + k)

midpoint of diagonal AC =
1

2
(x1 + h + x2, y1 + y1 + k)

(7.65)
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These midpoints are the same and are labeled as point P in the figure 7-17. Conse-

quently, one can write

AP = PC and DP = PB (7.66)

indicating that the diagonals intersect one another at a common point of intersec-

tion. This was a quick way to demonstrate the diagonals of a parallelogram bisect

one another. Note that the midpoint of the diagonals defines the centroid of the

parallelogram.

The area of the parallelogram can also be calculated knowing the Cartesian

coordinates of the corners. One can drop perpendicular lines from points D and B

to the opposite sides to form two triangles, then the area of the parallelogram is the

summation of the area of the left triangle plus the area of a rectangle plus the area

of another triangle. This gives
1

2
hk + (x2 − (x1 + h))k +

1

2
hk = (x2 − x1)k = (base)(height)

Thus, the area of a parallelogram is also given by the base times the height. Here

the base equals (x2 − x1) and the height is k.

Figure 7 -17.

Parallelogram represented in Cartesian coordinates
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In summary, one can say that given a parallelogram

with base b and height h one finds

Area A = bh = (base)(height) Perimeter P = 2(� + b)

where � is the length of the parallelogram side. Another

form for representing the area of a parallelogram is

Area = b� sinα

where � sinα = h.

Generalization of angle bisector theorem

In triangle �ABC let AD denote an arbitrary

cevian from vertex A which

(i) Divides the vertex angle ∠A into two angles labeled α and β

(ii) Divides side BC into two parts CD and DB

Construct a line through vertex A which is parallel to the side BC and let h

denote the distance between the parallel lines. One can then calculate the areas of

triangles �ADC and �ADB to obtain the ratio

[ADC]

[ADB]
=

1
2
CDh

1
2
DB h

=
CD

DB
(7.67)

This ratio of areas can also be calculated using the triangle bases AC and AB and

the triangle heights h1 = AD sinβ and h2 = AD sinα. One finds that

[ADC]

[ADB]
=

CD

DB
=

1
2
ACh1

1
2
AB h2

=
AC sin β

AB sin α
(7.68)

Note in the special case that the cevian is an angle bisector, then α = β and the

equation (7.68) reduces to the angle bisector theorem.

If P is any point on the cevian AD, one can

show that the ratio of the triangle areas [APC]
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and [APB] is the same as the ratio of the sides

CD and DB. Using the heights h3 and h4 defined

by

AP sinβ = h4, and AP sinα = h3 (7.71)

The areas of these triangles are

[APC] =
1

2
AC h4 =

1

2
AC AP sinβ, and [APB] =

1

2
AB h3 =

1

2
AB AP sinα (7.70)

which can be used to produce the ratio

CD

DB
=

AC sinβ

AB sin α

1
2
AP

1
2
AP

=
[APC]

[APB]
(7.71)

The equation (7.71) is nothing more than the results from equation (7.68) where

both the numerator and denominator have been multiplied by 1
2
AP. The ratio of

areas (7.71) associated with an arbitrary point P on the cevian AD is known as the

area theorem for cevians.

Astronomy
In astronomy, angle measurements are used to determine the large distances

between the Earth and objects very far out beyond our solar system. Consider the

figure 7 -18 which illustrates the Earths orbit about the Sun and the distance r to

be measured. The figure shown is not to scale because the distance r is very, very

large and the angle α, called the parallax angle, is very, very small. The Earth orbits

the Sun in approximately 365.25 days with the average distance between the Earth

and Sun defined to be one astronomical unit (AU), where

1 astronomical unit = 1 AU = 149 597 870 700 meters

1 AU ≈ 93 million miles

The parallax angle α is measured in units of arc seconds and then converted to

radians. This is accomplished by observing that

1′′ =1 arc sec = 1 sec · 1 min
60 sec

· 1 deg
60 min

· π rad
180 deg

1′′ =1 · 1

60
· 1

60
· π

180
=

π

648 000
radians

(7.72)
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Figure 7 -18. Geometry (not to scale) to measure distant object in space

Observe how the units associated with the various conversion factors cancel out

as one changes from arc seconds to radians.

The arc length s associated with a sector of

a circle with radius r is found by taking propor-

tions.

Arc length of sector
Arc length of circle

=
Angle of sector

Angle of one rotation

s

2πr
=

θ

2π
or s = rθ (7.73)

for the arc length s associated with a sector angle θ.

The formula for calculating the distance r to an object O very far away is ap-

proximated by using equation (7.73) in the form4

r =
s

α
, α in radians, and distance s = 1AU (7.74)

4 This form is also obtained using the very small angle approximation tan α ≈ α for the trigonometric function

tangent associated with the Earth-Sun-Object right triangle and the parallax angle α where tan α = 1 AU
r

.
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where the arc length s is approximated by s = SE = 1 AU as the average distance

between the Earth and the Sun. The angle θ in equation (7.73) is taken as the

parallax angle α, when converted to units of radians. This distance formula is an

approximation that comes from finding the radius r of a huge circle with far object

(O) as the center of the circle. The parallax angle α is measured in arc seconds but

must be converted to the units of radians before one can use equation (7.74).

By definition, when the angle α equals 1′′ = 1 arc sec, then the distance r is

defined to be 1 parsec. This produces the relation

1 parsec =distance r when parallax angle α = 1′′

=
1 AU

π
· (60)(60)(180)

=
648 800

π
AU

(7.75)

One can then verify, using the proper conversion factors, the distance light travels

in one year. Using the speed of light as = 299 792 458 meters/second and

1 year = 365.25days ∗ 24 hours
day

∗ 60 minutes
hour

∗ 60 seconds
minute

= 3.15576 107 seconds one finds

that

1 light year = 299 792 458 meters/second ∗ 3.15576 107 seconds = 9.46073 1015 meters

The distance of 1 parsec can be converted into difference units

1 parsec =
648 000

π
AU = 206, 264.81 AU

=
648 000

π
AU ∗ 149 597 870 700 meters/AU = 3.08568 (10)16 meters

≈ 19.173512 (10)12 miles

≈ 3.26156 light years

(7.76)

Note that the parallax method is only good for measuring distances of stars less

than about 1000 light years away. More advanced methods are used to measure

distances greater than 1000 light years.

Defining π for computer usage

If you get involved with computers used for scientific computing you will find

that all computers will truncate or chop off irrational numbers because every com-

puter has a central processing unit which can only handle a fixed number of binary

digits. This truncation of numbers is called computer round-off error. Computer
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manufacturers must do it, but they don’t like to talk about it. To define π for com-

puter usage let the computer save π to the best of its ability. Since tan π
4

= 1, one can

define PI = 4.0 ∗ arctan(1.0). This way the computer will chop off the exact represen-

tation and give you a value for PI which is the best rational number approximation

that will fit into the machine.

Additional trigonometric relations

sin(−θ) =− sin θ

cos(−θ) = cos θ

tan(−θ) =− tan θ

sin(
π

2
± θ) = cos θ

cos(
π

2
± θ) = ∓ sin θ

tan(
π

2
± θ) = ∓ cot θ

sin(π ± θ) = ∓ sin θ

cos(π ± θ) = − cos θ

tan(π ± θ) = ± tan θ

sin(
3π

2
± θ) = − cos θ

cos(
3π

2
± θ) = ± sin θ

tan(
3π

2
± θ) = ∓ cot θ

sin(π ± θ) = ± sin θ

cos(π ± θ) = cos θ

tan(π ± θ) = ± tan θ

If the angle θ is restricted to quadrant I, then the following relations are valued.

If u =sin θ,
√

1 − u2 = cos θ,
u√

1 − u2
= tan θ

If u =cos θ,
√

1 − u2 = sin θ,

√
1 − u2

u
= tan θ

If u =tan θ,
u√

1 + u2
= sin θ,

1√
1 + u2

= cos θ
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Exercises

� 7-1.
Given the parallelogram with height h, base b, side

a and angle θ.

(a) Find h, ψ and area if a = 3, b = 5, θ = 135◦

(b) Find h, ψ and area if a = 4, b = 6, θ = 120◦

� 7-2.

Point P is a mountain peak and point 0 is directly

below P . At a distance x from point 0 the angle of

elevation of point P is θ1 = 26.0774◦. At a distance

of (x+4) miles from point 0 the angle of elevation is

θ2 = 14.7564◦.

(a) Find the height h of the mountain.

(b) Find the distance x.

� 7-3. Find the sine, cosine, tangent of the following angles

(a)
π

2
± θ, (b) π ± θ, (c)

3π

2
± θ, (d) 2π ± θ

� 7-4.

(a) Show the projection of AB onto the x-axis is AB cos θ

(b) Show the projection of AB onto the y-axis is AB sin θ

or AB cos(π
2
− θ)

� 7-5. Prove the following identities.

(a) sec θ csc θ = tan θ + cot θ

(b) tanα sin α + cos α = sec α

(c)
1 + sec θ

1 − sec θ
=

cos θ + 1

cos θ − 1

(d)
1

tan θ + sec θ
= sec θ − tan θ

(e)
sin θ + tan θ

1 + sec θ
= sin θ

(f)
sin α + cos β

sin α − cos β
=

sec β + csc α

sec β − csc α

� 7-6. Evaluate the following.

(a) sin
π

3
cos

π

6
+ cos

π

3
sin

π

6

(b)
tan π

12
+ tan π

4

1 − tan π
12

tan π
4

(c) cos
π

12
cos

π

4
− sin

π

12
sin

π

4

(d)
tan π

4
− tan π

12

1 + tan π
4

tan π
12
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� 7-7. Prove the following identities.

(a) sin2 θ =
tan2 θ

1 + tan2 θ

(b)
sin α + tanα

cot α + csc α
= sin α tanα

(c) sin α(1 + cot2 α) = csc α

(d)
cos2 α

1 − sin α
= 1 + sinα

(e)
tan2 β

sec2 β
+

cot2 β

csc2 β
= 1

(f)
cos β

cos β − sin β
=

1

1 − tanβ

� 7-8. Consider a regular polygon with n sides inscribed within a unit circle as il-

lustrated.

Fill in the following table.

Regular polygons with

central isosceles exterior

sides angle base angle side apothem angle

n θ (radians) β (radians) s a (radians)

3

4

5

6

7

8
...

...
...

...
...

...

n

� 7-9. Use the given information to find sin θ, cos θ, tan θ, cot θ, sec θ, csc θ

(a) sin θ =
2

3
(b) cot θ =

4

3
(c) sec θ =

12

5
(d) csc θ =

15

8
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� 7-10. Given a circle with unit radius with P a point on the circumference defining

the angle ∠P0B = θ. Express all answers in terms of the angle θ.

(a) Find the distance PB.

(b) Find the distance 0B.

(c) Find the distance AB.

(d) Find tan θ and use the equation (7.39) to write tan θ
2

(e) Find the distance AP.

(f) Find tanα

(g) Find α in terms of θ

� 7-11. Given the triangle �ABC illustrated which is inscribed in a unit circle. Ex-

press all answers in terms of the angle θ = ∠B0D

(a) Find 0D

(b) Find BD

(c) Find BC

(d) Find AC

(e) Find AB

(f) Find cosβ

(g) Find sin β

(h) Find β in terms of θ

� 7-12.

Two observation stations A and B are 2 miles

apart. They see a UFO overhead and simultaneously

measure the angles of elevation α and β as illustrated.

Find a formula for the height of the UFO.

� 7-13. Find the area of

(a) An equilateral triangle inscribed within a unit circle.

(b) A square inscribed within a unit circle.

(c) A pentagon inscribed within a unit circle.

(d) A hexagon inscribed within a unit circle.
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� 7-14. Fill in the table below.

Exact trigonometric values for special angles

angle angle

θ θ sin θ cos θ tan θ cot θ sec θ csc θ

degrees radians

15 π
12

√
2(−1 +

√
3)

36 π
5

−1 +
√

5

75 5π
12

√
2(1 +

√
3)

105 7π
12

−
√

2(1 +
√

3)

120 2π
3

−2

150 5π
6

−2√
3

210 7π
6

−2√
3

315 7π
4

√
2

345 23π
12

−
√

2(1 −
√

3)

Hint: One method 15◦ = 45◦ − 30◦. Another method is to draw a sketch.

� 7-15.

In the right triangle given show that

y = x (tan(α + β) − tanβ)

� 7-16. Simplify the following.

(i) a sin(
π

2
+ θ) + b cos(π − θ) (ii) a sin(2π + θ) + b cos(

3π

2
− θ) (iii) a cos(

π

2
− θ)− b sin(π + θ)

� 7-17. If tan20◦ = x, find y =
sin(90◦ + 20◦) + cos(270◦ − 20◦)

csc(180◦ − 20◦) + sec(360◦ − 20◦)
Hint: What are the signs

associated with trigonometric functions in the four quadrants?

� 7-18. What values of θ, 0 < θ < 2π, satisfy the given equations? If a value of θ

satisfies the equation does the value θ + 2π also satisfy the equation?

(a) sin θ = −1

2

(b) cos θ = −1

2

(c) tan θ = −
√

3

(d) cot θ =
√

3

(e) sec θ = −
√

2

(f) csc θ = −2
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� 7-19.

Prove the following construction associated with a pen-

tagon inscribed within a given circle.

(i) Construct a circle with center 0.

(ii) Construct perpendicular diameters AB ⊥ CD.

(iii) Find the midpoint E of line segment A0.

(iv) Set a drawing compass needle at point E and pencil point

at point C and construct the arc
�
CF having radius r = EC.

(v) Show the line segment CF = � is the side length of the in-

scribed pentagon.

Hint: sin
π

5
=

1

2

√

5 −
√

5

2

� 7-20. Evaluate using principal values

(a) cos−1(−1) (b) cos−1(0) − tan−1(−
√

3) (c) sin−1(−1

2
) + cos−1(

√
3

2
)

� 7-21. Evaluate the following

(a) tan(cot−1
√

3) (b) sin(cos−1(
1

2
)) (c) cos(sin−1(

1

2
))

� 7-22. Given a circle with radius 2.

(a) Find the area of the segment and sector.

(b) Find the minor arc s1 and major arc s2.

� 7-23. Given a circle with radius r = 1. Let segment

AC ⊥ 0B, 0D a ray at angle θ and BD tangent line to

circle at point B. Show that

(i) AC = sin θ (ii) BD = tan θ (iii) θ =
�
AB

(iv) Use areas to show sin θ < θ < tan θ

Fill in the following table

θ sin θ θ tan θ

degrees radians

2◦

1◦

1
2

◦

1
4

◦
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� 7-24.

Given triangle �ABC with R the radius of the cir-

cumscribed circle. Show that

(a) BC = 2R sin A

(b) CA = 2R sin B

(c) AB = 2R sinC

� 7-25.

In the figure illustrated show that

(a) The slope of line �1 is m1 = tan θ1

(b) The slope of line �2 is m2 = tan θ2

(c) Prove that if line �1 is perpendicular to line

�2, then m1m2 = −1. Write out in words what this is

telling you. Hint: How is an exterior angle related to the interior angles of a triangle.

� 7-26. Find the area of a regular pentagon with edge of length s.

Hint: tan
[

36 π
180

]

=
√

5 − 2
√

5

� 7-27. Find the area of a regular hexagon with edge of length s.

� 7-28. Prove that sin
π

5
=

√

5

8
−

√
5

8

� 7-29. Prove that sin
π

10
=

1

4

(

−1 +
√

5
)

� 7-30. Prove that sin
3π

10
=

1

4

(

1 +
√

5
)

� 7-31. Prove that sin
2π

5
=

√

5

8
+

√
5

8

� 7-32.

Given a regular pentagon with each side having length � = 2s

and angle ∠C0D = θ.

(a) Find the circumradius R in terms of θ and s

(b) Find the inradius r in terms of θ and s

(c) If the line segment AB connects the midpoints of two sides.

Find the length of AB

(d) Find a relationship between r and R
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Geometry

Chapter 8

Trigonometry II

Law of sines

In any triangle �ABC with angles α, β, γ and

sides a, b, c one can write

sinα

a
=

sin β

b
=

sin γ

c

This is a relationship between the interior angles

of a triangle and the sides opposite these angles.

This relationship is known as the law of sines.

In the top triangle construct the perpendicu-

lar line AD to side BC to form two right triangles

In triangle �ADB, sin β =
AD

c

In triangle �ADC, sin γ =
AD

b

Consequently, one can write

c sinβ = b sinγ = AD

or
sinβ

b
=

sin γ

c
(8.1)

In the lower triangle, construct the line CD which

is perpendicular to side AB. This forms two right

triangles as illustrated.

Figure 8 -1.

Triangle �ABC

In triangle �CDB, sin β =
DC

a

In triangle �CDA, sin α =
DC

b
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Consequently,

a sinβ = b sinα = DC or
sin β

b
=

sin α

a
(8.2)

Using the fact that things equal to the same thing are equal to each other one finds

sinα

a
=

sinβ

b
=

sinγ

c
(8.3)

which is the law of sines.

In the above proof, there may arise the situation where in the triangle �ABC

one of the angles β or γ is obtuse, then it will be necessary to extend side BC in

order to drop a perpendicular to side BC. In this case the proof given above must

then be modified slightly.

Note that if you know two angles and included side

associated with a triangle, then you can calculate the

remaining angle and remaining sides of the triangle.

For example, if angles α and β are known together with

side c, then one can use the equation γ = π − (α + β) to

find the remaining angle and then can use the law of

sines to write

sin(π − (α + β))

c
=

sinβ

b
and

sin(π − (α + β))

c
=

sin α

a

from which the unknown sides a and b can be calculated. This technique is used

over and over again in surveying where it is known as the method of triangulation.

Law of cosines
Consider the triangle �ABC, illustrated in the figure 8-2, with

vertex angle A equal to α and side opposite the vertex angle CB = a

vertex angle B equal to β and side opposite the vertex angle AC = b

vertex angle C equal to γ and side oposite the vertex angle AB = c

The law of cosines associated with triangle �ABC can be expressed

a2 + b2
− 2a b cos γ =c2

b2 + c2
− 2b c cos α =a2

c2 + a2
− 2c a cos β =b2

(8.6)
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Figure 8 -2.

Obtuse triangle �ABC

Observe the cyclic changing of the letters in

the equations (8.6). Use the circles illustrated to

move each letter in an equation to the next order-

ing indicated by the arrows on the circles. Thus,

replace a by b, b by c and c by a and use a similar

replacement cycle for the angles α, β and γ.

Consider the figure 8-2 illustrating a triangle �ABC in a Cartesian coordinate

system with coordinates for vertex A as (0, 0), the coordinates for vertex B as (c, 0)

and the coordinates for vertex C as (c− a cosβ, a sinβ).

To understand where these coordinates come from first drop a perpendicular line

from vertex C to the extended line AB and note that for the right triangle �BDC

one finds

cos(π − β) =
BD

a
= − cosβ

sin(π − β) =
CD

a
= sin β

or
BD = − a cosβ

CD =a sinβ

The distance AD = c + BD = c − a cos β and the distance CD = a sin β giving vertex C

the coordinates (c − a cosβ, a sinβ). Note in the figure that the angle β is an obtuse

angle and the cosine of an angle in the second quadrant is negative.

Apply the Pythagorean theorem to triangle �ACD to obtain

(AD)2 + (CD)2 = (c − a cos β)2 + (a sinβ)2 = b2 (8.5)
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Expand the terms in equation (8.5) and show

c2 − 2c a cosβ + a2 cos2 β + a2 sin2 β =b2

or a2 + c2 − 2c a cosβ = b2
(8.6)

which states that in triangle �ABC when the sides a and c are given together with

the angle β between the sides, then the square of the side opposite angle β must

equal the sum of the squares of the other two sides minus twice the product of the

other two sides times the cosine of the angle between the other two sides.

Figure 8 -3.

Acute triangle �ABC

In the case triangle �ABC is an acute triangle as in figure 8-3, then one can drop

a perpendicular from vertex C to cut the base c = AB into two parts labeled (c − s)

and s such that (c− s)+ s = c. If h is the length of the perpendicular line constructed,

then one can apply the Pythagorean theorem to the two right triangles created to

obtain

(c − s)2 + h2 = b2 and s2 + h2 = a2 (8.7)

Expand the first equation and then substitute for h2 from the second equation to

obtain

(c2 − 2cs + s2) + h2 = b2 ⇒ (c2 − 2cs + s2) + (a2 − s2) = b2

This last result can be simplified and rearranged into the form

b2 = a2 + c2 − 2cs (8.8)
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Observe that the length s is the projection of the side a onto the base AB = c of the

triangle and can be expressed as s = a cos β which when substituted into equation

(8.8) gives the law of cosines

b2 = a2 + c2 − 2a c cosβ (8.9)

The above results can also be proven using Euclid’s results on projections (See page

152). By rotating the triangle �ABC and assigning new coordinates to the vertices

one can repeat the steps above to verify that

c2 =a2 + b2 − 2a b cosγ

a2 =b2 + c2 − 2b c cosα
(8.10)

These same results can be obtained by performing a cyclic rotation of the symbols

in equation (8.9).

Note that if one of the triangle interior angles is 90◦ or π
2

radians, then the law

of cosines reduces to the Pythagorean theorem.

Law of tangents

The law of tangents associated with a gen-

eral triangle �ABC can be expressed in any of the

forms

a − b

a + b
=

tan

(

α−β

2

)

tan

(

α+β

2

)

b − c

b + c
=

tan

(

β−γ

2

)

tan

(

β+γ

2

)

c − a

c + a
=

tan

(

γ−α

2

)

tan

(

γ+α

2

)

Note the cyclic changing of the sides a,b,c and angles α, β, γ in the above formulas.

To derive the first of these formulas one can use the law of sines and write

sin α

a
=

sin β

b
or

a

b
=

sin α

sin β
(8.11)
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Subtract 1 from both sides of equation (8.11) and write

a

b
− 1 =

sin α

sinβ
− 1 ⇒ a − b

b
=

sinα − sinβ

sin β
(8.12)

Add 1 to both sides of equation (8.11) and write

a

b
+ 1 =

sinα

sinβ
+ 1 ⇒ a + b

b
=

sin α + sinβ

sinβ
(8.13)

Taking the ratio of the equations (8.12) and (8.13) one obtains

a − b

a + b
=

sin α − sin β

sin α + sinβ
(8.14)

Using the previously derived addition and subtraction formulas for the sine function,

the right hand side of equation (8.14) is reduced to

sinα − sinβ

sinα + sinβ
=

2 cos
(

α+β
2

)

sin
(

α−β
2

)

2 sin
(

α+β
2

)

cos
(

α−β
2

) =
tan

(

α−β
2

)

tan
(

α+β
2

) (8.15)

so that equation (8.14) becomes the tangent law

a − b

a + b
=

tan
(

α−β
2

)

tan
(

α+β
2

) (8.16)

Using a cyclic rotation of the symbols, the other tangent laws are derived in a

similar manner.

Projections

Let θ denote the angle between the line seg-

ments AB and BC and then construct the line seg-

ment AD which is perpendicular to the line seg-

ment BC as illustrated. By definition

cos θ =
adjacent side

hypotenuse
=

BD

AB
or BD = AB cos θ = projection of AB onto BC

The projection of AB onto the vertical line is obtained from

cos(
π

2
− θ) =

adjacent side

hypotenuse
=

EB

AB

giving

EB = AB cos(
π

2
− θ) = AB sin θ = projection of AB onto vertical axis.
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Example 8-1.

Show for a general triangle �ABC as illustrated, show that a = b cos γ + c cos β

Proof

The projection of side c onto the side BC = a

is given by

BD = c cos β

The projection of side AC = b onto the side BC = a

is

DC = b cos γ

Adding the line segments BD and DC gives

BD + DC = b cos γ + c cosβ = a (8.17)

It is left as an exercise to perform a cyclic changing of symbols in the equation

(8.17) to obtain
b =c cos α + a cosγ

c =a cos β + b cos α

and then interpret these equations as representing the summation of projections.

Remember that if γ is the angle between two line segments a and b, then b cosγ is

the projection of b onto the line segment a (See the above triangle).

Find alternative formulas for the area of a triangle.
There are alternative ways to calculate the area of a triangle based upon your

knowledge of the sides and angles associated with the triangle.

Two sides and included angle

The area (A) of the triangle �ABC is half the base (a)

times the height (h) or

A =
1

2
ah (8.18)

In triangle �ABC sin γ =
h

b
or h = b sinγ so one alternative

representation for the area of the triangle is

A =
1

2
ab sinγ or A =

1

2
ab sinC (8.19)
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This represents half the product of two adjacent sides times the sine of the angle

between the sides. Performing a cyclic rotation of the symbols in equation (8.19)

one can obtain the area equations

A =
1

2
bc sinα, A =

1

2
ca sinβ or A =

1

2
bc sin A, A =

1

2
ca sin B (8.20)

Extended law of sines

Given a triangle �ABC one can express the law

of sines as

a

sinA
=

b

sinB
=

c

sin C
= 2R

where R is the circumradius of the given triangle.

This can be shown to be true by constructing the

diameter BD and chord DC and observing that the angles ∠BAC and ∠BDC both

subtend the same arc
�

BC . Therefore, ∠BAC = ∠BDC and

sin ∠BAC = sinA = sin∠BDC =
a

2R

because the triangle �BDC is a right triangle. Using the equation (8.20) A =
1

2
bc sin A

one can write

Area of triangle �ABC = A =
1

2
bc sinA =

1

2
bc

a

2R
=

abc

4R
(8.21)

Area in terms of inradius

The area A of a triangle �ABC in terms of the

inradius r is given by

A = rs, where s =
1

2
(a+b+c) is the semiperimeter of triangle

The proof is as follows

A1 =Area �A0C =
1

2
rb

A2 =Area �A0B =
1

2
rc

A3 =Area �B0C =
1

2
ra
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Add the above equations using the whole is the sum of its parts to show

Area �ABC = r s where s =
1

2
(a + b + c)

is the semiperimeter of the triangle.

Angle-side-angle area

Using the law of sines
sin α

a
=

sinβ

b
one can write b = a

sin β

sin α
and then substitute

for b into the equation (8.19) to obtain

A =
1

2
a2 sinβ sin γ

sinα
=

1

2
a2 sin β sin γ

sin(π − (β + γ))
=

1

2
a2 sin β sin γ

sin(β + γ)
(8.22)

Note that in the above equation the angle α has been replaced by π− (β + γ) because

the interior angles of any triangle must satisfy α + β + γ = π. Making cyclic changes

to the area formula (8.22) one finds the additional area formulas

A =
1

2
b2 sin γ sinα

sin(γ + α))
and A =

1

2
c2 sin α sinβ

sin(α + β)
(8.23)

We know that for a triangle with height h and

base c that

Area =
1

2
(base)(height) =

1

2
ch (8.24)

By constructing the perpendicular line h from the

vertex C one divides the base into two parts which

are labeled c1 and c2 such that c = c1 + c2 as illus-

trated in the figure.
But

tanα =
h

c1

tan β =
h

c2

or
c1 =

h

tanα

c2 =
h

tanβ

(8.25)

The equations (8.25) can be used to write

c = c1 + c2 =
h

tanα
+

h

tan β
= h(cot α + cot β)

so that
Area =

1

2
hc =

1

2
h2(cotα + cot β)

=
1

2
h2 (cot α + cotβ))2

(cotα + cotβ)

=
1

2

c2

cotα + cot β

(8.26)

Thus, knowing two angles and included side one can determine the area of the

triangle.
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Example 8-2.

Apply the results from equations (8.26) and

(8.23) to the figure given and obtain the represen-

tations

Area �ABC = A =
1

2
c2 sinα sin β

sin(α + β))

Area �ABC = A =
1

2

c2

cot α + cotβ

Show these equations are equivalent.

Solution

1

cot α + cotβ
=

1

cos α

sin α
+

cosβ

sinβ

=
1

cos α sin β + cos β sinα

sinα sin β

=
sin α sinβ

sin(α + β)

Example 8-3. Find shortest distance.

As part of a cellular network a cell tower (T) is

to be constructed at a site near a major highway

which is assumed to be a straight line. A lake

exists between the proposed cell tower and the

highway. A surveyor uses a transit and measures

the angles α and β as well as the distance a = x1x2.

Find the shortest distance (y) from the highway

to the tower, using the known information.

Solution

Use the result from the equation (8.23) and show that the area of triangle �Tx1x2

is given by

Area �Tx1x2 =
1

2
ay =

1

2
a2 sinα sin β

sin(α + β)
(8.27)

Simplify the equation (8.27) and show

y = a
sin α sin β

sin(α + β)
(8.28)
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If a = 2 miles, α = 60◦ = π/3 radians and β = 70◦ = 7π/18 radians, then

y = 2
sin(π/3) sin(7π/18)

sin(π/3 + 7π/18))
= 2.12467 miles =

(

2.12467 miles
)

(

5280
ft

mile

)

= 11, 218.3 feet

Example 8-4.

Show that in a general triangle �ABC

a + b

c
=

cos
(

α−β
2

)

cos
(

α+β
2

)

b + c

a
=

cos
(

β−γ
2

)

cos
(

β+γ
2

)

c + a

b
=

cos
(

γ−α
2

)

cos
(

γ+α
2

)

Solution

By the law of sines
a

sinα
=

b

sinβ
=

c

sin γ

so that one can write
a

b
=

sin α

sin β

Add 1 to both sides of this equation to show

a

b
+ 1 =

sinα

sinβ
+ 1 ⇒ a + b

b
=

sin α + sinβ

sinβ
(8.29)

Rearrange the equation (8.29) and show

a + b

sin α + sinβ
=

b

sinβ
=

c

sin γ

or
a + b

c
=

sin α + sinβ

sin γ
=

sinα + sinβ

sin(π − (α + β))
(8.30)

Now use the equations (7.17)and (7.52) to express the equation (8.30) in the form

a + b

c
=

2 sin
(

α+β
2

)

cos
(

α−β
2

)

sinπ cos(α + β) − cosπ sin(α + β)
(8.31)



326

In equation (8.31) note that

cos π = −1, sin π = 0 and sin(α + β) = sin 2

(

α + β

2

)

so that by using the double-angle formula (7.23) one can alter equation (8.31) to

have the form

a + b

c
=

2 sin
(

α+β
2

)

cos
(

α−β
2

)

2 sin
(

α+β
2

)

cos
(

α+β
2

)

which simplifies to the result

a + b

c
=

cos
(

α−β
2

)

cos
(

α+β
2

)

Performing a cyclic changing of the symbols in the above equation will produce the

other equations given above.

The circle

Associated with every circle is a radius of length r. Recall that as the radius

rotates through an angle θ an arc length s is swept out as the radius rotates. When

the angle θ is 2π the arc length s = 2πr, the circumference of the circle. Using

proportions one can write
θ

2π
=

s

2πr
⇒ s = r θ (8.32)

The arc length s is determined by the radius r and the central angle θ in radians.

When the radius sweeps out an arc length s a sector of the circle is created. The

minor sector of a circle is the area between the arc length s and the two radii r as

illustrated in the figure 8-5.
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Figure 8 -5. Sector, chord, arc length and segment of a circle.

The major sector is the area of the circle minus the area of the minor sector. To find

the area of a minor sector one can again use proportions. The ratio of the minor

sector area As to the angle θ is in the same ratio as the area of the circle is to 2π or

As

θ
=

π r2

2π
⇒ As =

1

2
r2 θ (8.33)

where the central angle θ is in radians. One could also use the ratio of area of sector

compared to area of circle being in the same ratio as the arc length s compared to

the total circumference to obtain

As

Area of circle
=

s

circle circumference
As

π r2
=

rθ

2π r
⇒ As =

1

2
r2 θ (8.34)

The chord of a circle is any line segment whose endpoints lie on the circle circum-

ference. The segment of a circle is the area between a chord of length 2x and the

arc length (s) subtended by the chord. The segment of a circle is also illustrated in

the figure 8-5. The maximum distance between the arc length s and the chord 2x

is denoted by h and has the official name of sagitta. The distance L = r − h is the

height of the triangle �A0B having the chord for its base.

The area of the segment Asegment is the area of the sector As minus the area of

the triangle. Verify that in triangle �A0B, with base 2x and height L, the following

relations hold
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2α + θ =π ⇒ α =
π

2
− θ

2
(8.35)

sin α =
L

r
⇒ L = r sin α (8.36)

cos α =
x

r
⇒ x = r cos α (8.37)

L2 + x2 =r2 ⇒ L =
√

r2 − x2 (8.38)

sagitta h = r − L =r −
√

r2 − x2 = r − r sin α = r

(

1 − cos
θ

2

)

(8.39)

Area �A0B =
1

2
(2x)L =

1

2
[2r cos α] [r sin α]

=
1

2
r2 sin 2α =

1

2
r2 sin(π − θ) =

1

2
r2 sin θ (8.40)

Asegment = As −AreaA0B =
1

2
r2θ − 1

2
r2 sin θ =

1

2
(θ − sin θ) r2 (8.41)

chord length 2x =2r sin
θ

2
= 2r

√

1 − cos2
(

θ

2

)

2x =2r

√

1 −
(

1 + cos θ

2

)

= r
√

2 − 2 cos θ (8.42)

Intersection and Union of sets
The intersection of two sets A and B

is denoted A ∩ B and is defined as the set of

elements common to both sets A and B.

A ∩ B = { x : x ∈ A and x ∈ B }

This is read as � A intersection B is the set

of elements x such that x is in A and x is in B.�

The union of two sets A and B

is denoted A ∪ B and is defined as the set of

elements in set A, in set B or in both A and B.

A ∪ B = { x : x ∈ A or x ∈ B }

This is read � A union B is the set

of elements x such that x is in A or x is in B

or x is in both A and B. �
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The lune

A lune is the area bounded by two circular arcs.

Convex-convex1 area called a lens.
Concave-convex area called a lune.

In terms of set theory language, the lunes illustrated in the figure are defined

L1 = A − A ∩ B, and L2 = B − A ∩ B

The area associated with certain special lunes are easily calculated. Consider

the figure 8-6 where one draws a chord AB of length 2x inside a circle. One can

then use a drawing compass and find the midpoint of the chord and label the length

of half the chord as the distance x as illustrated. Widen the drawing compass and

place the needle of the compass at the midpoint and the pencil point on either point

A or B. One can then construct the red semi-circle with area 1

2
πx2 as illustrated.

Figure 8 -6. Construction of special lune.

An examination of the figure 8-6 one finds

Area of lune =Area of semicircle−Area of segment

Alune =
1

2
πx2 − 1

2
(θ − sin θ)r2

1 If you are inside an area, then one says a boundary curve is convex if the curve extends outward. The boundary

curve is called concave if it extends inward.
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where r is the radius of the original circle, 2x is length of chord and diameter of

constructed semi-circle and the area of the segment is obtained from the previous

equation (8.41).

Slopes and angle between intersecting lines

Consider the intersection of two lines �1 and

�2 as illustrated. Recall the definition of the slope

of the line �1 which is

Slope of line �1 = m1 =
change in y
change in x

This is also the definition associated with the tan-

gent of the angle θ1 which is the angle between the

line �1 and the x-axis. Consequently, one can write

m1 = Slope of line �1 = tan θ1 (8.43)

In a similar fashion one can show the slope of the

line �2 is given by m2 = tan θ2.

The angle α represents the angle formed by rotating the line �1 in a counterclock-

wise direction about the point of intersection, to the line �2. The angle of rotation

α is defined as the angle of intersection associated with the intersection of the two

lines �1 and �2. The angle of intersection α is related to the slope angles θ1 and θ2 by

the relation

θ2 = θ1 + α (8.44)

because the exterior angle θ2 is equal to the sum of the two opposite interior angles

of a triangle. Therefore, α = θ2 − θ1 and

tan α = tan(θ2 − θ1) =
tan θ1 − tan θ1

1 + tan θ1 tan θ2

=
m2 −m1

1 + m1m2

(8.45)

One way to remember this result is to write it in the form

tanα =

←−
m2 − m1

1 + m1m2

(8.46)

where the left arrow is to remind you that line �1 with slope m1 is being rotated in a

counterclockwise direction about the point of intersection toward line �2 with slope

m2 to form the angle of intersection α.
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Example 8-5. Three noncollinear points form a triangle. Consider the triangle

formed by the three points (x1, y1), (x2, y2), (x3, y3) as in the figure below, where the

lines `1, `2 and `3 make up the sides of the triangle. Find the interior angles α, β and

γ of the triangle.

Solution

Figure 8 -7. Triangle formed from three given points.

The equation of line `1 is y − y1 = m1(x − x1)

The equation of line `2 is y − y2 = m2(x − x2)

The equation of line `3 is y − y3 = m3(x − x3)

where the slopes m1, m2, m3 of the lines `1, `2, `3 are given by the equations

m1 =
y2 − y1

x2 − x1

m2 =
y3 − y2

x3 − x2

m3 =
y3 − y1

x3 − x1

(8.47)

which represent the change in y-values divided by the change in x-values while mov-

ing from one vertex to another of the triangle. The angles formed by the intersection

of the lines defines the interior angles of the triangle. One can write

tan α =
m3 −m1

1 + m1m2

tanβ =
m1 − m2

1 + m1m2

tan γ =
m2 − m3

1 + m2m3

(8.48)

and from these equations the angles α, β, γ can be determined.

For example, given the points

(x1, y1) = (1, 4) (x2, y2) = (4, 1) (x3, y3) = (4 + 3

√

3

2
,
11

2
)
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one finds the slopes of the lines connecting these points are

m1 =
1 − 4

4 − 1
= −1 m2 =

11

2
− 1

4 + 3
√

3

2
− 4

=
3√
3

=
√

3 m3 =
11

2
− 4

4 + 3
√

3

2
− 1

= 2 −
√

3 (8.49)

Using these slopes in the equations (8.48) one finds

tan α =
2 −

√
3− (−1)

1 + (−1)(2−
√

3)
=

√
3 so that α = tan−1

√
3 =

π

3
(8.51)

The angle γ is determined from the equation

tan γ =

√
3 − (2 −

√
3)

1 +
√

3(2 −
√

3)
= 1 so that γ = tan−1(1) =

π

4
(8.51)

We know the sum of the interior angles of a triangle must sum to π radians so that

α + β + γ = π or β = π − π

4
− π

3
=

5π

12
(8.52)

Normal form for equation of a line
The normal form for the equation of a line � with slope m is determined by the

perpendicular distance p = 0B from the origin to the line. This distance is called

the normal distance from the origin to the line. The line �N through the origin and

normal to line � is called the normal line. The normal line �N creates an angle α

with the x-axis and has slope −1

m
= tan α and is illustrated in the figure 8-8.

The normal form for the equation of a line is constructed by selecting a variable

point (x, y) on the line � and then projecting the distances x and y onto the line �N .

Note that
0A = x cos α = projection of x onto line �N

AB = y cos(
π

2
− α) = y sin α = projection of y onto line �N

(8.53)

These projections are highlighted in red in the figure 8-8.
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Figure 8 -8. Normal line �N perpendicular to line �

The sum of these projections gives

0A + AB =0B

or x cosα + y sin α =p
(8.54)

Here p is always positive unless the line � passes through the origin. The equation

(8.54) is known as the normal form for the equation of a line �. The normal form for

the equation of a line can be used to find the perpendicular distance d from a general

point (x1, y1) to the line �. The procedure for calculating this distance is illustrated

in the following example.
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Example 8-6.

Find perpendicular distance d from point (x1, y1) to a given line �.

Solution

The general form for the equation of a line � is

Ax + By + C = 0 (8.55)

where A, B, C are constants.

Construct a right triangle with sides A and

B and hypotenuse
√

A2 + B2 and label the angle

between side A and the hypotenuse as angle α as

illustrated in the figure.

Define the quantities

cos α =
A

±
√

A2 + B2
, sin α =

B

±
√

A2 + B2
, p =

C

∓
√

A2 + B2
(8.56)

Note that if equation (8.55) is multiplied by 1

±
√

A2+B2
one obtains

A

±
√

A2 + B2
x +

B

±
√

A2 + B2
y +

C

∓
√

A2 + B2
= 0 (8.57)

or

x cos α + y sin α − p = 0 (8.58)

where the sign + or − assigned to the square root function is selected so that p is

a positive quantity. The sign selected will always be opposite of the sign of the

constant term C in the original equation.

Select an arbitrary point (x1, y1) not on the line � as in figure 8-9. In the figure

0A =x1 cos α = projection of x1 on line �N

AQ =y1 cos(
π

2
− α) = y1 sin α = projection of y1 on line �N

Examination of figure 8-9 shows that

0A + AQ = 0Q = p + d = x1 cos α + y1 sin α (8.59)

This equation can be rewritten to obtain the perpendicular distance d of the point

(x1, y1) from the line � as

d = x1 cos α + y1 sinα − p (8.60)
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Using equation (8.57) this can be written as

d =
Ax1 + By1

±
√

A2 + B2
+

C

∓
√

A2 + B2
(8.61)

where the sign on the square root is selected opposite to that of the constant C.

Figure 8 -9. Normal line �N perpendicular to line � with (x1, y1) not on line �

The normal form for the equation of a line has the representation

x cosα + y sin α − p = 0 (8.62)

and has the property

(a) If you substitute the values x = x1 and y = y1 into equation (8.62) and obtain

zero, then the point (x1, y1) is on the line.

(b) If you substitute the values x = x1 and y = y1 in equation (8.62) and obtain a

nonzero value d, then this value represents the normal distance from the point (x1, y1)

to the line �. The above result agrees with our previous result from chapter 4.
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Example 8-7. Find the equation of the angle bisectors associate with the vertex

angle A of triangle �ABC illustrated in the figure 8-10.

Figure 8 -10.

Finding equations for angle bisectors.

The given triangle �ABC has the vertex A at the position (x0, y0) and the lines

through the sides of the triangle which pass through the vertex A have the equations

y − y0 = m1(x − x0) and y − y0 = m2(x − x0) where m1 = tan θ1 and m2 = tan θ2.

The angle bisector of vertex angle A produces m∠A = 2α and intersects the

triangle base at an angle θ3 = θ1 + α since the exterior angle of the triangle �ABD

must equal the sum of the two opposite interior angles. Using the fact that the sum

of the interior angles of triangle �ABC must equal π radians one finds

2α + θ1 + (π − θ2) = π ⇒ α =
(θ2 − θ1)

2
⇒ θ3 =

θ1 + θ2

2

Hence the bisector of the vertex angle A has the equation y − y0 = m3(x − x0) where

m3 = tan θ3. The angle π−A is an exterior angle at vertex A with an angle bisector EF

which is perpendicular to the interior angle A bisector and therefore has the equation

y − y0 = m4(x − x0) where m4 = −1

tan θ3

because if the bisector lines are perpendicular

the product of their slopes must equal -1.
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An alternative form for m3 = tan θ3 = tan( θ1+θ2

2
) is obtained using some trigonom-

etry. Observe that

m3 = tan

(

θ1 + θ2

2

)

=
1 − cos(θ1 + θ2)

sin(θ1 + θ2)
=

1 − [cos θ1 cos θ2 − sin θ1 sin θ2]

sin θ1 cos θ2 + cos θ1 sin θ2

Divide both the numerator and denominator by cos θ1 cos θ2 to show

m3 =
1

cos θ1 cos θ2

− 1 + tan θ1 tan θ2

tan θ1 + tan θ2

=

√
sec2 θ1

√
sec2 θ2 − 1 + tan θ1 tan θ2

tan θ1 + tan θ2

Using the Pythagorean identity 1 + tan2 θ = sec2 θ and the substitutions m1 = tan θ1,

m2 = tan θ2 one finds

m3 =
m1m2 − 1 +

√

1 + m2
1

√

1 + m2
2

m1 + m2

This is a relation for the slope of the bisector line knowing the slopes m1 and m2 of

the intersecting lines which create the angle being bisected. The reciprocal −1

m3

gives

the slope of the bisector line for the exterior angle.

Sum of interior angles of simple polygons
We know the sum of the interior angles of a triangle is 180◦ or π radians. Let

us investigate the sum of the interior angles of polygons with 4,5,6,. . . sides. Let us

begin by examining the interior angles of a quadrilateral as illustrated in the figure

8-11.

Figure 8 -11.

Triangles inside selected convex polygons.
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Select a point inside the quadrilateral and then draw lines from the selected

point to each vertex of the quadrilateral. This creates four triangles inside the

quadrilateral. The interior angles of each triangle is 180◦ or π radians. The sum of

the angles from each triangle is 4(180◦) or 4π radians. The central angles around the

point selected inside the triangle sum to 360◦ = 2(180◦) or 2π radians. Therefore, the

sum of the interior angles of a quadrilateral is

Sum of angles of triangles− Sum of angles around selected central point (8.63)

This gives

4(180◦) − 2(180◦) = 2(180◦) or 4π − 2π = 2π radians

as the sum of the interior angles of a quadrilateral.

In a similar fashion select a point inside a pentagon and construct lines from

this point to each of the five vertices. This creates five triangles. The sum of the

interior angles of a pentagon can be determined by the use of equation (8.63) which

produces the relation

5(180◦) − 2(180◦) = 3(180)◦ or 5π − 2π = 3π radians

as representing the sum of the interior angles of a pentagon.

Note that a pattern is developing. By selecting an interior point inside a hexagon,

then one can create six triangles so that the equation (8.63) can be used to determine

the sum of the interior angles of a hexagon. This gives

6(180◦) − 2(180◦) = 4(180◦) or 6π − 2π = 4π radians (8.64)

This pattern can be extended to determine the sum of the interior angles of an

n-gon as

n(180◦) − 2(180◦) = (n − 2)(180◦) or nπ − 2π = (n − 2)π radians

In summary, one can state that the summation of the interior angles of an n-gon

will be (n − 2)π radians.
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Sum of exterior angles of simple polygons

One can set up a pattern for calculating the

summation of the exterior angles of a n-gon. Ex-

amine the hexagon illustrated with the exterior

angles εi, i = 1, 2, 3, 4, 5, 6 and interior angles αi,

i = 1, 2, 3, 4, 5, 6. Note the summation of an exterior

angle with its corresponding interior angle will al-

ways produce the result π because these angles are

supplementary. Consequently one can write

α1 + ε1 =π

α2 + ε2 =π

α3 + ε3 =π

α4 + ε4 =π

α5 + ε5 =π

α6 + ε6 =π

(8.65)

and a summation of the terms on the left-hand and right-hand sides of equation

(8.65) produces the result
6

∑

i=1

αi +
6

∑

i=1

εi = 6π (8.66)

We know
6

∑

i=1

αi represents the summation of the interior angles of the hexagon and

this result is (6 − 2)π from equation (8.64). Therefore, equation (8.66) becomes

6
∑

i=1

εi = 6π − (6 − 2)π = 2π (8.67)

The equation (8.67) can be generalized in the case of an n-gon instead of a

hexagon. Just replace 6 in equation (8.67) by n to obtain

n
∑

i=1

εi = nπ − (n − 2)π = 2π (8.68)

which tells us that the summation of the exterior angles of an n-gon must equal 2π.

In summary, we have discovered that the summation of the exterior angles of an

n-gon will always equal 2π.
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Area of regular polygons

Consider the regular polygons illustrated in the figure 8-12. These polygons

have equal sides and equal interior angles. The symmetry associated with regular

polygons allows one to take the summation of the interior angles of an n-gon ((n−2)π)

and then divide by n to determine the angular value at a single vertex. The center

point of a regular polygon is the point inside the boundaries which is equidistant

from each vertex. The apothem of a regular polygon is the distant from the center

point to the midpoint of a side. The center point and apothem for selected regular

polygons are illustrated in the figure 8-12. Note that the distance from the center

of a regular polygon to a vertex gives the radius (r) of a circumscribed circle and

the distance from the center to the midpoint of a side gives the apothem (a) which

represents the radius of the inscribed circle. Each regular polygon has an isosceles

triangle consisting of a side si, i = 4, 5, 5, 7, . . . and two radii ri, i = 4, 5, 6, 7, . . .. Each

regular polygon has an apothem ai, i = 4, 5, 6, 7 . . . which represents the height of the

single triangles illustrated in the figure 8-12. Let Ai, i = 4, 5, 6, 7, . . . denote the area

of a single triangle associated with a regular polygon of i-sides and let Ati denote

the total area associated with a regular polygon of i-sides. Also let Pn denote the

perimeter of a regular polygon having n equals sides. Using a summation of triangle

areas one can verify

Area of single triangle Total area of polygon

square n = 4 A4 =
1

2
a4s4 At4 = 4A4 = 4

1

2

(s4

2

)

s4 = s2
4

pentagon n = 5 A5 =
1

2
a5s5 At5 = 5A5 =

1

2
a5(5s5) =

1

2
a5P5

hexagon n = 6 A6 =
1

2
a6s6 At6 = 6A6 =

1

2
a6(6s6) =

1

2
a6P6

heptagon n = 7 A7 =
1

2
a7s7 At7 = 7A7 =

1

2
a7(7s7) =

1

2
a7P7

...
...

n-gon An =
1

2
ansn Atn = nAn =

1

2
an(nsn) =

1

2
anPn
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Figure 8 -12.

Selected regular polygons

Observe that in the special case of a square the apothem is given by a4 = s4

2
so that

the total area for the square is the side squared. Generalizing the area results for

the other polygons one finds

Area of regular polygon =
1

2
(apothem)(perimeter)

which states the general formula for the area of a regular polygon is half the product

of the apothem times the perimeter of the regular polygon.

The n-gon

For a regular polygon of n-sides, called a n-gon, let a denote the apothem, which

is the perpendicular distance from the center of the regular n-gon to any side. This

is also the radius of the inscribed circle. Let R denote the radius of the n-gon, which

is the distance from the center of the n-gon to any vertex. The distance R also

represents the radius of the circumscribed circle. Let α = 2π
n

denote the central angle

associated with the n-gon and let sn denote the length of any side of the n-gon. The



342

above defined quantities are illustrated in the figure 8-13.

Figure 8 -13.

Section of an n-gon

Dropping a perpendicular from the center of the n-gon to a side of length forms a

right triangle from which one can obtain the relations

cos
α

2
=

a

R
, sin

α

2
=

sn/2

R
, tan

α

2
=

sn/2

a
(8.69)

Using these relations the total area of a regular n-gon can be expressed in any of

the following forms

Area = n

[

1

2
asn

]

= n

[

1

2
s2
n cot

α

2

]

= n
[

a2 tan
α

2

]

= n

[

1

2
R2 sinα

]

(8.70)

The first area formula is just the height of the triangle section, the apothem (a)

times the base (sn). Into this first area formula substitute a = sn/2

tan
α

2

to obtain the

second area formula. Substitute into the second area formula for equation (8.70)

sn = 2a tan α
2

to obtain the third area formula. By substituting a = R cos α
2

into the

third area formula one obtains the fourth area formula. All the above substitutions

use to change the forms for the area come from the equations (8.69).
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In a similar fashion one can construct various ways to represent the perimeter

P of the n-gon. One can express the perimeter P in any of the forms

Perimeter P = nsn = n
[

2R sin
α

2

]

= n
[

2a tan
α

2

]

(8.71)

Note that the various forms are all constructed from the identities of equation (8.69).

Area of irregular polygons

The figure 8-14 illustrates selected irregular shaped polygons. The problem is to

find the area and perimeter associated with these plane figures. It will be assumed

that the Cartesian coordinates of the polygon vertices are known.

Figure 8 -14. Irregular shaped polygons

To find the area of irregular shaped polygons such as the ones illustrated in the

figure 8-14 one can proceed using one of the following methods.

Construct triangles

Start at a vertex of the given irregular polygon and construct triangles by draw-

ing lines to the other vertices as illustrated in the figure 8-15(a). The problem is

then reduced to finding the area of each triangle. The total area of the polygon is

then a summation of these areas.



344

Figure 8 -15. Area associated with irregular shaped polygons

To find the area of a single triangle

with known coordinates, one can drop per-

pendicular lines from each vertex to the

x-axis as illustrated in the accompanying

figure. The area of the triangle �ABC is

then given by









Area of

trapezoid

ABx2x1









+









Area of

trapezoid

BCx3x2









−









Area of

trapezoid

ACx3x1









The area of the trapezoids is the average height times the base so that one can

write

Area�ABC =
1

2
(y2 + y1)(x2 − x1) +

1

2
(y2 + y3)(x3 − x2) −

1

2
(y1 + y3)(x3 − x1)
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Construct trapezoids

To find the area of the irregular polygon in figure 8-15(b) one can drop perpen-

dicular lines from each vertex to the x-axis as illustrated. The area of the polygon

is then obtained as an addition followed by a subtraction of areas associated with

trapezoids. For example, in the figure 8-15(b) the area of the polygon ABCDE is

calculated using









Area of

trapezoid

ABx1x0









+









Area of

trapezoid

BCx3x1









+









Area of

trapezoid

CDx4x3









−









Area of

trapezoid

AEx2x0









−









Area of

trapezoid

EDx4x3









Exercises

� 8-1.
Given the triangle �ABC

(a) If α = 30◦, a = 5, c = 7, find angle γ.

(b) If β = 45◦, b = 7, a = 4, find angle α.

(c) If γ = 120◦, c = 12, α = 30◦, find side a.

(d) If α = 35◦, γ = 100◦, a = 6, find side c.

� 8-2.
Write out the law of sines for

(a) �ADE (b) �ACD (c) �ACE

(d) �ABC (e) �ABD

(f) Show
sin γ

c

sinα

a
=

sin(α + β)

a + b

sin(β + γ)

b + c

� 8-3.
The previous problem developed an equa-

tion that can be used by a surveyor to find the

length x of a lake if the angles α, β, γ and dis-

tances a, c are known. Show how one can solve

for the distance x.
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� 8-4.
For triangle �ABC the law of sines states

b

a
=

sinβ

sin α

(a) Use the theory of proportions to show

a − b

a + b
=

sin α − sin β

sin α + sinβ

(b) Use the sum and difference formulas to show
a − b

a + b
=

tan 1

2
(α − β)

tan 1

2
(α + β)

� 8-5.
The law of cosines for triangle �ABC is

a2 = b2 + c2 − 2bc cosα

(a) Show that cos α =
b2 + c2 − a2

2bc

(b) Show that 1 − cos α =
(a − (b − c))(a + (b − c))

2bc
(c) Let s = 1

2
(a + b + c) denote the semiperimeter of the triangle �ABC and show

(i) a − b + c = 2(s − b)

(ii) a + b− c = 2(s − c)

(iii) Show part (b) above can be written sin
α

2
=

√

(s − b)(s − c)

bc
(iv) Show that by using the cyclic rotation a− > b− > c− > a, one finds

sin
β

2
=

√

(s − c)(s − a)

ac
, sin

γ

2
=

√

(s − a)(s − b)

ab

� 8-6.

In the triangle �ABD only α, β and h are

known. In the triangle �ABC only γ and h are

known. Express the following in terms of known

quantities.

(a) Find the distance Y

(b) Find the area of triangle �ABD

(c) Find the area of triangle �ABC

(d) Find the distance X

A good surveyor knows how to solve this problem.
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� 8-7.

Explain how to find the area of the given

triangle if you are given

(a) the angles α, β and side c. For example,

α = 25◦, β = 30◦, c = 10

(b) the three sides a, b, c. For example, a = 10, b = 5, c = 8

(c) the sides a and c along with angle β. For example, a = 10, c = 12, β = 30◦

(d) the angles α, γ and side b. For example, α = 25◦, γ = 68◦, b = 12

� 8-8.
For triangle �ABC the law of cosines is

a2 = b2 + c2 − 2bc cosα

(a) Show that cos α =
b2 + c2 − a2

2bc

(b) Show that 1 + cos α =
(b + c− a)(b + c + a)

2bc

(c) Let s =
1

2
(a + b + c) denote the semiperimeter of triangle �ABC

(i) Show (b + c − a) = 2(s − a)

(ii) Show (b + c + a) = 2s

(iii) Show cos
α

2
=

√

s(s − b)

bc

(iv) Show using a cyclic rotation of the symbols

cos
β

2
=

√

s(s − b)

ac

cos
γ

2
=

√

s(s − c)

ab

� 8-9. Use the results from the two previous problems to show

tan
α

2
=

√

(s − b)(s− c)s(s − a), tan
β

2
=

√

(s − a)(s − c)

s(s − b)
, tan

γ

2
=

√

(s − a)(s − b)

s(s − c)

Check that these equations follow the pattern associated with a cyclic rotation of

the symbols.

� 8-10. In the triangle �ABC

(a) If b = 10, α = 58.3◦, β = 48.7◦, then find side a.

(b) If a = 10, α = 78.2◦, γ = 31.5◦, then find side c.

� 8-11. Assume π
2
≤ θ ≤ π. Let φ denote the supplementary angle associated with θ.

Verify the following. sin θ = sin φ, cos θ = − cosφ, tan θ = − tanφ, cot θ = − cotφ
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� 8-12.

For each of the circles given, find (i) the chord length,

(ii) the area of the segment, (iii) area of the sector and (iv)

the minor arc length.

(a) θ = π
3
, r = 2, (b) θ = π

4
, r = 4, (c) θ = π

6
, r = 6

� 8-13.
Find the area of the lune illustrated when the fol-

lowing conditions exist.

(a) r = 2, θ = π
3
, (b) r = 1, θ = π

6
, (c) r = 3, θ = 5π

12

� 8-14. Find the area of the given polygons.

(a) Pentagon with vertices (0, 0), (1, 3), (3, 4), (5,−1), (2,−1)

(b) Hexagon with vertices (1, 1), (2, 3), (0, 4), (−2, 3), (−3, 2), (−1, 1)

(c) Heptagon with vertices (1, 5), (2, 7), (4, 8), (6, 7), (5, 4), (4, 2), (3, 1)

� 8-15. Find the angle at point of intersection for the given lines.

(a) �1 : y = 3x − 7 �2 : y = m2x + 16, m2 = −2− 5/
√

3

(b) �1 : y = 3x − 7 �2 : y = m3x + 16, m3 = −2

(c) �1 : y = 3x − 7 �2 : y = m4x + 16, m4 =
1

13
(−6− 5

√
3)

� 8-16. Find the internal angles of the triangle having the vertices at the given

points.

(a) (1, 1), (3, 5), (6,−1), (b) (−1,−1), (1, 5), (4, 3), (c) (2,−4), (7, 1), (3, 5)

� 8-17. Find the normal form for the equation of the given line.

(a)
x

3
+

y

4
= 1 (b) y = 3x − 7 6x + 8y = 10

� 8-18. Find the perpendicular distance from the point (100, 100) to the given line.

(a) y = 3x, (b) 3x + 4y = 10, (c) 5x + 12y = 13
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� 8-19.

(a) Given α = 31◦, β = 40◦, b = 4, solve for side a.

(b) Given β = 41◦, γ = 25◦, b = 4, c = 10, solve for side b.

(c) Given α = 32◦, γ = 24◦, c = 10 solve for side a.

� 8-20. Each sketch has two lunes associated with it. Shade these lunes.

� 8-21. Use trapezoids to find the area of the triangles having the vertices given.

(a) (1, 1), (4, 5), (6, 3)

(b) (−2, 2), (0, 8), (3, 5)

(c) (5, 5), (8, 10), (6, 1)

� 8-22. Given triangle �ABC inside circle.

(a) Show h = c sinα

(b) Show sin α = a
2R

(c) Show [ABC] = 1

2
bh = abc

4R

� 8-23.

Given a triangle �ABC with r the radius of the in-

scribed circle, R the radius of the circumscribed circle

and a, b, c representing the sides of the triangle. Show

that

rR =
abc

2(a + b + c)

Hint: Show [ABC] = [A0B] + [B0C] + [C0A]
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� 8-24.

The triangle �ABC is a right triangle with AB the

diameter of a circle with radius r. There are two lunes

each associated with a leg of the right triangle.

(a) Find the area of each lune.

(b) Find the area of the triangle �ABC

(c) Show the sum of lune areas equals the triangle area.

� 8-25.

Given triangle �ABC with sides a, b, c circumscribed by

circle with center 0. Construct the radii 0A, 0B, 0C and per-

pendicular lines 0D, 0E, 0F.

(a) Show ∠B0D = ∠A, ∠C0E = ∠B, ∠A0F = ∠C

(b) Show a

sin A
= b

sin B
= c

sin C
= 2R

� 8-26.

Given a circle centered at the origin

(0, 0) having radius r which intersects a

circle centered at (d, 0) having a radius

R > r as sketched above. Construct the

chord having length � and construct line

joining the center of the circles having

length d1 + d2 = d. Define the angles α

and β as illustrated.

(a) Show r sinα/2 = R sinβ/2

(b) Show length of chord is � = 2r sinα/2 = 2R sinβ/2

(c) Show area of segment A2 = r
2

2
(α − sin α)

(d) Show area of segment A1 = R
2

2
(β − sinβ)

(e) Find the area common to both circles.

(f) Examine the special case r = R with d = r.



351

Geometry

Chapter 9

More properties of geometric shapes

The circle

Let us review some of our knowledge of the circle and also introduce some new

terminology. A circle is the set of points equidistant from a fixed point called the

center of the circle. The circumference of the circle is the distance around the circle.

The radius (plural radii) of the circle is the shortest distance from the center of the

circle to a point on the circumference.

Figure 9 -1. Terminology for the circle

We have previously shown that

The diameter (d) of the circle is twice the radius (r) or d = 2r

The circumference (c) of a circle is 2π times the radius (r) or c = 2πr

The area (A) of a circle in π times the radius squared or A = πr2

Any line joining two distinct points on the circumference of the circle is called

a chord. Any line which intersects the circle in two points is called a secant line. A

tangent line to a circle, in the plane of the circle, is any line which intersects with

the circle in exactly one point. This one point is called the point of tangency.

Any angle θ with vertex at the center of the circle is called a central angle.1

The central angle defines an arc length2 s =
�

AB on the circumference of the circle,

1 All angles will be expressed in radians. The conversion factor 1◦ = 2π/360 radians will convert degrees to

radians.
2 There are two measures for the arc length on a circle (i) the central angle θ in degrees associated with the

subtended arc and (ii) the arc length s = rθ with θ in radians. Remember that the central angle divides the

circumference of the circle into a minor arc and a major arc.
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with distance s = rθ (θ in radians), determined by the central angle θ and the radial

distance of the circle. The area bounded by two radii making up the sides of the

central angle together with the arc
�

AB subtended by the central angle defines a

sector of the circle, where we have previously shown the area of the sector is given

by

Asector =
1

2
r2θ

where the central angle θ is in radians.

The two sides of the central angle intersect the circumference of the circle at

two points A and B. The chord joining the points A and B and the arc on the

circumference
�
AB define an area called a segment of the circle. We have shown that

the area of a segment is given by

Area of segment = Asegment =Area of sector− Area of triangle �A0B

Asegment =
1

2
r2(θ − sin θ)

sagitta = h =r

(

1 − cos
θ

2

)

chord length AB =2r sin
θ

2

where the central angle θ is in radians.

The geometric representation associated with the above terminology is illus-

trated in the figure 9-1.

Equation of circle Cartesian coordinates

In Cartesian coordinates let (x, y) denote a variable point which can move around

the x, y-plane and let (x0, y0) denote a fixed point as illustrated in the figure 9-2. The

circle can be defined in Cartesian coordinates as the locus of points (x, y) in a plane

which are at a constant distance from a given fixed point (x0, y0).

As the point (x, y) moves, it is to remain a constant distance r from the fixed

point (x0, y0), which represents the center of the circle. If the the distance r is to

remain constant as (x, y) moves, then by the distance formula obtained by using the

Pythagorean theorem we have the requirement
√

(x − x0)2 + (y − y0)2 = r = a constant

or

(x − x0)
2 + (y − y0)

2 = r2 (9.1)

This is the equation in Cartesian coordinates for a circle with radius r and center at

(x0, y0) .
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Figure 9 -2. Sketch to find set of points (x, y) equidistant from fixed point (x0, y0)

In the special case (x0, y0) is the origin (0, 0), then the equation (9.1) reduces to

x2 + y2 = r2 (9.2)

The equation (9.1) results from equation (9.2) by replacing x by x−x0 and y by y−y0

and equation (9.1) is referred to as a translation of the circle origin from (0, 0) to the

point (x0, y0).

Figure 9 -3. Points inside, on and outside of circle centered at (x0, y0)
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The set of points satisfying the inequality

(x − x0)
2 + (y − y0)

2 < r2 (9.3)

represents all points inside the circle and the set of points satisfying the inequality

(x − x0)
2 + (y − y0)

2 > r2 (9.4)

represents all points outside the circle.

General equation for a circle

Equations which can be expanded and rearranged to have the form

x2 + y2 + ax + by + c = 0, a2 + b2 − 4c > 0 (9.5)

are said to represent the general form for a circle. One can rearrange equation (9.5)

into the form

(x2 + ax ) + (y2 + by ) = −c (9.6)

and then complete the square on the x-terms and y-terms.

To complete the square on the x-terms take 1
2 of the x-coefficient, square it, and

then add the result to both sides of equation (9.6). This produces

(

x2 + ax +
a2

4

)

+ (y2 + by ) = −c +
a2

4
(9.7)

To complete the square on the y-terms take 1
2

of the y-coefficient, square it, and

then add the result to both sides of equation (9.7). This produces

(

x2 + ax +
a2

4

)

+

(

y2 + by +
b2

4

)

= −c +
a2

4
+

b2

4
(9.8)

The terms in equation (9.8) which are inside the parenthesis are perfect squares

so that equation (9.8) simplifies to

(x +
a

2
)2 + (y +

b

2
)2 = r2 (9.9)

where r2 = −c+
a2

4
+

b2

4
> 0. The equation (9.9) is the equation of a circle with center

(
−a

2
,
−b

2
) and radius r =

√

a2

4
+

b2

4
− c.
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In the cases

(i)
a2

4
+

b2

4
− c = 0, the equation (9.9) is a point circle with radius 0.

(ii)
a2

4
+

b2

4
− c < 0, the equation (9.9)is called an imaginary circle.

In general, any equation of the form

(x − x0)
2 + (y − y0)

2 = r2 (9.10)

represents a circle of radius r centered at the point (x0, y0). The equation (9.10) has

the expanded form

x2 + y2 + ax + by + c = 0 (9.11)

for appropriate constants a, b, c.

Three conditions determine a circle

The general second degree equation representing a circle has the form

x2 + y2 + ax + by + c = 0 (9.12)

with three constants a, b, c to be determined. These three constants can be deter-

mined by imposing any one of the following conditions

(i) Require the circle to pass through three distinct specified points

P1 : (x1, y1) P2 : (x2, y2) P3 : (x3, y3)

This produces the three requirements

x2
1 + y2

1 + ax1 + by1 + c =0

x2
2 + y2

2 + ax2 + by2 + c =0

x2
3 + y2

3 + ax3 + by3 + c =0

(9.13)

which represents three equations in the three unknowns a, b, c to be solved.

(ii) Specify the center (x0, y0) of the circle and require the circle to pass through

a given point P1 : (x1, y1). In this case one can use the equation (9.9) in the form

(x +
a

2
)2 + (y +

b

2
)2 = −c +

a2

4
+

b2

4
> 0 (9.14)

because this form determines the values for a and b from the requirement

a

2
= −x0 and

b

2
= −y0 (9.15)
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Knowing a and b the equation (9.14) reduces to the form

(x − x0)
2 + (y − y0)

2 = −c + x2

0
+ y2

0
(9.16)

The constant c is now determined by the requirement that (x1, y1) is to satisfy the

equation for the circle so that

c = x2

0
+ y2

0
− (x1 − x0)

2 − (y1 − y0)
2 (9.17)

(iii) Specify conditions that the circle is to satisfy

(a) Circle required to be tangent to a given line.

(b) Circle center required to lie on some given line.

(c) Circle required to pass through some specified point.

Note that restrictions like those above might produce more than one solution satis-

fying the given requirements.

Example 9-1. Find the equation of the circle which passes through the points

P1 : (2, 3), P2 : (8, 7), P3 : (6, 5)

Solution

If the equation of the circle is given by

x2 + y2 + ax + by + c = 0 (9.18)

and the coordinates of the points P1, P2, P3 are to each

satisfy the equation (9.18), then one obtains the three

equations

when x = 2, y = 3 the equation (9.18) becomes 2a + 3b + c = − 13

when x = 8, y = 7 the equation (9.18) becomes 8a + 7b + c = − 113

when x = 6, y = 5 the equation (9.18) becomes 6a + 5b + c = − 61

One can solve these simultaneous equations and show

a = 2, b = −28, c = 67

giving the equation of the circle as

x2 + y2 + 2x − 28y + 67 = 0
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or after completing the square on the x and y-terms one finds

(x + 1)2 + (y − 14)2 = 130

as the equation of the circle.

Example 9-2.

Find the circle centered at (−5, 3) which passes through the point (1, 0).

Solution

The general equation of a circle centered at the

point (x0, y0) is

(x − x0)
2 + (y − y0)

2 = r
2

It is given that x0 = −5 and y0 = 3 so the equation of the

circle must have the form

(x + 5)2 + (y − 3)2 = r
2

If the point (1, 0) is to lie on this circle, then from the equation

(1 + 5)2 + (0 − 3)2 = r
2 one finds 36 + 9 = r

2 = 45

Hence, the equation of the circle satisfying the given conditions is

(x + 5)2 + (y − 3)3 = 45

Example 9-3. Find the equation of the circle (i) tangent to the y-axis (ii) having

its center (x0, y0) on the line y = 2x + 1 (iii) passing through the point (3, 4).

Solution

The requirement that the circle be tangent to the y-axis, specifies that the radius of

the circle be x0 and so the equation for the circle must have the form

(x − x0)
2 + (y − y0)

2 = x
2

0
(9.19)
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The center of the circle is to lie on the line y = 2x+1 and so must satisfy the equation

y0 = 2x0 + 1 (9.20)

The point (3, 4) is to be on the circle and so must satisfy the equation

(3 − x0)
2 + (4 − y0)

2 = x2
0 (9.21)

Solve the simultaneous equations (9.20) and (9.21)

by substituting y0 from equation (9.20) into equation

(9.21) to obtain

(3 − x0)
2 + (4− (2x0 + 1))2 = x2

0 (9.22)

Expand equation (9.22) to obtain the equation

4x2
0 − 18x0 + 18 = 0

which can be factored into the form

2(x0 − 3)(2x0 − 3) = 0

Thus, there are two solutions for x0.

Case1 : x0 =3

y0 =2x0 + 1 = 7

(x − 3)2 + (y − 7)2 =32

Case2 : x0 =3/2

y0 =2x0 + 1 = 4

(x − 3/2)2 + (y − 4)2 =(3/2)2

These two solutions are illustrated in the figure above.

Parametric equations for representing the circle

Consider a point P with coordinates (x, y) which is moving around a circle with

radius r as illustrated in the figure 9-4. Note that the distance x can be interpreted

as

x = r cos θ = projection of r onto x axis

The distance y can be interpreted as

y = r cos φ = projection of r onto the y axis
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Note that φ = π
2 − θ with cos φ = cos

(

π
2 − θ

)

= sin θ so that

y = r cosφ = r sin θ = projection of r onto y axis

The set of equations
x =r cos θ

y =r sin θ
(9.79)

for 0 ≤ θ ≤ 2π are called the parametric equations for representing the circle centered

at the origin. These equations describe the motion of the point P as (x, y) moves

around the circle as the parameter θ varies from 0 to 2π. Note that when the

equations (9.79) are substituted into the equation (9.2) and simplified, then one

obtains the Pythagorean identity cos2 θ + sin2 θ = 1 which holds true for all values of

the parameter θ. If the origin of the circle is translated to the point (x0, y0), then

one only need replace x by x − x0 and y by y − y0 in the equations (9.79) to obtain

x − x0 = r cos θ

y − y0 = r sin θ
(9.24)

as θ varies from 0 to 2π. The set of equations (9.24) represent the parametric

equations for a circle of radius r centered at the point (x0, y0).

Figure 9 -4. Point P with coordinates (x, y) moving around circle with radius r.
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Given a set of parametric equations with parameter θ representing a curve in

Cartesian coordinates, one can determine the (x, y)-equation for the curve by alge-

braically eliminating the parameter θ. For example, one can write

r cos θ = x − x0, r sin θ = y − y0

square both sides r2 cos2 θ = (x − x0)
2, r2 sin2 θ = (y − y0)

2

and then by addition

r2 cos2 θ + r2 sin2 θ =(x − x0)
2 + (y − y0)

2

r2(cos2 θ + sin2 θ) =(x − x0)
2 + (y − y0)

2

r2 =(x − x0)
2 + (y − y0)

2

(9.25)

The parameter θ is eliminated and one obtains the equation for the circle.

Example 9-4. Show that if the line AB is parallel to line CD (AB ‖ CD) and

these lines intersect a circle, then arc
�
AC is congruent to arc

�
BD (

�
AC ∼=

�
BD)

Proof

Construct the line AD which is a transversal line

where the alternate interior angles α are equal to one

another. These angles are also inscribed angles equal

to 1
2

of the central angle ∠B0D. The arcs
�

BD and
�

AC

are both associated with the inscribed angle α. Things

equal to the same thing are equal to each other so that

one can say
�

BD ∼=
�

AC .

Tangent-chord theorem

Let the line segment AC denote a chord associated with the circle x2 + y2 = r2

centered at the origin of a rectangular coordinate system as illustrated in the figure

9-5. In this figure the point A has the coordinates (x1, y1) and point C has the

coordinates (x3, y3). The endpoints of the chord lie on the circle so that the equations

x2
1 + y2

1 = r2 and x2
3 + y2

3 = r2

are satisfied. In the following discussions concerning the circle assume that x1 �= 0

and y1 �= 0.
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Figure 9 -5. Figure for tangent-chord theorem

Construct the secant line �1 which passes through the center of the circle and the

point A having coordinates (x1, y1). The slope of the line �1 is given by

m0A =
change in y
change in x

=
y1

x1
(9.26)

Using the point-slope formula one can verify that the equation of the secant line �1

is given by

�1 secant line through (0, 0) and (x1, y1) is y =
y1

x1
x (9.27)

Next construct the line �2 which is tangent to the circle at the point A. The tangent

line to the circle will be perpendicular to the line �1 and so its slope will be the

negative reciprocal of the slope m0A or

m = slope of tangent line =
−1

m0A

= −x1

y1
(9.28)

This tangent line is to pass through the point A with coordinates (x1, y1) so using

the point-slope formula the equation of the tangent line �2 is given by

y − y1 =

(

−x1

y1

)

(x − x1) (9.29)

The tangent line �2 intersects the x-axis at the point B illustrated in the figure 9-5.

Observe that B has the y-coordinate of 0 and so setting y = 0 in equation (9.29) one
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obtains the x value for the intersection of the tangent line �2 with the x-axis. One

can verify that the point of intersection B has the coordinates ( r2

x1

, 0).

In figure 9-5 the angle α = ∠BAC is called the tangent-chord angle. The angle

θ is called the central angle associated with the circular arc
�

AC . Recall by Thales

theorem the angle ∠DCA is a right angle. The sum of the angles in any triangle is

180◦ or π radians, so that in the right triangle �ACD of figure 9-5 on finds

π

2
+ δ + β = π or β + δ =

π

2
(9.30)

The line �2 is tangent to the circle at point A so that the angle ∠BAD is a right angle

or

β + α =
π

2
(9.31)

Subtract equation (9.31) from the equation (9.30) and show

δ − α = 0 or δ = α (9.32)

The tangent-chord angle α is associated with the circular arc
�
AC and by the inscribed

angle theorem one finds

α =
1

2
θ or θ = 2α (9.33)

This result is known as the tangent-chord angle theorem.

Figure 9 -6. Special cases for tangent-chord theorem

The figure 9-6 illustrates four special positions for the point A associated with the

tangent-chord theorem. It is left as an exercise to verify that in each of these cases

α = 1
2θ.
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Example 9-5. Use Cartesian coordinates to show the angle ∠ACD in figure 9-5

is a right angle. (Another verification of Thales theorem.)

Solution

Given that point A has the coordinates (x1, y1), one can show that the point D

has the coordinates (−x1,−y1) as these points are antipodal points. We know these

points are on the given circle so they must satisfy the equation which defines the

circle or x2
1 + y2

1 = r2. The point C lies on the circle and has the coordinates (x3, y3)

which must also satisfy the equation for the circle x2
3 + y2

3 = r2. One can then use the

formula for calculating the distance between two points to show

length of DC squared is DC
2

= (x3 − (−x1))
2 + (y3 − (−y1))

2

length of AC squared is AC
2

= (x3 − x1)
2 + (y1 − y3)

2

the length of the diameter AD squared is AD
2

= (2r)2 = 4r2

(9.34)

Use algebra and expand the equations (9.34) and show

DC
2

= x2
3 + 2x1x3 + x2

1 + y2
3 + 2y1y3 + y2

1

AC
2

= x2
3 − 2x1x3 + x2

1 + y2
1 − 2y1y3 + y2

3

(9.35)

Addition of the equations (9.35) produces the result

DC
2

+ AC
2

= 2(x2
3 + y2

3) + 2(x2
1 + y2

1) = 4r2 (9.36)

since the points (x1, y1) and (x3, y3) lie on the given circle. Consequently, it can be

shown that

DC
2

+ AC
2

= AD
2

(9.38)

so by the converse of the Pythagorean theorem, the angle ∠ACD is a right angle

Additional considerations

The figure 9-5 gives us the opportunity to use the converse of the Pythagorean

theorem to verify that the line �2 is indeed perpendicular to line �1. Examine the

figure 9-5 and verify that

The line segment 0B has length 0B =
r2

x1

The line segment 0A has length 0A = r =
√

x2
1 + y2

1

The line segment AB has length AB =

√

(

r2

x1
− x1

)2

+ y2
1
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Using these lengths one can verify that

0A
2
+ AB

2
= 0B

2

and consequently by the converse Pythagorean theorem the angle ∠0AB is a right

angle.

Note also the result that the tangent line to a circle is always perpendicular

to the radius or diameter of the circle meeting at the point of tangency. (Euclid

Elements, book 3, proposition 18)

Arc length subtended by inscribed angle

Given an inscribed angle α = ∠APB which subtends

an arc
�

AB = s on a given circle of radius r. Remember

that the inscribed angle is always related to the central

angle by the relation β = 2α, so that the arc length along

the circumference between the points A and B is

s =
�
AB = r(2α) = rβ (9.38)

where α and β are in radians.

Intersection of secant lines within a circle

If two secant lines have a point of intersection P

inside a circle of radius r, then label the points of in-

tersection with the circle circumference as A, B, C and

D as illustrated in the figure. Also label the angle of

intersection as γ. Construct the line segment AD as il-

lustrated and make note that this construction creates

the inscribed angles α = ∠DAB and β = ∠ADC which

subtends the arcs
�
BD = s2 and

�
CA = s1.

We know that these arc lengths are given by

s1 = rθ1 = r(2β) and s2 = rθ2 = r(2α) (9.39)

where θ1 and θ2 are the central angles associated with the arcs s1 and s2 respectively.

Here the inscribed angles α and β and central angles are in radians and r is the

radius of the given circle.
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In triangle �APD the angle γ is an exterior angle and we know an exterior angle

equals the sum of the two opposite interior angles so that

γ = α + β =
1

2r
(s1 + s2) =

1

2
(θ1 + θ2) (9.40)

where all angles are in radians and r is the radius of the given circle. Here the measure

of the angle of intersection γ is the average of the angular measures associated with

arcs s1 and s2.

Intersection of secant lines outside circle

If the secant lines intersect outside the circle, as illustrated in the figure 9-7,

one can again construct the line AD to form the inscribed angles ∠DAB = α and

∠ADB = β having respectively the subtended arcs s1 =
�

BD and s1 =
�

BD with arc

lengths

s1 = r(2β) = rθ1 and s2 = r(2α) = rθ2

where θ1 and θ2 are the central angles associated with arcs s1 and s2.

Figure 9 -7. Secant lines intersecting outside of circle

The angle α is the exterior angle to the triangle �0AD so that

α = γ + β or γ = α − β or γ =
1

2r
(s2 − s1) =

1

2
(θ2 − θ1) (9.41)

Here the measure of the angle of intersection γ is half the difference of the central

angles defining the arcs s1 and s2.
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Intersection of secant lines on the circle

If two secant lines intersect on the circle, then the

angle of intersection γ is an inscribed angle and the

minor arc s1 =
�

AB is given by

s1 = r(2γ) = rθ1

where θ1 is the central angle associated with the arc
�

AB .

Intersection of two tangent lines to a circle

If two tangent lines to the same circle intersect at

a point P outside the circle, then the angle ∠T1PT2 = γ

is determined by the central angles associated with the

minor arc s1 =
�

T1T2 and the major arc s2 =
�

T2T1 the

arcs subtended by the tangent lines.

The minor arc is s1 =rθ1

The major arc is s2 =rθ2 = r(2π − θ1)
(9.42)

where θ1 and θ2 are the central angles associated with

the subtended arcs.

The sum of the angles in the quadrilateral T10T2P is given by

π

2
+ θ1 +

π

2
+ γ = 2π ⇒ π − θ1 = γ (9.43)

The major arc s2 can be expressed

s2 = rθ2 = r(2π − θ1) = r(π + (π − θ1)) = r(π + γ) ⇒ θ2 − π = γ (9.44)

Addition of the equations (9.43) and (9.44) produce the result

2γ = θ2 − θ1 or γ =
1

2
(θ2 − θ1) (9.45)

Again we find the measure of the angle of intersection γ is half the difference of the

central angles defining the arcs s2 and s2.
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Tangent-Secant length theorem

Let P denote a point outside a given circle and then construct the tangent line

PA. Next construct a secant line PB which intersects the circle at point C. The

tangent-secant length theorem states that the lengths PA, PC, PB are related by the

formula

PA
2

= PC · PB (9.46)

That is, the tangent length PA squared must equal the product of the secant line

segments PC and PB.

Figure 9 -8. Tangent line and secant line to circle

This theorem results from using a combination of previous results. Observe that

the angle β = ∠ABP is an inscribed angle associated with the arc length
�

AC = r(2β)

and central angle 2β. Also the chord AC intersects the tangent line PA forming the

tangent-chord angle ∠CAP . The angle ∠CAP = β by the tangent-chord theorem.

The angle α is common to the two triangles �PAB and �PCA. The triangles �PAB

and �PCA have the same shape and two angles in common. Therefore, the triangles

are similar and their sides are proportional so that one can write

PC

PA
=

PA

PB
or PA

2
= PC · PB

by using the cross ratio product.
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Reuleaux triangle

The circle is not the only figure with a constant

width. One can construct an equilateral triangle �ABC

with equal sides of length �. Using a drawing compass

one can construct circular arcs
�

AB ,
�

BC ,
�

CA having cen-

ters for the arcs at the vertices C, A and B of the equi-

lateral triangle. The radius associated with each arc is

the length �. The resulting triangle �
�

ABC with curved

sides is called a Reuleaux3 triangle. One of its prop-

erties is that it is a geometric figure with a constant

width.

The area of a Reuleaux triangle is the central equilateral triangle area plus the

areas associated with the 3 segments of a circle.

Area equilateral triangle =

√
3

4
�2

Area of one segment =
1

2
�2(θ − sin θ), θ =

π

3

⇒
Total Area =

√
3

4
�2 +

3

2
�2

(

π

3
−

√
3

2

)

Total Area =
1

2

(

π +
√

3
)

�2

The perimeter of the Reuleaux triangle is three times the arc length of one side

or

Perimeter = 3 (�θ) = 3
(

�
π

3

)

= π�

or π times the diameter (Barbier’s theorem).

Quadrilateral inside circle

Let us reexamine the quadrilateral constructed in-

side a circle. Any quadrilateral whose vertices lie on the

circumference of a circle is called a cyclic quadrilateral.

We have previously demonstrated that the opposite an-

gles (α and γ) as well as (β and δ) in a cyclic quadri-

lateral will always add to π radians. That is, opposite

angles in a cyclic quadrilateral will always add to 180◦

or π radians.

(Euclid’s Elements, Book 3, Proposition 22.)
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The opposite angles in a cyclic quadrilateral being supplementary results from an

observation of the inscribed angles within the circle. The inscribed angle α subtends

the major arc
�

BCD and the inscribed angle γ subtends the minor arc
�

DAB . These

arc lengths can be represented
�

BCD = r(2α)
�

DAB = r(2γ) (9.47)

But a summation of the arc lengths gives
�

BCD +
�

DAB = 2πr which represents the

circumference of the circle. Consequently,
�

BCD +
�

DAB = 2(α + γ)r = 2πr ⇒ (α + γ) = π (9.48)

In a similar fashion we have
�

ABC = r(2δ) and
�

ADC = r(2β) with
�

ADC +
�

ABC = 2(β + δ)r = 2πr ⇒ (β + δ) = π (9.49)

Ptolemy’s theorem

Given a cyclic quadrilateral ABCD, let

�1 = AB, �2 = BC, �3 = CD, �4 = AD

denote the length of the sides and let d1 = AC, d2 = BD denote the length of the

diagonals of the quadrilateral as illustrated in the figure 9-10.

Figure 9 -10. Quadrilateral inside circle with extended side CD
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Multiply the lengths of the opposite sides of the cyclic quadrilateral and add

their products together to obtain

�1�3 + �2�4 (9.50)

Next multiply the diagonals to obtain

d1d2 (9.51)

Ptolemy’s4 theorem states that the sum of the products given by the representation

(9.50) must equal the product of the diagonals given by the representation (9.51) or

�1�3 + �2�4 = d1d2 (9.52)

Proof of Ptolemy’s theorem

Make some constructions in the figure 9-10. (i) Extend the side CD and (ii)

construct a line through the vertex A such that m∠BAC = m∠DAP = θ1. Here the

quadrilateral is cyclic so that the opposite interior angles sum to π and since CDP is

a straight line, then m∠ADC + m∠ADP also add to π. Hence one can write

m∠ABC + m∠ADC =π

m∠ADC + m∠ADP =π

These equations imply that

m∠ABC = m∠ADP = θ2

and therefore triangle �BAC is similar to triangle �ADP or �BAC ∼ �ADP . This

results in the triangle sides being proportional so that

AB

AD
=

BC

DP
⇒ DP =

(AD)(BC)

AB
=

�3�4
�1

(9.53)

The similar triangles �BAC ∼ �ADP also produce the proportion

AB

AD
=

AC

AP
(9.54)

and the geometry of figure 9-10 one finds m∠BAD = m∠CAP = θ1 + α. Here one

can conclude the triangles �ABD and �ACP are similar (�ABD ∼ �ACP ) because

4 Claudius Ptolemy 85-165 CE Greek astronomer and mathematician
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the sides are proportional and the include angles are congruent. This produces the

proportion
BD

CP
=

AB

AC
⇒ CP =

(AC)(BD)

AB
=

d1d2

�1
(9.55)

One can then use the results from equations (9.53) and (9.55) to demonstrate that

CP =CD + DP

d1d2

�1
=�3 +

�3�4
�1

or d1d2 =�1�3 + �2�4

which is Ptolemy’s theorem.

Example 9-6.

Given a triangle �ABC select three arbitrary

points P, Q, R on sides AC, BC, AB respectively. This

creates the three triangles �APR, �RQB, �PCQ

within the original triangle. Find the circumcenter of

each of these interior triangles and construct the cir-

cumcircles for each of these interior triangles. These

triangles intersect at a point M called the Miquel

point5

This can be demonstrated as follows. Let the circles PCQ and RBQ intersect at

point M and then construct the lines MQ and MR. This creates two cyclic quadrilat-

erals PCQM and MQBR. If angle ∠CQM = θ, then the opposite angle ∠MPC = π− θ.

In quadrilateral MQBR the angle ∠MQB = π − θ and the angle opposite is θ. Hence,

∠MRA = π − θ and the angle opposite is ∠APM = θ, which demonstrates the quadri-

lateral APMR is also cyclic. This shows the circles APR, PCQ and RQB meet at a

point of concurrency.

Area of cyclic quadrilateral

Given the cyclic quadrilateral ABCD, one can extend two opposite sides of the

quadrilateral to meet at a point E as illustrated in the figure 9-9. Denote the length

of the extended sides by c1 = ED and a1 = EA. We know the opposite interior angles

of a cyclic quadrilateral must sum to π radians. Therefore, if angle ∠ABC = β, then

5 Named after Auguste Miquel (1816-1851) a French mathematician.
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the angle ∠ADC = π−β. Similarly,if angle ∠DCB = γ, then the opposite interior angle

is ∠DAB = π − γ. Observe that the angles ∠EDC and ∠EAB are straight angles so

by the definition of supplementary angles one finds ∠EDA = β and ∠EAD = γ. The

angle α is common to both triangles �EDA and �EBC so the these triangles have

three angles in common and consequently are similar triangles (�EDA ∼ �EBC).

The sides of similar triangles are proportional and so one can write the similarity

ratios
d

b
=

a1

c1 + c
=

c1

a1 + a
(9.56)

Figure 9 -9. Cycle quadrilateral ABCD with extended sides

Recall that when dealing with similar triangles the ratio of the areas is proportional

to the similarity ratio squared. Thus, if

[EDA] = Area �EDA and [EBC] = Area �EBC

then one can write
[EDA]

[EBC]
=

(

d

b

)2

(9.57)

Let A denote the area of the cyclic quadrilateral and note that this area can be

expressed as the difference in area of the two similar triangles or

A = [EBC]− [EDA] = [EBC]

(

1 −
(

d

b

)2
)

=

(

b2 − d2

b2

)

[EBC] (9.58)
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Using Heron’s formula for the area of the triangle �EBC one finds

[EBC] =
√

s(s − (a1 + a))(s − b)(s − (c1 + c) (9.59)

where

s =
1

2
((a1 + a) + b + (c1 + c)) (9.60)

is the semiperimeter of triangle �EBC.

Using the cross product property of the similarity ratios given in the equations

(9.56) one can write
a1b =d(c1 + c)

and d(a1 + a) =c1b
(9.61)

The equations (9.61) represents two equations in two unknowns a1 and c1. Solving

this system of equations one finds

a1 =
ad2 + bcd

b2 − d2
and c1 =

cd2 + abd

b2 − d2
(9.62)

Substituting these values into the terms associated with the equations (9.59) and

(9.60) one can verify that

s =
1

2
((a1 + a) + b + (c1 + c)) =

b(a + b + c − d)

2(b − d)

s − (a1 + a) =
1

2
(b + (c1 + c)− (a1 + a)) =

b(b + c + d− a)

2(b + d)

(s − b) =
1

2
((a1 + a) + (c1 + c) − b) =

b(a + c + d − b)

2(b − d)

s − (c1 + c) =
1

2
((a1 + a) + b − (c1 + c)) =

a + b + d − c

2(b + d)

(9.63)

The equation (9.58) representing the area of the cyclic quadrilateral then takes on

the form

A =
b2 − d2

b2

√

b4
(a + b + c − d)

2(b− d)

(b + c + d − a)

2(b + d)

(a + c + d − b)

2(b − d)

(a + b + d − c)

2(b + d)
(9.64)

Define
s̄ =

1

2
(a + b + c + d)

then show s̄ − a =
1

2
(b + c + d− a)

s̄ − b =
1

2
(a + c + d − b)

s̄ − c =
1

2
(a + b + d − c)

s̄ − d =
1

2
(a + b + c − d)

(9.65)
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and simplify the equation (9.64) to obtain the following result. The area of a cyclic

quadrilateral with sides a, b, c, d can be represented in the form

A =
√

(s̄ − a)(s̄ − b)(s̄− c)(s̄ − d) where s̄ =
1

2
(a + b + c + d) (9.67)

The above area representation for a cyclic quadrilateral is known as Brahmagupta’s6

formula. Note the form of the equation representing the area of a cyclic quadrilateral

is very similar in form to Heron’s formula for the area of a triangle.

Area of a general quadrilateral

A general quadrilateral is any polygon with four sides and four vertices. Quadri-

laterals are called simple if the sides are not self intersecting. Consider the convex

quadrilateral illustrated. Its area can be thought of as the sum of the two triangles

�ABD and �CBD.

Area �ABD =
1

2
�2h1 and Area �CBD =

1

2
�2h2

where h1, h2 are the triangle altitudes and the diagonal �2 = BD is the base of both

triangles

Figure 9 -11. Quadrilateral ABCD

By addition one finds

Area of quadrilateral =
1

2
�2(h1 + h2) (9.67)

The intersection of the quadrilateral diagonals defines an angle θ. By definition of

the sine function of the angle θ, the sine of θ can be represented

sin θ =
h2

�12
and sin θ =

h1

�11
(9.68)

6 Brahmagupta (598-670)CE an Indian mathematician.
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where by addition the diagonal is �1 = �11 + �12 Using the substitutions from the

equations (9.68) one can write

�11 + �12 = �1 =
h1

sin θ
+

h2

sin θ
=

h1 + h2

sin θ
(9.69)

Replacing the term (h1 + h2) in equation (9.67) with the same term from equation

(9.69), the area of the quadrilateral can be expressed

Area of quadrilateral =
1

2
�1�2 sin θ

The power of a point

In 1826 a mathematician named Jakob Steiner7 defined the concept of the power

of a point P with respect to the center 0 of a circle having radius r. The point P can

be outside the circle, on the circumference of the circle or inside the circle.

Figure 9 -12. Power of a point sketch.

Assume the point P is outside a given circle with known radius r. Construct

the straight line passing through the center of the circle and the point P . This

line intersects the circle circumference at the points labeled A and B as illustrated

7 Jakob Steiner (1796-1863) a Swiss mathematician.
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in the figure 9-12. Construct the tangent line PT to the circle having the point of

tangency T . Construct also any line through the point P which intersects the circle

in two points C and D and produces the angle γ = ∠CPA. These constructions are

illustrated in the figure 9-12.

The power of point P is defined

power = P0
2 − r2 (9.70)

Observe that if the point P is

(i) outside the circle, then the power > 0

(ii) on the circle, then the power = 0

(iii) inside the circle, then the power < 0

There are equivalent definitions for the power of a point. For example, the

triangle �PT0 is a right triangle with right angle ∠PT0. By the Pythagorean theorem

PT
2

+ r2 = P0
2

or PT
2

= P0
2 − r2 = power (9.71)

In figure 9-12 construct the line segments CB and AD forming the inscribed

angles α and β. The inscribed angles α and β both subtend the arc
�
AC so that

�

AC = (2α) r = (2β) r ⇒ α = β (9.72)

by the inscribed angle theorem. The triangles �PCB and �PAD are similar triangles

(�PCB ∼ �PAD) because the angle γ is common to both triangles, the inscribed

angles α = β and π − (α + γ) is the remaining angle in both triangles. In the two

triangles cited one finds all the angles are equal and so the triangles are similar.

Therefore, their sides are proportional so that

PC

PA
=

PB

PD
⇒ PC · PD = PA · PB (9.73)

This ratio of the sides associated with similar triangles can be written

PC ·PD = PA · PB = (P0 − r)(P0 + r) = P0
2 − r2 = power (9.74)

This result is known as the power of a point theorem.
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Power of a point theorem

Given a circle with a point P inside, on or outside the circle. Construct any two

lines through the point P which intersects the circle in two points.

Figure 9 -13. Figures for power of a point theorem

As you construct the two lines through point P , be sure to label the first point

of intersection with the circle as point A and label the second point of intersection

as B. The power of a point theorem states

The product of the distance P to the first point of intersection A

or PA times the distance P to the second point of intersection B or PB

is always a constant. The constant is known as the power of point P .

PA · PB = a constant = PC · PD

In the figure 9-13 (a) and (c) PA · PB = a constant = PC · PD Note the middle

figure 9-13(b) gives PA = 0 since the power of the point P is zero.
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Special cases

1) In figure 9-13(a) the result PA ·PB = PC ·PD is

also known as the intersecting chord theorem. (Euclid’s

Elements, book 3, proposition 35)

2) If one of the lines through the point P is a tan-

gent line to the circle, then the distance from P to the

first point of intersection and the distance P to the sec-

ond point of intersection are treated as being the same

distance giving

PA ·PB =PC · PD

PA
2

=PC · PD

3) If both lines are tangent from P to the circle,

then one has
PA ·PB =PC · PD

PA ·PA =PC · PC

PA
2

=PC
2

The triangle

Given a general triangle �ABC with vertices A, B, C having Cartesian coordinates

A : (x1, y1), B : (x2, y2), C : (x3, y3) as illustrated in the figure 9-14.

Figure 9 -14. General triangle �ABC
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Midpoint of sides

The midpoint of the sides of the triangle illustrated are represented as

MAB : (
1

2
(x1 + x2),

1

2
(y1 + y2))

MAC : (
1

2
(x1 + x3),

1

2
(y1 + y3))

MBC : (
1

2
(x2 + x3),

1

2
(y2 + y3))

(9.75)

Length of sides

The Pythagorean theorem can be used to calculate the sides of the triangle

illustrated
a =

√

(x2 − x3)2 + (y2 − y3)2

b =
√

(x3 − x1)2 + (y3 − y1)2

c =
√

(x2 − x1)2 + (y2 − y1)2

(9.76)

Slope of sides

The lines �1, �2, �3 are extensions of the sides of the triangle in figure 9-14. The

slopes of these lines are calculated using the relation m = slope =
change in y
change in x

. One

can verify that

m3 = mAB =
y2 − y1

x2 − x1
, m2 = mBC =

y3 − y2

x3 − x2
, m1 = mAC =

y3 − y1

x3 − x1
(9.77)

Angles of triangle

The extended sides of the triangle produce intersecting lines. The formula for

the angles associated with intersecting lines can be used to determine the angles

associated with a given triangle. Using the slopes associated with the intersecting

lines one finds

tan α =

←−

m1 −m3

1 + m1m3
, tanβ =

←−

m3 − m2

1 + m2m3
, tan γ =

←−

m2 −m1

1 + m1m2
(9.78)

where the arrow is to remind you which line is rotating counterclockwise to produce

the angle. One can then express the angles of the triangle as

α = tan−1

(

m1 − m3

1 + m1m3

)

, β = tan−1

(

m3 − m2

1 + m2m3

)

, γ = tan−1

(

m2 −m1

1 + m1m2

)

(9.79)
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Equation of lines �1, �2 and �3

Using the point-slope formula one finds the equations representing the lines �1, �2

and �3 of figure 9-14 are given by

�1 : y − y3 = m1(x − x3)

�2 : y − y2 = m2(x − x2)

�3 : y − y1 = m3(x − x1)

(9.80)

Inscribed circle

The inscribed circle associated with the triangle of figure 9-14 has its center

where the angle bisectors meet. This point of concurrency is called the incenter of

the inscribed circle. We have previously demonstrated (Chapter 4) that the incenter

has the coordinates (xI , yI) given by

xI =
ax1 + bx2 + cx3

a + b + c
and yI =

ay1 + by2 + cy3

a + b + c
(9.81)

where a, b, c represent the sides of the triangle �ABC.

The area of triangle �ABC can be thought of as the area of three triangles

as illustrated in the figure 9-15. Each triangle has a height r which represents the

radius of the inscribed circle. We know that half the base times height is one method

to obtain the area of a given triangle. Applying this method to each of the three

triangles of figure 9-15 one finds

[ABC] =
1

2
ar +

1

2
br +

1

2
cr = rs, where s =

1

2
(a + b + c) (9.82)

is called the semiperimeter of the triangle. This equation can be used to express the

radius r of the inscribed circle as

r =
[ABC]

s
(9.83)

Using Heron’s formula, the area of the triangle �ABC is given by

[ABC] =
√

s(s − a)(s − b)(s− c) where s =
1

2
(a + b + c) (9.84)
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Figure 9 -15. Triangle �ABC divided into three parts

Substitute Heron’s formula for the area in equation (9.83) and express the radius

of the inscribed circle by the formula

r =
[ABC]

s
=

√

s(s − a)(s − b)(s − c)

s
=

√

(s − a)(s − b)(s− c)

s
(9.85)

The equation for the inscribed circle can then be expressed

(x − xI)
2 + (y − yI)

2 = r2 (9.86)

Circumscribed circle

The center of the circumscribed circle resides at the point of concurrency of

the lines which are perpendicular bisectors of each side of the given triangle �ABC.

This circumscribed circle has center at (xc, yc) and radius R. The circumference of

the circle passes through each vertex of the triangle as illustrated in the figure 9-16.
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Figure 9 -16. Triangle �ABC with circumscribed circle.

The center (xc, yc) of the circumscribed circle passing through the triangle vertices

is called the circumcenter and can be calculated as follows. We know the slope of

the side BC is given by m2 = mBC =
y3 − y2

x3 − x2
and the slope of any line perpendicular

to BC must have the slope

m⊥BC = −x3 − x2

y3 − y2
(9.87)

which is the negative reciprocal of the slope m2. The line which represents the

perpendicular bisector of BC must pass through the midpoint (1
2
(x2 + x3),

1
2
(y2 + y3))

and by the point-slope formula for the equation of a line, we find its equation is

y − 1

2
(y2 + y3) = m⊥BC(x − 1

2
(x2 + x3)) (9.88)

One can verify the slope of the side AB is m3 = mAB =
y2 − y1

x2 − x1
and any line perpen-

dicular to AB must have the slope

m⊥AB = −x2 − x1

y2 − y1
(9.89)
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which is the negative reciprocal of m3. The perpendicular bisector of line AB must

pass through the midpoint (1
2
(x1 + x2),

1
2
(y1 + y2)). Using the point-slope formula the

perpendicular bisector line associate with side AB has the form

y − 1

2
(y1 + y2) = m⊥AB(x − 1

2
(x1 + x2)) (9.90)

The intersection of the lines (9.88) and (9.90) produces the circumcenter (xc, yc).

Solving the system of equations (9.88) and (9.90) one obtains the circumcenter

coordinates

xc =
(x2

1 + y2
1)(y3 − y2) + (x2

2 + y2
2)(y1 − y3) + (x2

3 + y2
3)(y2 − y1)

2 (x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1))

yc =
(x2

1 + y2
1)(x2 − x3) + (x2

2 + y2
2)(x3 − x1) + (x2

3 + y2
3)(x1 − x2)

2 (x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1))

(9.91)

Note the cyclic rotation of the subscripts associated with the first terms in both

the numerator and denominator of the above expressions representing the coordi-

nates of the circumcenter.

In the figure 9-16 observe that angle α is an inscribed angle and the angle 2α is

a central angle. Applying the law of cosines to triangle �DCB one can write

a2 =R2 + R2 − 2R2 cos(2α)

a2 =2R2(1 − cos(2α)) Now use identity cos(2α) = 1 − 2 sin2 α

to show a2 =2R2(2 sin2 α)

or a =2R sinα

(9.92)

Recall that the area of triangle �ABC can be expressed

[ABC] =
1

2
bc sinα (9.93)

and substituting for sinα from equation (9.92) one finds the area of the triangle is

related to the circumradius R by the relation

[ABC] =
abc

4R
(9.94)

Again use the Heron’s formula for the area of the triangle and show

R =
abc

4[ABC]
=

abc

4
√

s(s − a)(s − b)(s − c)
(9.95)
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The equation for the circumscribed circle having circumcenter (xc, yc) and radius R

is given by

(x − xc)
2 + (y − yc)

2 = R2 (9.96)

Altitudes

The altitudes of triangle �ABC are line segments ha, hb, hc through each vertex

of the triangle which are perpendicular to the sides opposite the vertex as illustrated

in the figures 9-17.

Figure 9 -17. Altitudes ha, hb, hc of triangle �ABC

Using trigonometry one can verify that

ha = b sinγ = c sinβ (9.97)

and by a cyclic rotation of the symbols one finds the relations

hb = c sin α = a sinγ and hc = a sin β = b sinα (9.98)

which can also be verified using the trigonometric definition of the sine function.

Using [ABC] as a shorthand notation for the area of triangle �ABC. The area of

triangle �ABC can be expressed

[ABC] =
1

2
a ha =

1

2
b hb =

1

2
c hc (9.99)



385

where the sides of the triangle are treated as bases and the altitudes represent the

corresponding heights. If one uses the Heron’s formula for the area of the triangle,

then the altitudes can be calculated using the equations

ha =
2[ABC]

a
=

2

a

√

s(s − a)(s − b)(s − c)

hb =
2[ABC]

b
=

2

b

√

s(s − a)(s − b)(s− c)

hc =
2[ABC]

c
=

2

c

√

s(s − a)(s − b)(s− c)

(9.101)

where

s =
1

2
(a + b + c) (9.101)

is the semiperimeter of the triangle �ABC.

Observe that the equation (9.83) gives the radius r the inscribed circle of triangle

�ABC as r =
[ABC]

s
. One can use this result and show

1

ha

+
1

hb

+
1

hc

=
a

2[ABC]
+

b

2[ABC]
+

c

2[ABC]
=

s

[ABC]
=

1

r
(9.102)

where s is the semiperimeter given by equation (9.101).

The altitudes of the triangle �ABC intersect at a point of concurrency called

the orthocenter. The orthocenter coordinates (xH , yH) can be calculated as follows.

We know the slope of the line BC is given by m2 =
y2 − y3

x2 − x3
and the slope of any line

perpendicular to the segment BC will have a slope m⊥AB = − 1

m2
= −x2 − x3

y2 − y3
. Using

the point-slope formula, the equation for the altitude passing through the vertex A

with coordinates (x1, y1) is

y − y1 = −x2 − x3

y2 − y3
(x − x1) (9.103)

The slope of the side AB is m3 =
y2 − y1

x2 − x1
and the slope of any line perpendicular

to AB must have the slope m⊥AB = − 1

m3
= −x2 − x1

y2 − y1
. Using the point-slope formula

for the equation of a line, the altitude passing through the vertex C with coordinates

(x3, y3) is

y − y3 = −x2 − x1

y2 − y1
(x − x3) (9.104)
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Solving the simultaneous equations (9.103) and (9.104) gives the coordinates of

the orthocenter (xH , yH) as

xH =
λ(y1 − y3) + µ(y3 − y2) + ν(y2 − y1)

y2(x1 − x3) + y1(x3 − x2) + y3(x2 − x1)

yH =− λ(x1 − x3) + µ(x3 − x2) + ν(x2 − x1)

y2(x1 − x3) + y1(x3 − x2) + y3(x2 − x1)

where

λ =x3x1 + y3y1

µ =x2x3 + y2y3

ν =x1x2 + y1y2

(9.105)

Medians

The medians of triangle �ABC are line segments joining a vertex of the triangle

to the midpoint of the opposite side. The three medians of triangle �ABC are

illustrated in the figure 9-18. The three medians intersect at a point of concurrency

(xc, yc) called the centroid8 of the triangle.

Figure 9 -18. Medians of triangle �ABC

The median connecting vertex A to the opposite side BC passes through the two

points (x1, y1) and (1
2 (x2 + x3),

1
2 (y2 + y3)). The slope of this line is

mA =
1
2
(y2 + y3) − y1

1
2(x2 + x3) − x1

and the point-slope formula for the equation of the median is

y − y1 =

[ 1
2
(y2 + y3) − y1

1
2
(x2 + x3) − x1

]

(x − x1) (9.106)

8 If the triangle is made of a homogeneous material of uniform density, then the centroid of the triangle is called

the center of gravity.
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The median connecting the vertex C to the opposite side AB passes through the

points (x3, y3) and (1
2
(x1 + x2),

1
2
(y1 + y2)). The slope of this line is

mC =
1
2
(y1 + y2) − y3

1
2
(x1 + x2) − x3

and the point-slope formula for the equation of the median is

y − y2 =

[ 1
2
(y1 + y2) − y3

1
2
(x1 + x2) − x3

]

(x − x3) (9.107)

Solving the simultaneous equations (9.106) and (9.107) one finds the centroid of

the triangle is given by

xG =
1

3
(x1 + x2 + x3) yG =

1

3
(y1 + y2 + y3) (9.108)

Here the centroid (xG, yG) of any triangle is such that the abscissa xG is the average

of the x-values of the vertices and the ordinate value yG is the average of the y-values

of the vertices.

Example 9-7.

Given the triangle �ABC with vertices A : (−2, 8), B : (3,−4), C : (12, 8) as illustrate

in the figure 9-19.

Midpoints

The midpoints of the sides are given by

MAB =(
1

2
(−2 + 3),

1

2
(8 + −4)) = (

1

2
, 2)

MBC =(
1

2
(3 + 12),

1

2
(−4 + 8)) = (

15

2
, 2)

MAC =(
1

2
(−2 + 12),

1

2
(8 + 8)) = (5, 8)

These midpoints are illustrated in the figure 9-19.

Length of sides

The sides a, b, c opposite the vertices A, B, C have the following lengths

b =12 − (−2) = 14

c =
√

(3− (−2))2 + ((8 − (−4))2 =
√

169 = 13

a =
√

(12− 3)2 + (8 − (−4))2 =
√

225 = 15
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Figure 9 -19. Triangle �ABC

Slope of sides

The given triangle has sides consisting of line segments on the lines �1, �2, �3 with

slopes m =
change in y
change in x

given by

m�3 =
−4− 8

3 − (−2)
= −12

5

m�2 =
8 − (−4)

12 − 3
=

4

3

m�1 =
8 − 8

12 − (−2)
= 0

Angles of triangle

Knowing the slopes of the lines �1, �2, �3 one can use the formula tanγ =
m�2 − m�1

1 + m�1m�2

to determine the angle γ between intersecting lines. In a similar fashion one can

determine the other interior angles of the given triangle. One finds
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tanγ =
m�2 − m�1

1 + m�1m�2

=
4

3
, γ = tan−1

(

4

3

)

= 53.1301◦

tanβ =
m�3 − m�2

1 + m�2m�3

=
56

33
, β = tan−1

(

56

33

)

= 59.4818◦

tan α =
m�1 − m�3

1 + m�1m�3

=
12

5
, α = tan−1

(

12

5

)

= 67.3801◦

As a check, observe that a summation of the angles α, β and γ gives 180◦.

Equations of lines �1, �2, �3

The lines �1, �2, �3 which define the given triangle have equations determined by

use of the point-slope formula to have the form

�1 : y = 8

�2 : y + 4 =
4

3
(x − 3)

�3 : y − 8 =
−12

5
(x + 2)

Inscribed circle

The inscribed circle or incircle of the triangle touches all three sides of the

triangle and has a center or incenter at the coordinates (xI , yI) given by equation

(9.81) as

xI =
15(−2) + 14(3) + 13(12)

15 + 14 + 13
= 4, and yI =

15(8) + 14(−4) + 13(8)

15 + 14 + 13
= 4

In order to find the radius of the incircle, the equation (9.82) requires knowledge

of both the area of the triangle and the semiperimeter of the triangle. One can

calculate the semiperimeter as

s =
1

2
(15 + 14 + 13) = 31

The area of the triangle can then be calculate using Heron’s formula

[ABC] =
√

s(s − a)(s − b)(s − c) = 84

or one can use the base of the triangle as side c = 14 and the height hb = 12 of the

triangle as length of altitude through vertex B. The area of the triangle is then half

the base times the height. The radius of the incircle is given by equation (9.83) as

r =
[ABC]

s
=

84

21
= 4
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The equation describing the incircle is given by

(x − 4)2 + (y − 4)=42

or the parametric form for the incircle is given by

x = 4 + 4 cos t, y = 4 + 4 sin t, 0 ≤ t ≤ 2π

The incircle and incenter have the color red in figure 9-19.

Circumscribed circle

The easy way to calculate the center of the circumscribed circle is to construct

the lines perpendicular to the sides of the triangle which pass through the midpoints

of the sides or one can use the equations (9.91). One can verify that the line

perpendicular to side BC and passing through the midpoint MBC is given by y −

2 = (−3/4)(x − 15/2) and the line perpendicular to side AB and passing through the

midpoint MAB is given by y − 2 = (5/12)(x − 1/2). The intersection of these lines

produces the center of the circumscribed circle at xO = 5, yO = 31
8
. These same

results can be obtained using the equations (9.91).

The radius R of the circumscribed circle is obtained from equation (9.94). One

finds

R =
abc

4
√

s(s − a)(s − b)(s − c)
=

65

8

The equation for the circumscribed circle is therefore

(x − 5)2 + (y − 31

8
)2 =

(

65

8

)2

or one can write the parametric form for the circumscribed circle as

x = 5 +
65

8
cos t, y =

31

8
+

65

8
sin t, 0 ≤ t ≤ 2π

The circumscribed circle and circumcenter are illustrated in green in the figure 9-19.
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Altitudes

The length of the altitudes for triangle �ABC are given by the equations (9.101).

ha =
2[ABC]

a
= 2

84

15
=

56

5

hb =
2[ABC]

b
= 2

84

14
= 12

hc =
2[ABC]

c
= 2

84

13
=

168

13

The equations for the lines determined by the altitudes are

Line ⊥ to AC through vertex B x = 3

Line ⊥ to AB through vertex C y − 8 − 5

12
(x − 12)

Line ⊥ to BC through vertex A y − 8 =
−3

4
(x + 2)

The point of concurrency of these lines produces the orthocenter (0x, 0y) = (3, 17
4 .

These lines are in orange in the figure 9-19.

Medians

One can verify that the median line

through MBC and vertex A is y − 8 =
−12

19
(x + 2)

through MAB and vertex C is y − 8 =
12

22
(x − 12)

through MAC and vertex B is y − 8 = 6(x − 5)

The point of concurrency of these three lines is the centroid (xc, yc) = (13
3

, 4). One

can also obtain this same centroid using the equations (9.108). The median lines

and centroid are in purple when examining the figure 9-19.

The circumcenter, orthocenter and centroid of a triangle will all lie on the same

line which is called the Euler9 line. One can verify that the Euler line associated

with triangle �ABC is given by y − 17
4

= −3
16

(x − 3)

9 Leonhard Euler (1707-1783) A famous Swiss mathematician.
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Exercises

� 9-1.

Given the tangent line T intersecting a unit circle at

point A. Through the point A construct a chord AB. Show

that the angle α = ∠BAT equals
1

2

�

AB .

� 9-2.

For the circle illustrated θ = π
6
, r = 2

(a) Find the arc length s.

(b) Find the area of the sector.

(c) Find the area of the segment.

(d) Find the area of the triangle �0AB.

� 9-3. Find the equation of the circle

(a) centered at (0, 0) with radius 1.

(b) centered at (5,−7) with radius 2.

(c) centered at (6, 8) with radius 3.

� 9-4. Complete the square to find the center and radius of the given circle.

(a) x2 + y2 − 6x + 4y − 23 = 0

(b) x2 + y2 + 10x − 4y − 20 = 0

(c) x2 + y2 − 8y − 48 = 0

� 9-5. Find the equation of the circle passing through the given points.

(a) (3, 2), (−2, 4), (−1,−4)

(b) (1,
√

15), (2,
√

12), (3,
√

7)

(c) (1, 8), (5, 6), (6, 3)

� 9-6. Find the equation of the circle centered at

(a) (2, 2) which passes through the point (3, 4)

(b) (5, 7) which passes through the point (0, 0)

(c) (−2,−4) which passes through the point (3, 0

� 9-7. Find the equation of the circle tangent to the x-axis having its center on the

line y =
1

2
x + 1 which passes through the point (3, 5)
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� 9-8.

Given a circle with radius r = 6 with lines AB ‖ CD.

Find the arc length s if θ =
π

6

� 9-9. Find the equation of the tangent line to the circle (x− 3)2 +(y − 4)2 = 25 which

touches the circle at the point (6, 8).

� 9-10.

Let AB denote the chord of a circle and then construct the

line from the center of the circle perpendicular to the chord

and intersecting it at point P . Show that AP = PB.

� 9-11.

Given the circle (x − 3)2 + (y − 4)2 = 25 and the secant lines

�1 : y =5 +
1

2
(x − 2)

�2 : y =5 + 3(x − 2)

(a) Show the angle of intersection of the given lines is α = π
6

(b) Find the average of the arc lengths s1 and s2.

� 9-12.

Given the acute angle ∠B0A select an arbitrary

point P with coordinates (x0, y0) within the angle and

make the following constructions.

(i) The line 0P

(ii) The perpendicular line from P to

side 0A intersecting at P2

(iii) The perpendicular line from P to side 0B intersecting at P1

(iv) The line P1P2

(a) Find coordinates of the midpoint C of the line segment 0P.

(b) Find the coordinates of the point P1.

(c) Find the distance r2
1 = CP1

2
.

(d) Find the distance r2
2 = CP

2
.

(e) Find the distance r2
3 = 0C

2
.

(f) Find the equation of the line 0A if the slope is m = tan θ where θ = ∠B0A.
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(g) Find the equation of the line �1 which is perpendicular to line 0A and passing

through point P .

(h) Find the coordinates of the point P2 where lines 0A and �1 intersect.

(i) Find the distance r2
4 = CP2

2

(j) Prove the points 0, P1, P, P2 all lie on a circle with radius r1 = r2 = r3 = r4.

(k) Prove angle ∠B0P equals angle ∠P1P2P

� 9-13.

An equilateral triangle is inscribed within an given

circle. Select any point P on the circumference of the cir-

cle and then make the following constructions. (i) Lines

to the two nearest vertices and (ii) a line to the furthest

vertex. These are the lines PC = �1, PB = �2 and PA = �3

as illustrated in the accompanying figure. Use Ptolemy’s

theorem to show �1 + �2 = �3.

� 9-14. Investigate Ptolemy’s theorem in the following special cases

(a) The quadrilateral is a rectangle inscribed within a circle. Construct a dia-

gram and write out in words the conclusion of your findings.

(b) The quadrilateral is a square inscribed within a circle. Construct a diagram

and write out in words the conclusion of your findings.

� 9-15.

Construct a pentagon inscribed within a given circle

and then construct the diagonals of the pentagon.

(a) If the sides of the pentagon are of length s and

the diagonals are of length � show that �2 = s� + s2

(b) Show φ = �
s

is a golden ratio.
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� 9-16.

Given the cyclic quadrilateral ABCD within a circle

with diameter BE = 1 and sides s1, s2, s3, s4.

(a) Show that s1 = sin θ1

(b) Show that s2 = sin θ2

(c) Show that s3 = sin θ3

(d) Show that s4 = sin θ4

(e) In this special case express Ptolemy’s theorem

in terms of trigonometric functions.

� 9-17. Given the triangle �ABC with vertices A : (0, 0), B : (6, 0), C : (3, 4)

(a) Find the length of each side.

(b) Find the midpoints of each side.

(c) Find the Cartesian equation for the medians.

(d) Find the slopes of each side.

(e) Find the Cartesian equation for each side.

(f) Find the slopes of the altitudes.

(g) Find the Cartesian equation for each altitude.

(h) Find the area of triangle �ABC.

� 9-18. Given triangle �ABC with vertices A : (0, 0), B : (2 +
√

3, 1), C : (4, 0)

(a) Find the vertex angles ∠A = α, ∠B = β, ∠C = γ

(b) Find the length of the triangle sides.

(c) Find the area of triangle �ABC.

� 9-19. Given the triangle �ABC with vertices A : (0, 0), B : (42, 0), C : (12, 16)

(a) Find the Cartesian equation for the medians.

(b) Find where the medians intersect.

(c) Check your answer with equation (9.108)

� 9-20. Given the triangle �ABC with vertices A : (0, 0), B : (40, 0), C : (35, 12)

(a) Find the Cartesian equation for the altitudes.

(b) Find where the altitudes intersect.

(c) Check your answers with equation (9.105).
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� 9-21. Given the triangle �ABC with vertices A : (0, 0), B : (120, 0), C : (8, 15)

(a) Find the incenter.

(b) Find the radius of the inscribed circle.

(c) Find the area of triangle �ABC.

(d) Find the circumcenter.

(e) Find the circumradius.

� 9-22. Given the triangle �ABC with vertices A : (0, 0), B : (39, 0), C : (32, 24)

(a) Find the area of this triangle.

(b) Find the altitudes ha, hb, hc.

(c) Find the radius r of the inscribed circle.

(d) Find the radius R of the circumscribed circle.

(e) Find the incenter.

(f) Find the cirumcenter.

� 9-23. Given the triangle �ABC with vertices A : (0, 0), B : (51, 0), C : (9, 41)

(a) Find the area of this triangle.

(b) Find the altitudes ha, hb, hc.

(c) Find the radius r of the inscribed circle.

(d) Find the radius R of the circumscribed circle.

(e) Find the incenter.

(f) Find the circumcenter.

(g) Find the orthocenter.

(h) Find the centroid.
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Geometry

Chapter 10

Mathematics and Geometry

Vectors used in geometry
A vector is a quantity that has both a magnitude and a direction while a scalar

quantity has only a magnitude. Some examples of vector and scalar quantities are

Vectors

Force

velocity

acceleration

momentum

torque

angular velocity

Scalars

temperature

speed

time

size of angle

energy

length

A vector can be represented by a line segment with an arrowhead attached at

one end to indicate the direction of the vector, while the length of the line segment

represents the magnitude of the vector. In this text vectors are represented by

capital letters with an arrow on top. For example, the vectors �A, 1
2

�A, 2 �A, − �A are

illustrated in the figure 10-1.

Figure 10 -1.

Scalar multiples of vector �A

The magnitude of the vector �A is denoted A or | �A | and represents the length of the

vector �A. The tail end of the vector is called the vector origin and the arrowhead of

the vector is called the terminus.
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Properties of vectors

Some important properties of vectors are

1. Two vectors �A and �B are equal if they have the same magnitude (length) and

direction. Equality is denoted by �A = �B.

2. The magnitude of a vector is a nonnegative scalar quantity. The magnitude of a

vector �B is denoted by the symbols B or | �B| and in some textbooks the length

of the vector is denoted ‖ �B ‖ .

3. A vector �B is equal to zero only if its magnitude is zero. A vector whose mag-

nitude is zero is called the zero or null vector and denoted by the symbol �0.

4. Multiplication of a nonzero vector �A by a positive scalar m is denoted by m �A and

produces a new vector whose direction is the same as �A but whose magnitude is

m times the magnitude of �A. Symbolically, |m �A| = m| �A|. If m is a negative scalar

the direction of m �A is opposite to that of the direction of �A. In figure 10-1 several

vectors obtained from �A by scalar multiplication are exhibited.

5. Vectors are considered as “free vectors”. The term “free vector” is used to mean

the following. Any vector may be moved to a new position in space provided

that in the new position it is parallel to and has the same direction as its original

position. See for example the vector �B in the figure 10-1. In many of the examples

that follow, there are times when a given vector is moved to a convenient point

in space in order to emphasize a special geometrical or physical concept.

Vector Addition and Subtraction

Let �C = �A + �B denote the sum of two vectors �A and �B. To find the vector sum
�A+ �B, slide the origin of the vector �B to the terminus point of the vector �A, then draw

the line from the origin of �A to the terminus of �B to represent �C . Alternatively, start

with the vector �B and place the origin of the vector �A at the terminus point of �B to

construct the vector �B+ �A. Adding vectors in this way employs the parallelogram law

for vector addition which is illustrated in the figure 10-2. Note that vector addition

is commutative. That is, using the shifted vectors �A and �B, as illustrated in the

figure 10-2, the commutative law for vector addition �A + �B = �B + �A, is illustrated

using the parallelogram illustrated. The addition of vectors can be thought of as

connecting the origin and terminus of directed line segments.
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Figure 10 -2. Parallelogram law for vector addition

If �F = �A − �B denotes the difference of two vectors �A and �B, then �F is determined

by the above rule for vector addition by writing �F = �A + (− �B). Thus, subtraction

of the vector �B from the vector �A is represented by the addition of the vector − �B

to �A. In figure 10-2 observe that the vectors �A and �B are free vectors and have

been translated to appropriate positions to illustrate the concepts of addition and

subtraction. The sum of two or more force vectors is sometimes referred to as the

resultant force. In general, the resultant force acting on an object is calculated by

using a vector addition of all the forces acting on the object.

Vector addition and notation

Figure 10 -3. Vector addition

The figure 10-3 illustrates two notations for representing vector addition. In

the first two notations note that the representation of the vector �E does not change
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the orientation of the arrow head. Only the sign of the vector �E changes. The last

notation illustrates that the vectors can be represented by directed line segments

if the endpoints of the vectors are known. Also observe there is a difference in the

notations P1P2
−→

and P2P1
−→

because P1P2
−→

= −P2P1
−→

.

Linear combination

If there exists scaler constants c1, c2, . . . , cn, not all zero, together with a set of

vectors �A1, �A2, . . . , �An, such that

�A = c1
�A1 + c2

�A2 + · · ·+ cn
�An,

then the vector �A is said to be a linear combination of the vectors �A1, �A2, . . . , �An.

Two nonzero vectors �A and �B are said to be linearly dependent if it is possible

to find scalars k1, k2 not both zero, such that the equation

k1
�A + k2

�B = �0 (10.1)

is satisfied. If k1 = 0 and k2 = 0 are the only scalars for which the above equation is

satisfied, then the vectors �A and �B are said to be linearly independent.

The above definitions can be interpreted geometrically. If k1 �= 0, then equation

(10.1) implies that �A = −k2

k1

�B = m�B showing that �A is a scalar multiple of �B. That

is, �A and �B have the same direction and therefore, they are called collinear vectors.

If �A and �B are not collinear, then they are linearly independent (noncollinear). If

two nonzero vectors �A and �B are linearly independent, then any vector �C lying in

the plane of �A and �B can be expressed as a linear combination of the these vectors.

Construct as in figure 10-4 a parallelogram with diagonal �C and sides parallel to the

vectors �A and �B when their origins are made to coincide.

Figure 10 -4. Vector �C is a linear combination of vectors �A and �B.



401

Since the vector side
−→
DE is parallel to �B and the vector side

−→
EF is parallel to �A, then

there exists scalars m and n such that
−→
DE = m�B and

−→
EF = n �A. With vector addition,

�C =
−→
DE +

−→
EF = m�B + n �A (10.2)

which shows that �C is a linear combination of the vectors �A and �B.

Example 10-1. Show that the medians of a triangle meet at a trisection point.

Figure 10 -5. Constructing medians of a triangle

Solution: Let the sides of a triangle with vertices α, β, γ be denoted by the vectors
�A, �B, and �A − �B as illustrated in the figure 10-5. Further, let �α, �β, �γ denote the

vectors from the respective vertices of α, β, γ to the midpoints of the opposite sides.

By using vector addition one can construct the following vector equations

�A + �α =
1

2
�B �B +

1

2
( �A − �B) = �β �B + �γ =

1

2
�A. (10.3)

Let the vectors �α and �β intersect at a point designated by P , Similarly, let the

vectors �β and �γ intersect at the point designated P ∗. The problem is to show that

the points P and P ∗ are the same. Figures 10-5(b) and 10-5(c) illustrate that for

suitable scalars k, �, m, n, the points P and P ∗ determine the vectors equations

�A + ��α = m�β and �B + n�γ = k�β. (10.4)

In these equations the scalars k, �, m, n are unknowns to be determined. Use the

set of equations (10.3), to solve for the vectors �α, �β, �γ in terms of the vectors �A and
�B and show

�α =
1

2
�B − �A �β =

1

2
( �A + �B ) �γ =

1

2
�A − �B. (10.5)
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These equations can now be substituted into the equations (10.4) to yield, after

some simplification, the equations

(1 − � − m

2
) �A = (

m

2
− �

2
) �B and (

k

2
− n

2
) �A = (1 − n − k

2
) �B.

Since the vectors �A and �B are linearly independent (noncollinear), the scalar coef-

ficients in the above equation must equal zero, because if these scalar coefficients

were not zero, then the vectors �A and �B would be linearly dependent (collinear)

and a triangle would not exist. By equating to zero the scalar coefficients in these

equations, there results the simultaneous scalar equations

(1 − � − m

2
) = 0, (

m

2
− �

2
) = 0, (

k

2
− n

2
) = 0, (1 − n − k

2
) = 0

The solution of these equations produces the fact that k = � = m = n =
2

3
and hence

the conclusion P = P ∗ is a trisection point.

Unit Vectors

A vector having length or magnitude of one is called a unit vector. If �A is

a nonzero vector of length | �A|, a unit vector in the direction of �A is obtained by

multiplying the vector �A by the scalar m = 1

| �A|
. The unit vector so constructed is

denoted

êA =
�A

| �A|
and satisfies | êA| = 1.

The symbol ê is reserved for unit vectors and the notation êA is to be read “a unit

vector in the direction of �A.” The hat or carat ( ̂ ) notation is used to represent

a unit vector or normalized vector.

The figure 10-6 illustrates unit base vectors ê1, ê2, ê3 in the directions of the pos-

itive x, y, z-coordinate axes in a rectangular three dimensional Cartesian coordinate

system. These unit base vectors in the direction of the x, y, z axes have historically

been represented by a variety of notations. Some of the more common notations

employed in various textbooks to denote rectangular unit base vectors are

ı̂, ̂, k̂, êx, êy, êz, ı̂1, ı̂2, ı̂3, 1x, 1y, 1z , ê1, ê2, ê3
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Figure 10 -6. Cartesian axes.

The notation ê1, ê2, ê3 to represent the unit base vectors in the direction of the

x, y, z axes will be used in the discussions that follow as this notation makes it easier

to generalize vector concepts to n-dimensional spaces.

Observe in figure 10-6 the position vector �r from the origin to the point (x, y, z)

is obtained by vector addition of the vectors x ê1, y ê2, z ê3.

�r = x ê1 + y ê2 + z ê3

Also make note of the fact that the base vectors are all perpendicular to one another.

Scalar or Dot Product (inner product)

The scalar or dot product of two vectors is sometimes referred to as an inner

product of vectors.

Definition (Dot product) The scalar or dot product of two vectors �A and �B

is denoted
�A · �B = | �A| | �B| cos θ, (10.6)

and represents the magnitude of �A times the magnitude �B times the cosine of θ,

where θ is the angle between the vectors �A and �B when their origins are made

to coincide.
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The angle between any two of the orthogonal unit base vectors ê1, ê2, ê3 in

Cartesian coordinates is 90◦ or π
2

radians. Using the results cos π
2

= 0 and cos 0 = 1,

there results the following dot product relations for these unit vectors

ê1 · ê1 = 1

ê1 · ê2 = 0

ê1 · ê3 = 0

ê2 · ê1 = 0

ê2 · ê2 = 1

ê2 · ê3 = 0

ê3 · ê1 = 0

ê3 · ê2 = 0

ê3 · ê3 = 1

(10.7)

The dot product satisfies the following properties

Commutative law �A · �B = �B · �A

Distributive law �A · ( �B + �C ) = �A · �B + �A · �C

Magnitude squared �A · �A = A2 = | �A|2

which are proved using the definition of a dot product.

The physical interpretation of projection can be assigned to the dot product as

is illustrated in figure 10-7. In this figure �A and �B are nonzero vectors with êA and

êB unit vectors in the directions of �A and �B, respectively. The figure 10-7 illustrates

the physical interpretation of the following equations:

êB · �A =
�B

∣

∣

∣

�B
∣

∣

∣

· �A = | �A| cos θ = Projection of �A onto direction of êB

êA · �B =
�A

∣

∣

∣

�A
∣

∣

∣

· �B = | �B | cos θ = Projection of �B onto direction of êA.

In general, the dot product of a nonzero vector �A with a unit vector ê is given

by �A · ê = ê · �A = | �A|| ê| cos θ and represents the projection of the given vector onto

the direction of the unit vector. The dot product of a vector with a unit vector

is a basic fundamental concept which arises in a variety of science and engineering

applications.

Figure 10 -7. Projection of one vector onto another.
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Observe that if the dot product of two vectors is zero, �A · �B = | �A|| �B| cos θ = 0,

then this implies that either �A = �0, �B = �0, or θ = π
2
. If �A and �B are both nonzero

vectors and their dot product is zero, then the angle between these vectors, when

their origins coincide, must be θ = π
2 . One can then say the vector �A is perpendicular

to the vector �B or one can state that the projection of �B on �A is zero. If �A and �B are

nonzero vectors and �A · �B = 0, then the vectors �A and �B are said to be orthogonal

vectors.

Direction Cosines Associated With Vectors

Let �A be a nonzero vector having its origin at the origin of a rectangular Carte-

sian coordinate system. The dot products

�A · ê1 = A1
�A · ê2 = A2

�A · ê3 = A3 (10.8)

represent respectively, the components or projections of the vector �A onto the x, y

and z-axes. The projections A1, A2, A3 of the vector �A onto the coordinate axes

are scalars which are called the components of the vector �A. From the definition of

the dot product of two vectors, the scalar components of the vector �A satisfy the

equations

A1 = �A · ê1 = | �A| cosα, A2 = �A · ê2 = | �A| cosβ, A3 = �A · ê3 = | �A| cosγ, (10.9)

Figure 10 -8. Projections, vector components and direction cosines
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where α, β, γ are respectively, the smaller angles between the vector �A and the x, y, z

coordinate axes. The cosine of these angles are referred to as the direction cosines

of the vector �A. These angles are illustrated in figure 10-8. The vector quantities

�A1 = A1 ê1, �A2 = A2 ê2, �A3 = A3 ê3 (10.10)

are called the vector components of the vector �A. From the addition property of

vectors, the vector components of �A may be added to obtain

�A = A1 ê1 + A2 ê2 + A3 ê3 = | �A|(cosα ê1 + cosβ ê2 + cosγ ê3) = | �A| êA (10.11)

This vector representation �A = A1 ê1 + A2 ê2 + A3 ê3 is called the component form of

the vector �A and the unit vector êA = cos α ê1 + cos β ê2 + cos γ ê3 is a unit vector in

the direction of �A.

Any numbers proportional to the direction cosines of a line are called the di-

rection numbers of the line. Show for a : b : c the direction numbers of a line which

are not all zero, then the direction cosines are given by

cos α =
a

r
cos β =

b

r
cosγ =

c

r
,

where r =
√

a2 + b2 + c2.

Cauchy-Schwarz inequality

Let �A and �B denote any two nonzero vectors and then examine the quantity

y = y(t) = |t �A − �B |2 = (t �A − �B) · (t �A − �B) = t2 | �A|2 − 2t ( �A · �B ) + | �B |2 (10.12)

where | �A|2 = �A · �A and | �B |2 = �B · �B . The quantity y is a parabola

y = α t2 − β t + γ (10.13)

where α = | �A|2, β = 2 �A · �B and γ = | �B |2. Observe the quantity is always positive

because a vector dotted with itself always gives the length of the vector squared.

The quantity y will always be positive if the discriminant is negative which requires

that

β2 − 4α γ ≤ 0 or 4( �A · �B)2 ≤ 4 | �A|2 | �B |2 (10.14)

Taking the square root of both sides of equation (10.14) and simplifying gives the

Cauchy-Schwarz inequality

| �A · �B | ≤ | �A| | �B| (10.15)
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The Cauchy-Schwarz inequality tells us that the absolute value of the dot product of

two nonzero vectors is always less than or equal to the product of the vector lengths.

As an exercise, show the equality sign holds only when the two vectors are collinear.

Triangle inequality

If �A and �B are nonzero vectors, then one can write

| �A + �B |2 = ( �A + �B) · ( �A + �B) = �A · �A + 2 �A · �B + �B · �B

| �A + �B |2 =| �A|2 + 2 �A · �B + | �B |2

| �A + �B |2 ≤| �A|2 + 2| �A|| �B | + | �B |2

by using the Cauchy-Schwarz inequality

| �A + �B |2 ≤
(

| �A| + | �B |
)2

(10.16)

Taking the square root of both sides of the equation (10.16) one can obtain the

triangle inequality

| �A + �B | ≤ | �A| + | �B | (10.17)

which tells use the absolute value associated with a sum of two vectors will always

be less than or equal to a summation of the vector lengths.

Example 10-2.

Sketch a large version of the letter H. Con-

sider the sides of the letter H as parallel lines a

distance of p units apart. Place a unit vector ê

perpendicular to the left side of H and pointing

toward the right side of H. Construct a vector �x1

which runs from the origin of ê to a point on the

right side of the H. Observe that ê · �x1 = p is a

projection of �x1 on ê. Now construct another vector �x2, different from �x1, again from

the origin of ê to the right side of the H. Note also that ê · �x2 = p is a projection

of �x2 on the vector ê. Draw still another vector �x, from the origin of ê to the right

side of H which is different from �x1 and �x2. Observe that the dot product ê · �x = p

representing the projection of �x on ê still produces the value p.

Assume you are given ê and p and are asked to solve the vector equation ê ·�x = p

for the unknown quantity �x. You might think that there is some operation like vector
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division, for example �x = p/ê, whereby �x can be determined. However, if you look

at the equation ê · �x = p as a projection, one can observe that there would be an

infinite number of solutions to this equation and for this reason there is no division

of vector quantities.

Component Form for Dot Product

Let �A, �B be two nonzero vectors represented in the component form

�A = A1 ê1 + A2 ê2 + A3 ê3, �B = B1 ê1 + B1 ê2 + B3 ê3

The dot product of these two vectors is

�A · �B = (A1 ê1 + A2 ê2 + A3 ê3) · (B1 ê1 + B1 ê2 + B3 ê3) (10.18)

and this product can be expanded utilizing the distributive and commutative laws

to obtain
�A · �B = A1B1 ê1 · ê1 + A1B2 ê1 · ê2 + A1B3 ê1 · ê3

+ A2B1 ê2 · ê1 + A2B2 ê2 · ê2 + A2B3 ê2 · ê3

+ A3B1 ê3 · ê1 + A3B2 ê3 · ê2 + A3B3 ê3 · ê3.

(10.19)

From the previous properties of the dot product of unit vectors, given by equations

(10.7), the dot product reduces to the form

�A · �B = A1B1 + A2B2 + A3B3. (10.20)

Thus, the dot product of two vectors produces a scalar quantity which is the sum of

the products of like components.

From the definition of the dot product the following useful relationship results:

�A · �B = A1B1 + A2B2 + A3B3 = | �A|| �B| cos θ. (10.21)

This relation may be used to find the angle between two vectors when their origins

are made to coincide and their components are known. If in equation (10.21) one

makes the substitution �B = �A, there results the special formula

�A · �A = A2
1 + A2

2 + A2
3 = A · A cos 0 = A2 = | �A|

2
. (10.22)

Consequently, the magnitude of a vector �A is given by the square root of the sum of

the squares of its components or | �A| =
√

�A · �A =
√

A2
1 + A2

2 + A2
3
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The previous dot product definition is moti-

vated by the law of cosines as the following argu-

ments demonstrate. Consider three points having

the coordinates (0, 0, 0), (A1, A2, A3), and (B1, B2, B3)

and plot these points in a Cartesian coordinate sys-

tem as illustrated. Denote by �A the directed line

segment from (0, 0, 0) to (A1, A2, A3) and denote by
�B the directed straight-line segment from (0, 0, 0) to

(B1, B2, B3).

One can now apply the distance formula from analytic geometry to represent

the lengths of these line segments. We find these lengths can be represented by

| �A| =
√

A2
1 + A2

2 + A2
3 and | �B| =

√

B2
1 + B2

2 + B2
3 .

Let �C = �A − �B denote the directed line segment from (B1, B2, B3) to (A1, A2, A3). The

length of this vector is found to be

| �C| =
√

(A1 − B1)2 + (A2 − B2)2 + (A3 − B3)2.

If θ is the angle between the vectors �A and �B, the law of cosines is employed to write

| �C|2 = | �A|2 + | �B|2 − 2| �A|| �B| cos θ.

Substitute into this relation the distances of the directed line segments for the mag-

nitudes of �A, �B and �C . Expanding the resulting equation shows that the law of

cosines takes on the form

(A1 − B1)
2 + (A2 − B2)

2 + (A3 − B3)
2 = A2

1 + A2
2 + A2

3 + B2
1 + B2

2 + B2
3 − 2| �A|| �B| cos θ.

With elementary algebra, this relation simplifies to the form

A1B1 + A2B2 + A3B3 = | �A|| �B| cos θ

which suggests the definition of a dot product as �A · �B = | �A|| �B| cos θ.
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Example 10-3. If �A = A1 ê1 + A2 ê2 + A3 ê3 is a given vector in component form,

then
�A · �A = A2

1 + A2
2 + A3

3 and | �A| =
√

A2
1 + A2

2 + A2
3

The vector

êA =
1

| �A|
�A =

A1 ê1 + A2 ê2 + A3 ê3
√

A2
1 + A2

2 + A2
3

= cos α ê1 + cos β ê2 + cos γ ê3

is a unit vector in the direction of �A, where

cos α =
A1

| �A|
, cos β =

A2

| �A|
, cos γ =

A3

| �A|

are the direction cosines of the vector �A. The dot product

êA · êA = cos2 α + cos2 β + cos2 γ = 1

shows that the sum of squares of the direction cosines is unity.

The Cross Product or Outer Product

The cross or outer product of two nonzero vectors �A and �B is denoted using the

notation �A × �B and represents the construction of a new vector �C defined as

�C = �A × �B = | �A|| �B | sin θ ên, (10.23)

where θ is the smaller angle between the two nonzero vectors
�A and �B when their origins coincide, and ên is a unit vector

perpendicular to the plane containing the vectors �A and �B

when their origins are made to coincide. The direction of ên

is determined by the right-hand rule. Place the fingers of your

right-hand in the direction of �A and rotate the fingers toward

the vector �B, then the thumb of the right-hand points in the

direction �C .

The vectors �A, �B, �C then form a right-handed system.1 Note that the cross product
�A× �B is a vector which will always be perpendicular to the vectors �A and �B, whenever
�A and �B are linearly independent nonzero vectors.

1 Note many European technical books use left-handed coordinate systems which produces results different from

using a right-handed coordinate system.
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A special case of the above definition occurs when �A× �B = �0 and in this case one

can state that either θ = 0, which implies the vectors �A and �B are parallel or �A = �0

or �B = �0. Further note that the equation �A × �B = �A × �C does not imply that �B = �C .

Unit vectors

Use the above definition of a cross product and show that the orthogonal

unit vectors ê1, ê2, ê3 satisfy the relations

ê1 × ê1 = �0

ê1 × ê2 = ê3

ê1 × ê3 = − ê2

ê2 × ê1 = − ê3

ê2 × ê2 = �0

ê2 × ê3 = ê1

ê3 × ê1 = ê2

ê3 × ê2 = − ê1

ê3 × ê3 = �0

(10.24)

Properties of the Cross Product

�A × �B = − �B × �A (noncommutative)

�A × ( �B + �C ) = �A × �B + �A × �C (distributive law)

m( �A × �B) = (m �A) × �B = �A × (m�B) m a scalar

�A × �A = �0 since �A is parallel to itself.

Let �A = A1 ê1 + A2 ê2 + A3 ê3 and �B = B1 ê1 + B2 ê2 + B3 ê3 be two nonzero vectors

in component form and form the cross product �A × �B to obtain

�A × �B = (A1 ê1 + A2 ê2 + A3 ê3)× (B1 ê1 + B2 ê2 + B3 ê3). (10.25)

The cross product can be expanded by using the distributive law to obtain

�A × �B = A1B1 ê1 × ê1 + A1B2 ê1 × ê2 + A1B3 ê1 × ê3

+ A2B1 ê2 × ê1 + A2B2 ê2 × ê2 + A2B3 ê2 × ê3

+ A3B1 ê3 × ê1 + A3B2 ê3 × ê2 + A3B3 ê3 × ê3.

(10.26)

Simplification by using the previous results from equation (10.24) produces the im-

portant cross product formula

�A × �B = (A2B3 − A3B2) ê1 + (A3B1 − A1B3) ê2 + (A1B2 − A2B1) ê3, (10.27)

This result that can be expressed in the determinant form2

�A × �B =

∣

∣

∣

∣

∣

∣

ê1 ê2 ê3

A1 A2 A3

B1 B2 B3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

A2 A3

B2 B3

∣

∣

∣

∣

ê1 −
∣

∣

∣

∣

A1 A3

B1 B3

∣

∣

∣

∣

ê2 +

∣

∣

∣

∣

A1 A2

B1 B2

∣

∣

∣

∣

ê3. (10.90)

2 For more information on determinants see chapter 5.
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In summary, the cross product of two vectors �A and �B is a new vector �C, where

�C = �A × �B = C1 ê1 + C2 ê2 + C3 ê3 =

∣

∣

∣

∣

∣

∣

ê1 ê2 ê3

A1 A2 A3

B1 B2 B3

∣

∣

∣

∣

∣

∣

with components

C1 = A2B3 − A3B2, C2 = A3B1 − A1B3, C3 = A1B2 −A2B1 (10.91)

Geometric Interpretation
A geometric interpretation that can be assigned to the magnitude of the cross

product of two vectors is illustrated in figure 10-9.

Figure 10 -9. Parallelogram with sides �A and �B.

The area of the parallelogram having the vectors �A and �B for its sides is given

by

Area = | �A| · h = | �A|| �B | sin θ = | �A × �B |. (10.30)

Here | �B | cosφ = | �B | sin(π
2
− θ) = | �B | sin θ is the projection of �B onto a line perpendicular

to the vector �A in the plane of the vectors �A and �B . Therefore, the magnitude of the

cross product of two vectors represents the area of the parallelogram formed from

these vectors when their origins are made to coincide.

Example 10-4. (Area of parallelogram) Consider the parallelogram illustrated

in the figure 10-10 with vertices (0, 0), (a, b), (a, c), (a + c, b + d) Define the vectors

�A =a ê1 + b ê2, | �A| = A =
√

a2 + b2

�B =c ê1 + d ê2, | �B| = B =
√

c2 + d2

�A · �B =ac + bd,



413

then the altitude of the parallelogram is given by h = B sin θ, where B = | �B |. The

area of the parallelogram is the base times the altitude or

Area = A B sin θ = A B
√

1 − cos2 θ (10.31)

Figure 10 -10. Parallelogram

Use the definition of the dot product of vectors

�A · �B = A B cos θ to write cos θ =
�A · �B

A B
(10.32)

to express the equation (10.31) in the form

Area = A B

√

√

√

√1 −

[

�A · �B

A B

]2

=

√

A2 B2 − ( �A · �B)2

Using some algebra this expression can be written in a different form.

Area2
=A2B2 − ( �A · �B)2 = (a2 + b2)(c2 + d2) − (ac + bd)2

=a2c2 + a2d2 + b2c2 + b2d2 − [a2c2 + acbd + acbd + b2d2]

=ad(ad − bc) + bc(bc− ad)

=(ad − bc)2

(10.33)

Observe that the cross product �A × �B can be expressed

�A × �B =

∣

∣

∣

∣

∣

∣

ê1 ê2 ê3

a b 0
c d 0

∣

∣

∣

∣

∣

∣

= ê3(ad − bc) (10.34)

so that the area of the parallelogram can be expressed

Area =
∣

∣

∣

�A × �B
∣

∣

∣
= |ad − bc|
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Example 10-5. (Area of a triangle)

Find the area of the triangle having the vertices P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3).

Solution

Define the position vectors

�r1 = x1 ê1 + y1 ê2 + z1 ê3, �r2 = x2 ê1 + y2 ê2 + z2 ê3, �r3 = x3 ê1 + y3 ê2 + z3 ê3

to the given points defining the vertices and observe that the sides of the triangle

in figure 10-11 are defined by the vectors

�A = �r2 − �r1 and �B = �r3 − �r1

The situation is illustrated in the figure 10-11. We know the magnitude of the cross

product �A × �B gives the area of a parallelogram having the vector sides �A and �B.

Hence, the area of the triangle is one-half the area of the parallelogram or

Area =
1

2

∣

∣

∣

�A ×B
¯

∣

∣

∣

Figure 10 -11. Triangle formed from points P1, P2 and P3
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Vector Identities

The following vector identities are often needed to simplify various equations in

science and engineering.

1. �A × �B = − �B × �A (10.35)

2. �A · ( �B × �C ) = �B · ( �C × �A) = �C · ( �A × �B) (10.36)

An identity known as the triple scalar product.

3. ( �A × �B) × ( �C × �D) = �C
[

�D · ( �A × �B)
]

− �D
[

�C · ( �A × �B)
]

= �B
[

�A · ( �C × �D)
]

− �A
[

�B · ( �C × �D)
]

(10.37)

4. �A × ( �B × �C ) = �B( �A · �C ) − �C ( �A · �B) (10.38)

The quantity �A × ( �B × �C ) is called a triple vector product.

5. ( �A × �B) · ( �C × �D) = ( �A · �C )( �B · �D) − ( �A · �D)( �B · �C ) (10.39)

6. The triple vector product satisfies

�A × ( �B × �C ) + �B × ( �C × �A) + �C × ( �A × �B ) = �0 (10.40)

Note that in the triple scalar product �A · ( �B × �C ) the parenthesis is sometimes

omitted because ( �A · �B)× �C is meaningless and so �A · �B× �C can have only one meaning.

The parenthesis just emphasizes this one meaning.

A physical interpretation can be assigned to the triple scalar product �A · ( �B × �C )

is that its absolute value represents the volume of the parallelepiped3 formed by

the three noncoplaner vectors �A, �B, �C when their origins are made to coincide. The

absolute value is needed because sometimes the triple scalar product is negative.

This physical interpretation can be obtained from the following analysis.

In figure 10-12 note the following.

(a) The magnitude | �B × �C | represents the area of the parallelogram PQRS.

(b) The unit vector ên =
�B × �C

| �B × �C |
is normal to the plane containing the vectors �B

and �C.

3 A parallelepiped is a solid figure which has parallelograms for each of its faces.
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Figure 10 -12. Triple scalar product and volume.

(c) The dot product �A · ên = �A ·
�B × �C

| �B × �C |
= h represents the projection of �A on ên

and produces the height of the parallelepiped. These results demonstrate that

the triple scalar product gives the volume of the parallelepiped
∣

∣

∣

�A · ( �B × �C )
∣

∣

∣
= | �B × �C | h = (Area of base)(Height) = Volume.

Therefore, one can state that the magnitude of the triple scalar product is the

volume of the parallelepiped formed when the origins of the three vectors forming

the sides are made to coincide.

Example 10-6. Show that the triple scalar product satisfies the relations

�A · ( �B × �C ) = �B · ( �C × �A) = �C · ( �A × �B)

Note the cyclic rotation of the symbols in the above relations where the first symbol

is moved to the last position and the second and third symbols are each moved to

the left. This is called a cyclic permutation of the symbols.

Solution Use the determinant form for the cross product and express the triple scalar

product as a determinant as follows.

�A · ( �B × �C ) =(A1 ê1 + A2 ê2 + A3 ê3) ·

∣

∣

∣

∣

∣

∣

ê1 ê2 ê3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣

�A · ( �B × �C ) =(A1 ê1 + A2 ê2 + A3 ê3) · [(B2C3 −B3C2) ê1 − (B1C3 − B3C1) ê2 + (B1C2 − B2C1) ê3]

�A · ( �B × �C ) =A1(B2C3 −B3C2) −A2(B1C3 − B3C1) + A3(B1C2 − B2C1)

�A · ( �B × �C ) =A1

∣

∣

∣

∣

B2 B3

C2 C3

∣

∣

∣

∣

−A2

∣

∣

∣

∣

B1 B3

C1 C3

∣

∣

∣

∣

+ A3

∣

∣

∣

∣

B1 B2

C1 C2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣
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Determinants have the property4 that the interchange of two rows of a determinant

changes its sign. One can then show
∣

∣

∣

∣

∣

∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

B1 B2 B3

C1 C2 C3

A1 A2 A3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

C1 C2 C3

A1 A2 A3

B1 B2 B2

∣

∣

∣

∣

∣

∣

or
�A · ( �B × �C ) = �B · ( �C × �A) = �C · ( �A × �B)

Example 10-7. For nonzero vectors �A, �B, �C show that the triple vector product

satisfies �A × ( �B × �C ) �= ( �A × �B) × �C

That is, the triple vector product is not associative and the order of execution of

the cross product is important.

Solution Let �B × �C = �D denote the vector

perpendicular to the plane determined by the

vectors �B and �C . The vector �A × �D = �E is a

vector perpendicular to the plane determined by

the vectors �A and �D and therefore must lie in

the plane of the vectors �B and �C . One can then

say the vectors �B, �C and �A× ( �B × �C ) are coplanar

and consequently there must exist scalars α and

β such that

�A × ( �B × �C ) = α �B + β �C (10.41)

In a similar fashion one can show that the vectors ( �A× �B)× �C, �A and �B are coplanar

so that there exists constants γ and δ such that

( �A × �B) × �C = γ �A + δ �B (10.42)

The equations (10.41) and (10.42) show that in general

�A × ( �B × �C ) �= ( �A × �B ) × �C

4 See chapter 6 for properties of determinants.
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Example 10-8. Show that the triple vector product satisfies

�A × ( �B × �C ) = ( �A · �C ) �B − ( �A · �B) �C

Solution Use the results from the previous example showing there exists scalars α

and β such that
�A × ( �B × �C ) = α �B + β �C (10.43)

Let �B × �C = �D and write
�A × �D = α �B + β �C (10.44)

Take the dot product of both sides of equation (10.44) with the vector �A to obtain

the triple scalar product

�A · ( �A × �D) = α( �A · �B) + β( �A · �C )

By the permutation properties of the triple scalar product one can write

�A · ( �A × �D) = �A · ( �D × �A) = �D · ( �A × �A) = 0 = α( �A · �B ) + β( �A · �C ) (10.45)

The above result holds because �A × �A = �0 and implies

α( �A · �B) = −β( �A · �C ) or
α

�A · �C
=

−β

�A · �B
= λ

where λ is a scalar. This shows that the equation (10.43) can be expressed in the

form
�A × ( �B × �C ) = λ( �A · �C ) �B − λ( �A · �B) �C (10.46)

which shows that the vectors �A × ( �B × �C ) and ( �A · �C ) �B − ( �A · �B) �C are collinear. The

equation (10.46) must hold for all vectors �A, �B, �C and so it must be true in the special

case �A = ê2, �B = ê1, �C = ê2 where equation (10.46) reduces to

ê2 × ( ê1 × ê2) = ê1 = λ ê1 which implies λ = 1

Example 10-9. Use vectors to derive the law of sines for the triangle illus-

trated in the figure 10-13.

Solution The sides of the given triangle are formed from the vectors �A, �B and �C and

since these vectors are free vectors they can be moved to the positions illustrated in

figure 10-13.
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Figure 10 -13. Triangle for law of sines.

Also sketch the vector − �C as illustrated. The new positions for the vectors �A, �B, �C

and − �C are constructed to better visualize certain vector cross products associated

with the law of sines.

Examine figure 10-13 and note the following cross products
�C × �A = ( �A − �B )× �A = �A × �A − �B × �A = − �B × �A = �A × �B

and �B × (− �C ) = �B × (− �A + �B) = �B × (− �A) + �B × �B = �A × �B.

Taking the magnitude of the above cross products gives

| �C × �A| = | �A × �B | = | �B × (− �C )|

or

AC sin θB = AB sin θC = BC sin θA.

Dividing by the product of the vector magnitudes ABC produces the law of sines
sin θA

A
=

sin θB

B
=

sin θC

C
.

Example 10-10. Use vectors to derive the law of cosines for the triangle

illustrated.

Figure 10 -14. Triangle for law of cosines.
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Solution Let �C = �A − �B so that the dot product of �C with itself gives

�C · �C = ( �A − �B) · ( �A − �B) = �A · �A + �B · �B − 2 �A · �B

or

C2 = A2 + B2 − 2AB cos θ,

where A = | �A|, B = | �B |, C = | �C | represent the magnitudes of the vector sides.

Example 10-11. Find the vector equation of a line which passes through the

two given points P1(x1, y1, z1) and P2(x2, y2, z2).

Solution Let

�r1 =x1 ê1 + x2 ê2 + x3 ê3

and �r2 =x2 ê1 + y2 ê2 + z2 ê3

denote position vectors to the points P1 and P2

respectively and let �r = x ê1+y ê2+z ê3 denote the

position vector of any other variable point on the

line. Observe that the vector P1P2
−→

= �r� = �r2−�r1 is

parallel to the line through the points P1 and P2 and represents the direction vector

of the line. By vector addition the (x, y, z) position on the line is given by

�r = �r(λ) = �r1 + λ�r� −∞ < λ < ∞ (10.47)

where λ is a scalar parameter5. Note that as λ varies from 0 to 1 the position vector

�r moves from �r1 to �r2. An alternative form for the equation of the line is given by

�r = �r2 + λ∗(�r1 − �r2) −∞ < λ∗ < ∞

where λ∗ is some other scalar parameter and the vector �r2 − �r1 is a direction vector

the negative of �r�. This second form for the line has the position vector �r moving

from �r2 to �r1 as λ∗ varies from 0 to 1. The vector ±(�r2 − �r1) is called the direction

vector of the line.

5 The parameter λ can be replaced by some other parameter such as t, s, u, v etc.
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Define the quantities a = x2 − x1, b = y2 − y1 and c = z2 − z1 as a set of direction

numbers for the line. The direction vector for the line is then �r� = a ê1 + b ê2 + c ê3

then the vector equation for the line is

�r = �r1 + �r� λ (10.55)

where λ is a parameter. Expanding the equation (10.55) one obtains

x ê1 + y ê2 + z ê3 = x1 ê1 + y1 ê2 + z1 ê3 + aλ ê1 + bλ ê2 + cλ ê3

The parametric form for the line is obtained by equating like components to obtain

x = x1 + aλ, y = y1 + bλ, z = z1 + cλ

The line can also be represented in the symmetric form

x − x1

a
=

y − y1

b
=

z − z1

c
= λ (10.49)

where a, b, c are direction numbers different from zero.

Note that if one of the direction numbers is zero, this states the line lies in a

plane. For example, if a = 0, the line lies in the plane x = x1 = constant. That is, the

line is defined by by

y = y1 + bλ, z = z1 + cλ or ⇒ z − z1 = m(y − y1), m = c/b

in the plane x = x1 a constant.

Example 10-12. Find the equation of the plane which passes through the point

P1(x1, y1, z1) and is perpendicular to the given vector �N = N1 ê1 + N2 ê2 + N3 ê3.

Solution Let �r1 = x1 ê1 + y1 ê2 + z1 ê3 denote the

position vector to the point P1 and let the vec-

tor �r = x ê1 + y ê2 + z ê3 denote the position vector

to any variable point (x, y, z) in the plane. If the

vector �r − �r1 lies in the plane, then it must be

perpendicular to the given vector �N and conse-

quently the dot product of (�r − �r1) with �N must

be zero and so one can write

(�r − �r1) · �N = 0 (10.50)
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as the equation representing the plane. In scalar form, the equation of the plane is

given as
(x − x1)N1 + (y − y1)N2 + (z − z1)N3 =0

or N1x + N2y + N3z = a constant
(10.51)

where N1, N2, N3 are the direction numbers for the normal line to the plane and the

constant term is x1N1 + y1N2 + z1N3.

A plane can be defined knowing

(a) A point and normal vector.

(b) Three noncollinear points.

(c) A line and point not on the line.

(d) By two intersecting lines.

(e) By two parallel lines.

Example 10-13.

Find the equation of the plane defined by three noncollinear points.

Solution:

Define the vectors P1P3
−→

= �A = �r3 − �r1

and P1P2
−→

= �B = �r2 − �r1 and let

�r = x ê1 + y ê2 + z ê3

denote a position vector to a point in the

plane. The vectors �A and �B lie in the plane

and the cross product �N = �B × �A defines a

normal vector to the plane.
Knowing a point on the plane and a normal vector to the plane, the equation of the

plane is

(�r − �r1) · �N = 0
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Example 10-14.

Find the equation of the plane defined by a line and a point not on the line.

Solution:

If the given line has the vector equa-

tion �r = �r0+λ�r�, then when λ = 0 the vector

�r0 points to a point on the plane. The vec-

tors �r� and �r1−�r0 lie in the plane and their

cross product �r� × (�r1 − �r0) = �N produces a

normal vector to the plane.

Knowing a point on the plane and a normal vector to the plane, the vector equation

of the plane is (�r − �r1) · �N = 0.

Example 10-15.

Find the equation of the plane defined by two intersecting lines.

solution:

Let the intersecting lines have the equations

�1 : �r = �ra + λ1�r�1

�2 : �r = �rb + λ2�r�2

When the parameters λ1 and λ2 are

zero the vectors produced are �ra and �rb

which are vectors to two points in the

plane.

Therefore, either of the equations

(�r − �ra) · �N = 0 or (�r − �rb) · �N = 0

represents the equation of the plane where �N = �r�2
× �r�1

is a normal vector to the

given plane.
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Example 10-16. Find the equation of the plane defined by two parallel lines.

Solution:

Let the parallel lines be defined by the

equations
�r =�ra + λ1�r�1

�r =�rb + λ2�r�1

where both lines have the same direction

vector. When the parameters λ1 = λ2 = 0

there results the position vectors �ra and �rb

representing two points in the plane.

The vector difference �rb − �ra also lies in the plane and so a normal vector to the

plane is given the cross product �r�1 × (�rb −�ra) = �N . Therefore, either of the equations

(�r − �rb) · �N = 0 or (�r − �ra) · �N = 0

can be used to represent the equation of the plane.

Parametric equation of a plane

Select two linearly independent vec-

tors �a and �b from within the plane or

parallel to the plane desired. Let �r0 de-

note the position vector to a point in the

plane. The position of a general point

�r = x ê1 + y ê2 + z ê3 on the plane can then

be represented

�r = �r0+u�a+v�b, −∞ < u < ∞, −∞ < v < ∞

where u and v are called parameters of the

plane determined by the vectors �r0,�a,�b.

Example 10-17. Three points determine a plane. Find the parametric equation

representing the plane passing through the three points

P1 : (4, 5, 6) P2 : (−1, 4, 3) P3 : (7, 0, 4)
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Solution:

One can define the position vectors

�r1 =4 ê1 + 5 ê2 + 6 ê3

�r2 =− 1 ê1 + 4 ê2 + 3 ê3

�r3 =7 ê1 + 0 ê2 + 4 ê3

to each of the given points. The vectors

P1P3
−→

= �a =�r3 − �r1 = 3 ê1 − 5 ê2 − 2 ê3

P1P2
−→

= �b =�r2 − �r1 = −5 ê1 − ê2 − 3 ê3

are independent vectors lying in the plane and so one form for the parametric equa-

tion for the plane is

�r = �r1 + u�a + v�b

Example 10-18. Find the perpendicular distance d from a given plane

(x − x1)N1 + (y − y1)N2 + (z − z1)N3 = 0 (10.52)

to a given point (x0, y0, z0) not on the plane.

Solution

Let the vector �r0 = x0 ê1 + y0 ê2 + z0 ê3 point to the

given point (x0, y0, z0) and the vector �r1 = x1 ê1 + y1 ê2 +

z1 ê3 point the point (x1, y1, z1) lying in the plane. Con-

struct the vector �r0−�r1 which points from the terminus

of �r1 to the terminus of �r0 and construct the unit nor-

mal to the plane which is given by

êN =
N1 ê1 + N2 ê2 + N3 ê3

√

N2
1 + N2

2 + N2
3

Observe that the dot product êN · (�r0 − �r1) equals the projection of �r0 − �r1 onto

the normal vector êN . This gives the perpendicular distance

d = | êN · (�r0 − �r1)|

d =

∣

∣

∣

∣

∣

(x0 − x1)N1 + (y0 − y1)N2 + (z0 − z)N3
√

N2
1 + N2

2 + N2
3

∣

∣

∣

∣

∣

(10.53)
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where the absolute value signs guarantee that the sign of d is always positive and

does not depend upon the direction selected for the unit normal êN to the plane.

As a special case of equations (10.52)

and (10.53) set the N3 and ê3 compo-

nents to zero to produce the two dimen-

sional problem of finding the perpendicu-

lar distance of a point (x0, y0) to the line

N1x + N2y + C = 0 where from the equa-

tion (10.52) the constant C is given by

C = −x1N1 − y1N2.

Let N1 = A and N2 = B in equation (10.52) and write the equation of the line in

two dimensions as Ax + By + C = 0, then as a special case of equation (10.53) in two

dimensions one finds the perpendicular distance d from a point (x0, y0) to the given

line is

d =

∣

∣

∣

∣

Ax + By + C√
A2 + B2

∣

∣

∣

∣

(10.54)

Example 10-19. Find the distance d from a point (x0, y0, z0) to a given line �

represented by the vector �r = �ra + λ�r�.

Solution:

Let �r0 = x0 ê1 + y0 ê2 + z0 ê3 denote a

vector from the origin to the given point

P. The vector �ra is a vector to a point on

the line � when λ = 0 and �r� represents the

direction vector of the line as illustrated in

the accompanying figure. By vector addi-

tion �r0 = �ra + (�r0 − �ra) as illustrated. The

projection of the vector �r0−�ra onto the line

perpendicular to � and passing through the

given point is

|�r0 − �ra| cos(
π

2
− θ) = |�r0 − �ra| sin θ = d (10.55)
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where θ is the angle between the vectors (�r0 − �ra) and �r�. One can use the definition

of the cross product of two vectors

|(�r0 − �ra) × �r�| = |(�r0 − �ra)| |�r�| sin θ

and write equation (10.55) in the form

d =
|(�r0 − �ra) × �r�|

|�r�|
(10.56)

which is how one calculates the distance from a point to a line in three dimensional

space.

Example 10-20. Find the line which is defined by the intersection of two given

planes

Solution:

Given the two planes

N1x + N2y + N3z + D1 =0

M1x + M2y + M3z + D2 =0
or

�N · (�r − �r0) =0

�M · (�r − �r1) =0
(10.57)

and assume these planes are not parallel6 or �N �= k �M , for k a nonzero constant.

In general, the vector equation of a line passing through a point P0 and having

a direction vector �r� is given by

�r = �rP0
+ λ�r�

where �r = x ê1+y ê2+z ê3 is a vector pointing to a variable point on the line determined

by the parameter value of λ, �rP0
= x0 ê1 + y0 ê2 + z0 ê3 is a vector pointing to a fixed

point on the line and �r� = a ê1 + b ê2 + c ê3 represents the vector direction associated

with the line and λ is a parameter −∞ < λ < ∞. Our problem is to find a point P0

on the line and to find a direction vector for the line which is along the intersection

of two planes.

Since the equations for the planes are given, then one knows the normal vectors

to the planes
�N =N1 ê1 + N2 ê2 + N3 ê3

�M =M1 ê1 + M2 ê2 + M3 ê3

6 Two planes are parallel if and only if the normals �N and �M satisfy �N × �M = �0 which implies �N = k �M
for some nonzero scalar k.
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The cross product of these two vectors gives a direction vector for the line

�r� = �N × �M =

∣

∣

∣

∣

∣

∣

ê1 ê2 ê3

N1 N2 N3

M1 M2 M3

∣

∣

∣

∣

∣

∣

= ê1

∣

∣

∣

∣

N2 N3

M2 M3

∣

∣

∣

∣

− ê2

∣

∣

∣

∣

N1 N3

M1 M3

∣

∣

∣

∣

+ ê3

∣

∣

∣

∣

N1 N2

M1 M2

∣

∣

∣

∣

To find a point (x0, y0, z0) on the line of intersection of the two planes given by the

simultaneous equations (10.57), one can select a value for one of the variables x, y or

z in the equations (10.57), then substitute this value into the simultaneous equations

(10.57) and solve the resulting two equations in two unknowns. The algebra becomes

easier if one of the quantities x, y or z is zero. This will make the line of intersection

of the two planes cut across one of the planes x = 0, y = 0 or z = 0. For example, if

one sets z = 0, the known point on the line becomes (x, y, 0) which is on the line of

intersection of the two given planes where x and y are the solutions associated with

the system of equations
N1x + N2y + D1 =0

M1x + M2y + D2 =0
(10.58)

Solve this system of two equations and two unknowns and obtain a solution repre-

sented by (x, y) = (x0, y0), then the point P0 = (x0, y0, 0) is a known point on the line

and the equation of the line of intersection of the two planes is

�r = �rP0
+ λ�r�, −∞ < λ < ∞

The angle formed by the intersection of two planes

is called a dihedral angle. The line of intersection of the

two planes is called the edge of the dihedral angle. The

cosine of the dihedral angle can be calculated from the

dot product formula

�N · �M =
∣

∣

∣

�N
∣

∣

∣

∣

∣

∣

�M
∣

∣

∣
cos θ ⇒ cos θ =

�N · �M
∣

∣

∣

�N
∣

∣

∣

∣

∣

∣

�M
∣

∣

∣

(10.59)

when the origin of the normal vectors are made to co-

incide.

Caution, one can examine the given system of equations (10.58) to see if any

plane is parallel to an axis. If this is the case, then one is restricted in the selection
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of the variable chosen to be zero. See for example the situations illustrated in the

figures 10-15.

Figure 10 -15. Situations where plane is parallel to an axis

One cannot select x0 = 0 as a point on the intersection of two planes if the x-axis is

parallel to one of the planes. Similar consideration must be made in the selection of

y0 = 0 or z0 = 0 if these values are acceptable.

Example 10-21.

Given the planes

plane 1: 2x + 3y + z = 22

plane 2: 2x − y + z = 6
(10.60)

Set z = 0 in the simultaneous equations (10.60) to obtain

the system of two equations in two unknowns

2x + 3y =22

2x − y =6
(10.61)

This system has the solution x0 = 5 and y0 = 4. Consequently, the point given by

(x0, y0, z0) = (5, 4, 0) is on the line of intersection of the two given planes and the vector

to this point is �r0 = x0 ê1 + y0 ê2 + z0 ê3. The normal vectors to the given planes are

�N = 2 ê1 + 3 ê2 + ê3 and �M = 2 ê1 − ê2 + ê3
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and from these normal vectors one can calculate the direction vector for the line by

taking the cross product

�N × �M = �r� =

∣

∣

∣

∣

∣

∣

ê1 ê2 ê3

2 3 1
2 −1 −1

∣

∣

∣

∣

∣

∣

= ê1

∣

∣

∣

∣

3 1
−1 1

∣

∣

∣

∣

− ê2

∣

∣

∣

∣

2 1
2 1

∣

∣

∣

∣

+ ê3

∣

∣

∣

∣

2 3
2 −1

∣

∣

∣

∣

giving the direction numbers for the line of intersection (dihedral angle edge) as

�r� = �N × �M = 4 ê1 + 0 ê2 − 8 ê3

The vector equation for the line of intersection of the two planes is then represented

�r = �r0 + λ�r� = (5 + 4λ) ê1 + 4λ ê2 − 8λ ê3

Note a line in space has an infinite number of other

lines perpendicular to any fixed point on the line. All

these perpendicular lines lie in a plane which is perpen-

dicular to the given line.

This fact can be used to show that two planes perpendicular to the same line at

different points are parallel.

Example 10-22. Find the perpendicular distance from a point (x0, y0, z0) to a

given line � defined by �r = �r1 + �αt. Assume the point �r0 = x0 ê1 + y0 ê2 + z0 ê3 is not on

the line and show the perpendicular distance is given by

d =

∣

∣

∣

∣

(�r0 − �r1) ×
�α

|�α|

∣

∣

∣

∣

where �α = α1 ê1 + α2 ê2 + α3 ê3

and �r1 = x1 ê1 + y1 ê2 + z1 ê3 are given vectors.

Solution

The vector equation of the line is �r = �r1 + �α t,

where (x1, y1, z1) is a point on the line described

by the position vector �r and �α is the direction

vector of the line and t is a parameter. The vector

�r0 − �r1 is a vector pointing from (x1, y1, z1) to the
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point (x0, y0, z0). These vectors are illustrated in

the accompanying figure.

Define the unit vector êα = 1

|�α|
�α and construct the line segment from (x0, y0, z0)

which is perpendicular to the given line and label this distance d. Our problem is to

find the distance d. From the geometry of the right triangle with hypotenuse |�r0 −�r1|

and side d one can write sin θ =
d

|�r0 − �r1|
. Use the fact that by definition of a cross

product one can write

|(�r0 − �r1) × êα| = |�r0 − �r1|| êα| sin θ = d =

∣

∣

∣

∣

(�r0 − �r1) ×
�α

|�α|

∣

∣

∣

∣

Example 10-23. (Circle in three dimensions)

In two dimensions the equation of the circle in

vector form is �r = �r0 + �r1 where �r0 = x0 ê1 + y0 ê2 is

the position vector to the center of the circle and

�r1 = r cos θ ê1 + r sin θ ê2 is the vector equation of the

circle. The parametric form for the equation of the

circle of radius r centered at the point (x0, y0) is

x = x0 + r cos θ, y = y0 + r sin θ (10.62)

In two dimensions a center and radius x0, y0, r are required to have a circle.

To construct a circle in three

dimensions one needs in addition

to a center (x0, y0, z0) and radius

r (i) an axis of rotation perpen-

dicular to the circle center and

(ii) two perpendicular unit vec-

tors êα and êβ in the plane of

the circle. Let �r� denote a direc-

tion vector for the axis of rotation and let (x1, y1, z1) denote an arbitrary point on

this line. The vector equation of the line through the point (x1, y1, z1) in the direction

�r� is �r = �r1 + λ�r�. Let �r0 = �r1 + λ0�r� = x0 ê1 + y0 ê2 + z0 ê3 denote the center of the circle

and let ên denote a unit vector in the direction �r�. There are an infinite number
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of vectors perpendicular to ên. One can construct a vector perpendicular to ên as

follows. Let ên = n1 ê1 + n2 ê2 + n3 ê3 and let �a = a1 ê1 + a2 ê2 + a3 ê3 denote the vector

to be determined. We require

ên · �a = n1a1 + n2a2 + n3a3 = 0 (10.63)

Assume n3 is different from zero and select a1 and a2 as positive numbers different

from zero. One can then solve for a3 to make equation (10.63) zero. One finds

a3 =
−n1a1 − n2a2

n3

and so it is possible to construct a unit vector

êα =
a1 ê1 + a2 ê2 + a3 ê3

√

a2
1 + a2

2 + a2
3

which is perpendicular to ên. The cross product êβ = ên × êα produces another unit

vector perpendicular to ên with the unit vector êα and êβ in the plane of the circle.

The vector equation for the circle in 3-space can now be expressed

�r = �r0 + r cos θ êα + r sin θ êβ (10.64)

If êα = α1 ê1 + α2 ê2 + α3 ê3 and êβ = β1 ê2 + β2 ê2 + β3 ê3, then the parametric equation

for a circle in 3-space is
x =x0 + α1r cos θ + β1r sin θ

y =y0 + α2r cos θ + β2r sin θ

z =z0 + α3r cos θ + β3r sin θ

(10.65)

Example 10-24. (Section formula using vectors)

Given the vectors

�r1 =x1 ê1 + y1 ê2 + z1 ê3

�r2 =x2 ê1 + y2 ê2 + z3 ê3

which defines the line � with direction numbers

�r� = �r2 − �r1

Find the point P with position vector �r which divides

the line segment P1P2 into the ratio m : n.
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Solution:

We want to obtain the result

|P1P
−→

|
|PP2
−→

|
=

m

n
⇒ nP1P

−→
= mPP2

−→

Using vector addition one can verify that

�r1 + P1P
−→

=�r or P1P
−→

= �r − �r1

and �r + PP2
−→

=�r2 or PP2
−→

= �r2 − �r

Therefore,

n (�r − �r1) = m (�r2 − �r) ⇒ (m + n)�r = m�r2 + n�r1

or

�r =
m�r2 + n�r1

m + n

Example 10-25.

Find the volume of the parallelepiped illustrated

which has the vectors �A, �B, �C for its sides.

Solution

The volume of the parallelepiped is the area of the base times the altitude h.

The area of the base is given by | �B × �C | and the altitude is given by h = �A · ên which

is the projection of the vector �A onto the normal ên. Note that ên is the unit vector

perpendicular to the plane formed by the vectors �B and �C . If the vectors �A, �B, �C

are defined
�A =A1 ê1 + A2 ê2 + A3 ê3

�B =B1 ê1 + B2 ê2 + B3 ê3

�C =C1 ê1 + C2 ê2 + C3 ê3

then

�B × �C =

∣

∣

∣

∣

∣

∣

ê1 ê2 ê3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣

= ê1(B2C3 − B3C2) − ê2(B1C3 − C1B3) + ê3(B1C2 − C1B2) (10.66)
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The unit normal vector to the plane formed by the vectors �B and �C is found to be

ên =
�B × �C

| �B × �C |
(10.67)

and the altitude is found to be the projection of �A onto the unit vector ên or

h = �A · ên = �A ·
�B × �C

| �B × �C |
(10.68)

The volume of the parallelepiped is the area of the base times the altitude or

Volume =h | �B × �C | = �A · ( �B × �C )

Volume =A1(B2C3 − B3C2) − A2(B1C3 −C1B3) + A3(B1C2 − B2C1)

Volume =

∣

∣

∣

∣

∣

∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣

Here the volume of the parallelepiped is found by calculating the triple scalar product

�A · ( �B × �C ).

Example 10-26. Show that the tetrahedron with sides �A, �B, �C has a vol-

ume V = 1

6
| �A · ( �B × �C )| which equals one-sixth the volume of a parallelepiped.

Solution We know that the triple scalar product

| �A · ( �B × �C )|

is the volume of a parallelepiped with sides �A, �B and

�C . The tetrahedron is a polyhedron with 4 faces. The

vectors �A, �B and �B − �A make up the base of the tetra-

hedron so one can express the area of the base in the

form

Area of base =
1

2
| �A × �B |

The vector �N = �A × �B is perpendicular to the vase and the vector n̂ =
�A×�B

| �A×�B|
is a

unit vector perpendicular to the base. The projection of vector �C onto n̂ is the

height h of the tetrahedron or

h = �C · n̂ =
�C · ( �A × �B )

| �A × �B |
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The volume of the tetrahedron Vt is one-third the area of the base times the height

giving

Vt =
1

3

(

1

2
| �A × �B |

)

(

�C · ( �A × �B)

| �A × �B |

)

=
1

6
�A · ( �B × �C )

where we have used the cyclic shifting property of the triple scalar product.

Vector form for centroid
In general, if one has n-masses m1, m2, . . . , mn having the position vectors

�r1, �r2, . . . , �rn, then the position vector of the centroid is given by

�rG =
m1�r1 + m2�r2 + · · ·+ mn�rn

m1 + m2 + · · ·+ mn

=

n
∑

i=1

mi�ri

n
∑

i=1

mi

(10.69)

In the special case there exits 3 masses, where m1 = m2 = m3 = 1, at position

vectors

�r1 = x1 ê1 + y1 ê2 + z1 ê3, �r2 = x2 ê1 + y2 ê2 + z2 ê3, �r3 = x3 ê1 + y3 ê2 + z3 ê3

which define the vertices of a three dimensional triangle, then the centroid of the

triangle is given by

�rG =
1

3
(�r1 + �r2 + �r3) (10.70)

This is in agreement with our original definition of a triangle centroid in two dimen-

sions.

One can verify the position vectors to the midpoints

of the triangle �ABC sides are given by

�rAB =
1

2
(�r1 + �r2)

�rBC =
1

2
(�r2 + �r2)

�rAC =
1

2
(�r1 + �r3)

(10.71)

The vector equations for the median lines �1, �2, �3 have the form

�1 : �r =�r1 + λ1(�rBC − �r1)

�2 : �r =�r2 + λ2(�rAC − �r2)

�3 : �r =�r3 + λ3(�rAB − �r3)

(10.72)
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where λ1, λ2, λ3 are parameters for the line.7

The median lines �1 and �2 intersect where

�r1 + λ1 (�rBC − �r1) = �r2 + λ2 (�rAC − �r2)

By equating like components in the above equation one obtains the following three

scalar equations

x1 + λ1

(

1

2
(x2 + x3) − x1

)

=x2 + λ2

(

1

2
(x1 + x3) − x2

)

(10.73)

y1 + λ2

(

1

2
(y2 + y3) − y1

)

=y2 + λ2

(

1

2
(y1 + y3) − y2

)

(10.74)

z1 + λ1

(

1

2
(z2 + z3) − z1

)

=z2 + λ2

(

1

2
(z1 + z3) − z1

)

(10.75)

The equations (10.73) and (10.74) represent two equations in the two unknowns

λ1, λ2. One can verify the solution of these two equations produce the values λ1 = 2
3

and λ2 = 2
3

and these values are also solutions to the third equation (10.75). One can

verify that the intersection of lines �1 and �3 also intersect at the same point given

by the centroid

�rG =�r1 +
2

3
(�rBC − �r1)

�rG =�r2 +
2

3
(�rAC − �r1)

�rG =�r3 +
2

3
(�rAB − �r3)

all of which simplify to the centroid given by the point of concurrency given by the

position vector

rG =
1

3
(�r1 + �r2 + �r3)

Make note that this establishes the well known 2:1 ratio associated with the inter-

sections of a triangles medians.

Vector form for incenter
The incenter occurs at the point of concurrency of the three angle bisectors of

the three dimensional triangle formed by the position vectors �r1, �r2, �r3 as illustrated

in the figure 10-16.

7 Note the parameters for the lines do not have to be the same.
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Figure 10 -16. Intersection of angle bisectors at point I for 3D triangle

Let AA′, BB′, CC ′ denote the three angle bisectors which intersect at the point I

representing the incenter and having the position vector �rI . It will be demonstrated

that this position vector can be represented in terms of the position vectors �r1, �r2, �r3

to the triangle vertices and the triangle sides a, b, c opposite these vertices. The

position vector �rI for the incenter will be found to have the form

�rI =
a�r1 + b �r2 + c�r3

a + b + c
(10.76)

This is interpreted as a weighted sum8 of the position vectors to the vertices of the

three dimensional triangle. The weighting factors a, b, c being the length of the sides

opposite each vertex.

To establish the above result begin by using the angle bisector theorem. The

cevian AA′ in triangle �ABC produces the ratios

|�r3 − �rA′ |
b

=
|�r2 − �rA′ |

c
(10.77)

so that by the section formula one obtains the position vector

�rA′ =
b �r2 + c�r3

b + c
(10.78)

Similarly, the cevian BB′ produces the triangle �BAA′ and the ratio

|�rI − �r1|
c

=
|�rA′ − �rI |
|�r2 − �rA′ |

(10.79)

8 A weighted sum of the quantities a1, a2, . . . , an using weighting factors w1, w2, . . . , wn is the quantity

ā =
w1a1 + w2a2 + · · ·wnan

w1 + w2 + · · ·+ wn

. Note that if all the weights are 1, then the weighted sum becomes an average of

the quantities a1, a2, . . . , an.
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resulting from the angle bisector theorem. Using the equation (10.77) one can write

|�r3 − �rA′ |
|�r2 − �rA′ | =

b

c
and

|�r3 − �rA′ |
|�r2 − �rA′ | + 1 =

b

c
+ 1

which simplifies to

|�r3 − �rA′ | + |�r2 − �rA′ |
|�r2 − �rA′ |

=
b + c

c
=

|�r3 − �r2|
|�r2 − �rA′ |

=
a

|�r2 − �rA′ |
⇒ |�r2 − �rA′ | =

a c

b + c

Consequently
|�rI − �r1|
|�rA′ − �rI |

=
b + c

a

and by the section formula

�rI =
a�r1 + (b + c)�rA′

a + b + c
(10.80)

Substituting the result from equation (10.78) one finds

�rI =
a�r1 + (b + c)

[

b �r2+c �r3

b+c

]

a + b + c

which simplifies to the equation (10.76).

Vector relation between circumcenter and orthocenter
Let �ro denote the position vector of the triangle circumcenter with

OC
−→

=�r3 − �ro

OB
−→

=�r2 − �ro

OA
−→

=�r1 − �ro

with

|OC
−→

| = |OB
−→

| = |OA
−→

| (10.81)

since �ro represents the circumcenter which is the intersection of the perpendicular

bisectors of the triangle sides. Define the point H with vector position

�rH = �ro + OC
−→

+ OB
−→

+ OA
−→

(10.82)

as illustrated in the accompanying figure.
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Figure 10 -17. Circumcenter and orthocenter for general triangle.

Expand the equation (10.82) to form

�rH =�ro + (�r1 − �r0) + (�r2 − �ro) + (�r3 − �ro)

�rH =�r1 + �r2 + �r3 − 2�r0

�rH =3�rG − 2�ro

(10.83)

where �rG = 1
3
(�r1 + �r2 + �r3) is the position vector to the triangle centroid. One can

express the above vector addition as

�rH = �ro + OH
−→

where OH
−→

= 3�rG − 3�ro (10.84)

It can now be demonstrated that the vector CH
−→

defined by the vector addition

OH
−→

= OC
−→

+ CH
−→

or CH
−→

= OH
−→

− OC
−→

(10.85)

is perpendicular to the triangle side AB. To show this consider the dot product

CH
−→

· AB
−→

=
(

OH
−→

−OC
−→ )

· (�r2 − �r1) = [(�r1 − �ro) + (�r2 − �ro) + (�r3 − �r0) − (�r3 − �r0)] · (�r2 − �r1)

= [(�r2 − �r0) + (�r1 − �ro)] · [(�r2 − �ro) − (�r1 − �r0)]

=|�r2 − �ro|2 − |�r1 − �ro|2 = 0
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This result is zero because of equation (10.81). The above result shows the vector

CH
−→

is perpendicular to AB
−→

= �r2−�r1 and demonstrates the point H lies on the triangle

altitude from the vertex C to side AB.

Using the same type of reasoning applied to all of the altitudes of triangle �ABC,

one can demonstrate that H is a point of concurrency which we call the orthocen-

ter. The equation (10.83) shows that the position vector �rH of the orthocenter is

determined once the position vector �ro of the circumcenter is known.

Vector form for circumcenter
Given the three dimensional triangle �ABC defined by the position vectors

�r1 = x1 ê1 + y1 ê2 + z1 ê3, �r2 = x2 ê1 + y2 ê2 + z2 ê3, �r3 = x3 ê1 + y3 ê2 + z3 ê3

as illustrated in the figure 10-18.

Construct a vector �N normal to the plane of the triangle by taking the cross

product
�N = (�r2 − �r1) × (�r3 − �r1)

and then make this vector a unit vector n̂ given by

n̂ =
(�r2 − �r1) × (�r3 − �r1)

|(�r2 − �r1) × (�r3 − �r1)|

Construct the vectors �V 1 and �V 2 defined by

�V 1 = n̂ × (�r2 − �r1) and �V 2 = (�r3 − �r1) × n̂

and note that these vectors are perpendicular to the sides of the triangle. Finally,

construct the unit vectors �eAC and �eAB defined by

�eAC =
�r3 − �r1

|�r3 − �r1|
and �eAB =

�r2 − �r1

|�r2 − �r1|

which are unit vectors on the sides AC and AB. These new vectors will be used to

find the position vector of the circumcenter �ro of the triangle.
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Figure 10 -18. Find position vector �ro of the circumcenter

Assume the position vector �ro of the circumcenter is some linear combination of

the vectors �V 1 and �V 2 and write

�ro = �r1 + α1
�V 1 + α2

�V 2 (10.86)

where α1 and α2 are coefficients to be determined.

Make note of the dot products

�V 1 · �eAC =[n̂ × (�r2 − �r1)] · �eAC

�V 2 · �eAC =[(�r3 − �r1) × n̂] · �eAC = 0

�V 1 · �eAB =[n̂ × (�r2 − �r1)] · �eAB = 0

�V 2 · �eAC =[(�r3 − �r1) × n̂] · �eAB

which hold due to the cyclic properties of the triple scalar product of three vectors.

Taking the dot product of the vector �ro −�r1 with the unit vector �eAC one obtains

(�ro − �r1) · �eAC =
1

2
|�r3 − �r1| = α1

�V 1 · �eAC + α2
�V 2 · �eAC

1

2
|�r3 − �r1| =α1 [n̂ × (�r2 − �r1)] · �eAC

1

2
|�r3 − �r1| =α1 [n̂ × (�r2 − �r1)] ·

(�r3 − �r1)

|�r3 − �r1|
1

2
|�r3 − �r1|2 =α1 n̂ · [(�r2 − �r1) × (�r3 − �r1)]

or

α1 =
1

2

|�r3 − �r1|2

|(�r2 − �r1)× (�r3 − �r1)|
(10.87)
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Observe that the dot product �V 2 ·�eAC = 0 and the dot product (�ro−�r1) ·�eAC represents

the projection of the vector �ro − �r1 onto the side AC and has the length 1
2
|AC| or

1
2
|�r3 − �r1| because of the definition of a circumcenter. Also note we have used the

triple scalar product property to modify terms together with the fact that the dot

product n̂ · [(�r2 − �r1) × (�r3 − �r1)] equals the magnitude of the first vector times the

magnitude of the second vector times the cosine of the angle between them when

their origins are made to coincide. Here this angle is zero and the cosine of zero is

one.

In a similar fashion one finds that the dot product of the vector �ro − �r1 with the

unit vector �eAB gives

(�ro − �r1) · �eAB =
1

2
|�r2 − �r1| = α �V 1 · �eAB + α2

�V 2 · �eAB

1

2
|�r2 − �r1| =α2 [(�r3 − �r1) × n̂] · (�r2 − �r1)

|�r2 − �r1|
1

2
|�r2 − �r1|2 =α2 [(�r2 − �r1) × (�r3 − �r1)] · n̂

or α2 =
1

2

|�r2 − �r1|2

|(�r2 − �r1) × (�r3 − �r1)|

The above result show that the position vector of the circumcenter can be rep-

resented by the vector

�ro = �r1 +
|�r3 − �r1|2

D
[(�r2 −�r1)× (�r3 −�r1)]× (�r2 −�r1)+

|�r2 − �r1|2

D
(�r3 −�r1)× [(�r2 −�r1)× (�r3 −�r1)]

where

D = 2|(�r2 − �r1) × (�r3 − �r1)|2 (10.88)

In the last two equations one can perform the cyclic rotation 1 → 2 → 3 → 1 to derive

additional equations for calculation of the circumcenter.

Utilizing the vector identities (10.35) to (10.40) along with some vector algebra

one can verify that the above equation for �ro can also be represented in the form

�ro = α�r1 + β �r2 + γ �r3 (10.89)

where

α =
|�r2 − �r3|2 (�r1 − �r2) · (�r1 − �r3)

D

β =
|�r1 − �r3|2 (�r2 − �r1) · (�r2 − �r3)

D

γ =
|�r1 − �r2|2 (�r3 − �r1) · (�r3 − �r2)

D

where D is given by equation (10.88).
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Trigonometric form for circumcenter

The derivation for the trigonometric form for the vector representation of the

circumcenter of a triangle �ABC uses the inscribed angle theorem, section formula

for vectors, the law of sines and some trigonometry to show the position vector for

the circumcenter is given by

�r0 =
sin 2A�rA + sin 2B �rB + sin2C �rC

sin 2A + sin 2B + sin 2C
(10.90)

where �rA, �rB , �rC are the position vectors to the vertices A, B and C respectively and

A, B, C are the vertex angles associated with given triangle.

Figure 10 -19. Triangle �ABC with circumcircle.

The figure 10-19 illustrates things to look for in this derivation.

(i) The distance from the circumcenter 0 to each vertex is R.

(ii) The inscribed angle theorem tells us the value of the central angles

∠A0B = 2C, ∠A0C = 2B, ∠C0B = 2A

Extend the line A0 to intersect side BC at point D and then construct the perpendic-

ular bisector 0E which bisects side BC. If we can find the ratios BD
DC

and A0
0D

, then we

can employ the section formula for vectors to the line segments BD and AD. These

two results will then produce the equation (10.90).

In triangle �B0D the law of sines produces
BD

sin ∠B0D
=

0D

sin ∠0BD

In triangle �C0D the law of sines produces
DC

sin ∠C0D
=

0D

sin ∠0CD
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The above results give the ratio

BD

DC
=

sin ∠B0D

sin∠C0D
=

sin(π − 2C)

sin(π − 2B)
=

sin2C

sin 2B

Hence the position vector �rD to the point D between the vectors �rB and �rC is given

by

�rD =
sin 2B �rB + sin 2C �rC

sin 2B + sin 2C
(10.91)

In the last figure observe that triangles �B0E and �C0D are congruent because

of Side-Side-Side and therefore ∠B0E = ∠C0D = A. One can show ∠B0D = π−2C and

∠B0E = A, so that ∠D0E = A + 2C − π. From the projections 0Dcos(∠D0E) = 0E and

0E = R cos A one can write

0D = R cos A sec(A + 2C − π)

Observe that one can write A +2C −π as A +2C − (A + B +C) = C −B. This gives rise

to the ratio

A0

OD
=

R

R cos A sec(C − B)
=

cos(B − C)

cos A
=

2 sin A cos(B − C)

2 sinA cosA
=

2 sinA cos(C − B)

sin 2A

Perform some trigonometry on the numerator term 2 sin A cos(C − B) and show

sin A =sin(π − (B + C)) = sin(B + C)

2 sinA cos(B −C) =2 sin(B + C) cos(B − C)

=[sinB cos C + cos B sinC][cosB cos C + sinB sinC] expand and show

=2 sinB cosB + 2 sinC cos C

=sin2B + sin 2C

This gives the ratio
A0

0D
=

sin 2B + sin 2C

sin 2A
. The position vector �r0 to the circumcenter

between the vectors �rA and �rD is given by the vector section formula as

�r0 =
(sin2B + sin2C)�rD + sin2A�rA

sin 2A + sin 2B + sin 2C

Now substitute for �rD from equation (10.91) and show

�r0 =

(sin2B + sin2C)

[

sin 2C �rC+sin 2B �rB

sin 2B+sin 2C

]

+ sin2A�rA

sin 2A + sin 2B + sin 2C

which simplifies to the equation (10.90).
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Trigonometric form for orthocenter

Recall the orthocenter is the point of concurrency of the three altitudes of a

given triangle �ABC. The derivation of the trigonometric form for the represen-

tation of the orthocenter uses the section formula for vectors, the law of sines and

some trigonometry to obtain the position vector. One finds the position vector

representing the orthocenter has the form

�rH =
tan A �rA + tanB �rB + tanC �rC

tan A + tanB + tanC
(10.92)

where �rA, �rB , �rC are the position vectors to the vertices of the given triangle and

A, B, C are the vertex angles.

Figure 10 -20. Altitudes and orthocenter for triangle �ABC

Given triangle �ABC, construct the altitude AD to side BC. If we know the ratio
BD
DC

and the position vectors �rB and �rC, then one can use the section formula for

vectors to calculate the position vector �rD.

By constructing the altitude CE to side AB, we can label the point of intersection

of the two altitudes as the orthocenter H. Knowing the ratio AH
HD

and the position

vector �rA and �rD one can use the section formula for vectors to calculate the position

vector �rH of the orthocenter.

Working toward the accomplishment of these goals, examine the left triangle in

figure 10-20 and calculate the projections of sides c and b onto the side BC and show

BD = c cos B and DC = b cos C ⇒ BD

DC
=

c cos B

b cos C
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Using the law of sines one can write

c

sin C
=

b

sin B
⇒ c

b
=

sin C

sin B

Consequently,
BD

DC
=

sin C

sinB
· cos B

cosC
=

tan C

tanB

Using the section formula for vectors one finds the position vector for point D is

�rD =
tanB �rB + tanC �rC

tan B + tanC
(10.93)

Next examine the second triangle in figure 10-20 where the altitude CE has been

constructed. The projection of AH onto AB is AE = AH cos(π
2 − B) and from triangle

�HDC one finds tan(π
2
− B) = HD

DC
. These results produce the ratio

AH

HD
=

AE sec(π
2 − B)

DC tan(π
2
− B)

=
b cos A sec(π

2 − B)

b cos C tan(π
2
−B)

(10.94)

where AE is the projection of side b onto the side AB and DC is the projection of

side b onto the side BC. Now one can use trigonometry to write equation (10.94) in

a different form.

Using basic trigonometry one finds sec(π
2 −B) = csc B, tan(π

2 −B) = cotB. The sum

of the angles of any triangle must sum to π radians and so one can write A = π−(B+C)

so that
AH

HD
=

cos(π − (B + C))

cosC
· csc B

cot B
= −cos(B + C)

cos C
· 1

sin B
· sin B

cosB

=
−(cosB cos C − sin B sin C)

cos B cosC
= −(1− tanB tanC)

Recall the trigonometric identity tan(B + C) =
tanB + tanC

1 − tan B tan C
and write

AH

HD
= −

(

tan B + tanC

tan(B + C)

)

= −
(

tan B + tanC

tan(π − A)

)

=
tanB + tanC

tanA

Therefore, the position vector �rH of the orthocenter is obtained using the section

formula for vectors, giving

�rH =
tan A rA + (tanB + tanC) �rD

tan A + tanB + tanC
(10.95)

By substituting for the position vector �rD from equation (10.93) one obtains the

result given by equation (10.92).
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Trilinear coordinates
For P a point inside a general triangle �ABC we

have learned that one can construct lines through point

P which are perpendicular to the sides of the triangle

as illustrated in the accompanying figure. Let these

perpendiculars intersect the triangle sides at the points

D,E and F as illustrated. Define the positive distances

u = |PD|, v = |PE|, w = |PF|

as lengths associated with the line segments PD, PE, PF.

Define the exact trilinear9 coordinates of the point P using the notation

P = [u : v : w] (10.96)

Any triple [λ1 : λ2 : λ3] is called a trilinear coordinate of point P if there exists a

positive constant k different from zero such that

u = kλ1, v = kλ2, w = kλ3 (10.97)

then the trilinear coordinates [u : v : w] and [λ1 : λ2 : λ3] are said to be equivalent

because they have equivalent ratios

u

v
=

λ1

λ2
,

u

w
=

λ1

λ3
,

v

w
=

λ2

λ3

Any equivalent set of trilinear coordinates can be converted to exact trilinear coor-

dinates by constructing a scale constant k as follows.

Construct lines from the point P to each of the tri-

angle vertices to form three triangles as illustrated. The

area of these triangles are

[APB] = area �APB =
1

2
wc

[BPC] = area �PBC =
1

2
ua

[CPA] = area �CPA =
1

2
vb

9 Trilinear coordinates were introduced by Julius Plücker (1801-1868), a German mathematician.
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where a, b, c are the sides of the given triangle and the total area of the triangle �ABC

is given by

[ABC] = area �ABC =
1

2
(au + bv + cw) (10.98)

Substitute for u, v, w from the equations (10.97) and show

2[ABC] = k (aλ1 + bλ2 + cλ3)

so the scale factor k is found to be

k =
2[ABC]

aλ1 + bλ2 + cλ3
(10.99)

Here the proportionality constant k can be constructed by knowing (i) the total area

of the triangle, (ii) the sides of the triangle and (iii) the trilinear coordinates of the

point P .

Example 10-27.

Find the trilinear coordinates of (i) the triangle vertices A,B,C and (ii) the

triangle incenter I.

Solution:

It is easy to verify the vertices of the triangle �ABC have the following trilinear

coordinates.

Exact Scaled
trilinear trilinear

Vertex coordinates coordinates

A [hA : 0 : 0] [1 : 0 : 0]

B [0 : hB : 0] [0 : 1 : 0]

C [0 : 0 : hc] [0 : 0 : 1]

where hA, hB , hC are the altitudes from the vertices A, B, C respectively.

The triangle incenter I is the point of concurrency where the angle bisectors

meet. This point is equidistant from the triangle sides so that the exact trilinear

coordinates for I are [r : r : r]. Removing the common factor r, one can say that the

trilinear coordinates for the incenter are give by [1 : 1 : 1].
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Example 10-28.

Find the trilinear coordinates for the orthocenter of a general triangle �ABC.

Solution:

Figure 10 -21. Orthocenter for triangle �ABC

Examine the left side of figure 10-21 and show in the right triangle �AA′B that

angle α1 = π
2
− B and in the right triangle �AA′C show angle α2 = π

2
− C. It is then

easy to show
sinα1 = sin(

π

2
− B) = cosB =

w

AP

sinα2 = sin(
π

2
− C) = cosC =

v

AP

⇒ w

v
=

cos B

cosC
(10.100)

Use the middle sketch from figure 10-21 to show in the right triangle �AB′B the

angle β2 = π
2
− A and in the triangle �BB′C the angle β1 = π

2
− C so that

sinβ1 = sin(
π

2
− C) = cos C =

u

PB

sin β2 = sin(
π

2
− A) = cos A =

w

PB

⇒ u

w
=

cos C

cosA
(10.101)

In a similar fashion one can use the last figure in figure 10-21 and demonstrate

cosA =
v

PC
and cosB =

u

PC
⇒ u

v
=

cos B

cos A
(10.102)

Therefore, the exact trilinear coordinates [u : v : w] of the orthocenter is equivalent

to [ 1
cos A

: 1
cos B

: 1
cos C

]. This follows from the ratios established in equations (10.100),

(10.101), and (10.102). That is

u

v
=

1
cos A

1
cos B

=
cos B

cos A
,

u

w
=

1
cos A

1
cos C

=
cos C

cos A
,

v

w
=

1
cos B

1
cos B

1

cosC
=

cosC

cos B
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Example 10-29.

Find the trilinear coordinates of the circumcenter of a general triangle �ABC.

Solution:

The circumcenter P is the point of concurrency of the perpendicular bisectors

and center for the circumscribed circle. The situation is sketched in figure 10-22.

Let β = ∠APD so that

cos β =
w

R
(10.103)

where R is the radius of the circumscribed circle. Note that �APD ∼= �BPD by

SSS, so that ∠DPB = β also. Here 2β is a central angle with angle ∠C = 1
2
∠APB = β.

Consequently, equation (10.103) can be expressed as R cos C = w. In a similar fashion,

one can show

v = R cosB and u = R cosA (10.104)

Figure 10 -22. Circumcenter for triangle �ABC

Therefore, the exact trilinear coordinates of the circumcenter is given by

P = [R cos A : R cos B : R cos C] (10.105)

Factoring out the common factor R one can say the trilinear coordinates of the

circumcenter is given by

P = [cosA : cosB : cos C] (10.107)
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Example 10-30.

Find the trilinear coordinates for the centroid of a general triangle �ABC.

Solution: Consider the 3-D triangle �ABC with vertices

A,B,C described by position vectors �r1, �r2, �r3 as illus-

trated in the accompanying sketch. The centroid of the

triangle lies at the point of concurrency of the triangle

medians. Recall that the position vectors to the mid-

points of the triangle sides are

�rmAC =
1

2
(�r1 + �r3)

�rmBC =
1

2
(�r2 + �r3)

�rmAB =
1

2
(�r1 + �r2)

The median through the vertices to the midpoints of the opposite sides have the

following equations

median through vertex A �r =�r1 + µ1(
1

2
(�r2 + �r3) − �r1)

median through vertex B �r =�r2 + µ2(
1

2
(�r1 + �r3) − �r2)

median through vertex C �r =�r3 + µ3(
1

2
(�r1 + �r2) − �r3)

where µ1, µ2, µ3 are parameters of the lines. At the point of intersection the lines

meet. Setting the above vectors equal to one another one finds

�r1 + µ1(
1

2
(�r2 + �r3) − �r1) = �r2 + µ2(

1

2
(�r1 + �r3) − �r2) = �r3 + µ3(

1

2
(�r1 + �r2) − �r3)

The first equality requires that

1 − µ1 =
1

2
µ2, µ1 = µ2,

µ1

2
= 1 − µ2

with similar requirements for the second equality. These equalities require

µ1 = µ2 = µ2 =
2

3

which produces the position vector

�rP =
1

3
(�r1 + �r2 + �r3)
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Define the vectors

BC
−→

= �r3 − �r2, AC
−→

= �r3 − �r1, AB
−→

= �r2 − �r1

and use the results from example 10-19 to show the distances u, v, w from point P to

the triangle sides are given by

u =

∣

∣

∣

∣

∣

(�rP − �r2) ×
BC
−→

|BC
−→

|

∣

∣

∣

∣

∣

v =

∣

∣

∣

∣

∣

(�rP − �r1) ×
AC
−→

|AC
−→

|

∣

∣

∣

∣

∣

w =

∣

∣

∣

∣

∣

(�rP − �r1) ×
AB
−→

|AB
−→

|

∣

∣

∣

∣

∣

where |BC
−→

| = a, |AC
−→

| = b, |AB
−→

| = c are the triangle sides.

As an exercise expand the cross products in the numerators associated with the

distances u, v, w and show they all have the same magnitude. This demonstrates the

trilinear coordinates for the centroid are

[u : v : w] = [
α

a
:
α

b
:

α

c
]

removing the constant factor α one finds the trilinear coordinates for the centroid are

[
1

a
:

1

b
:

1

c
]. Remember that the trilinear coordinates can be scaled. If one multiplies

by abc one finds [bc : ac : ab] is another form for the trilinear coordinates. If one uses

the law of sines, one can show [
1

sin A
:

1

sinB
:

1

sin C
] is still another form.

Barycentric coordinates for triangles
Barycentric coordinates10 is the representation of a point P on the surface of a

triangle in terms of areas determined by point P. For the general triangle illustrated

let the vertices A, B, C be defined by position vectors �r1, �r2, �r3 and let [ABC] denote

the total area of the triangle. Connect the point P to each vertex and define

[ABP ] =area �ABP

[BCP ] =area �BCP

[CAP ] =area �CAP

10 Introduce by August Ferdinand Möbius (1790-1868) a German mathematician.
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Define the barycentric coordinates of point P as

[λ1 : λ2 : λ3] where

λ1 =
[BCP ]

[ABC]
, λ2 =

[CAP ]

[ABC]
, λ3 =

[ABP ]

[ABC]
(10.107)

Observe that λ1 + λ2 + λ3 = 1 and these ratios produce

the vector

�rP = λ1�r1 + λ2�r2 + λ3�r3 (10.108)

which points to the point P in the plane of the triangle.

Let AB
−→

= �r2 − �r1 and AC
−→

= �r3 − �r1 denote two independent vectors along the sides of

triangle �ABC and express the vector �rP of equation (10.108) in the form

�rP =λ1�r1 + λ2[(�r2 − �r1) + �r1] + λ3[(�r3 − �r1) + �r1]

�rP =(λ1 + λ2 + λ3)�r1 + λ2AB
−→

+ λ3AC
−→

�rP =�r1 + λ2AB
−→

+ λ3AC
−→

since λ1 + λ2 + λ3 = 1.

Relation between trilinear and barycentric coordinates
In triangle �ABC with sides a, b, c a point with trilinear coordinates [t1 : t2 : t3]

has the barycentric coordinates [a t1 : b t2 : c t3]. A point with barycentric coordinates

[λ1 : λ2 : λ3] has the trilinear coordinates [
λ1

a
:
λ2

b
:

λ3

c
]. Thus, one need only know the

sides of triangle �ABC to convert from one set of coordinates to another.
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Exercises

� 10-1. If �A × ( �B − �C ) = �0 what can be said about the vectors �A and �B − �C?

� 10-2. Given the vectors �A = − ê1 + 3 ê2, �B = 4 ê1, �C = −3 ê1 + 3 ê2

(a) Find the vector sum �D = �A + �B + �C

(b) Find the vector sum �E = 2 �A − �B + 3 �C

(c) Find unit vectors êA, êB , êC in the directions �A, �B, �C

(d) Show �C is a linear combination of the vectors �B and �C

� 10-3.

(a) Show the projection of �A on �B is | �A| cos θ

(b) Why is �A · �B = | �A|| �B| cos θ?

(c) Show the projection of �A on �B is
�A · �B

| �B |

(d) What is the projection of �B on �A?

� 10-4.

Let AC denote the diameter of a cir-

cle and B any point on the circular arc.

Construct the vectors �r1, �r2, �r3 as illustrated.

(a) Show AB
−→

= �r2 − �r1

(b) Show BC
−→

= �r2 − �r3

(c) Show �r1 + �r3 = �0

(d) Show (�r2 − �r1) · (�r2 − �r3) = 0 ⇒ AB ⊥ BC ⇒ ∠ABC =
π

2

� 10-5.

If vectors �A, �B, �C have a common origin and repre-

sent the sides of a parallelogram, then show the diagonal

of the parallelogram is given by �d = �A + �B + �C .
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� 10-6.

Given a regular pentagon with vectors �r1, �r2, �r3, �r4, �r5

constructed from the center of the pentagon to each

vertex as illustrated.

(a) Find representations for each vector.

(b) Show that �r1 + �r2 + �r3 + �r4 + �r5 = �0

� 10-7.

The sides of a regular hexagon are defined by the

six vectors

�s1, �s2, �s3, �s4, �s5, �s6

(a) Find representations for �s1 and �s2

(b) Find the vectors �s3, �s4, �s5, �s6 in terms of the vectors �s1 and �s2.

(c) Show �s1 + �s2 + �s3 + �s4 + �s5 + �s6 = �0

� 10-8. Find the vector equation of the line through the given points.

(a) (1, 2, 3) and (7, 11, 30) (b) (−2, 4, 6) and (5, 1, 8) (c) (0, 0, 0) and (7, 11, 22)

� 10-9. Find the equation of the plane which passes through the given points.

(a) (1, 2, 3), (7, 11, 4), (2, 3, 6)

(b) (4, 1, 2), (3, 6, 7), (9, 3, 2)

(c) (5, 3, 1), (3, 3, 8), (8, 1,−1)

� 10-10. Find the perpendicular distance from the given point to the given plane.

(a) (3, 7, 10) to plane (x − 1)5 + (y − 1)6 + (z − 1)7 = 0

(b) (−1,−3,−5) to plane (x − 5) + (y − 2)3 + (x − 1)4 = 0

(c) (0, 0, 0) to plane (x − 2)2 + (x − 3)5 + (z − 4)(−1) = 0
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� 10-11. Given the vectors �A = 3 ê1 +4 ê2 +5 ê3, �B = 2 ê1 − ê2 +3 ê3, �C = 3 ê1 − 3 ê2 − ê3.

Calculate
(a) �A × �B

(b) �B × �A

(c) ( �A × �B ) · �C

(d) ( �A + �B )× ( �A − �C )

(e) �B × �C

(f) ( �A × �B) × �C

(g) �A × ( �B × �C )

(h) �A · ( �B × �C )

(i) �B · ( �C × �A)

(j) �C · ( �A × �B)

(k) ( �A × �B) · �C

(l) �A · ( �A × �B)

� 10-12.

(a) Explain the importance of parentheses in the vector expression �A× �B × �C. That

is, does ( �A × �B) × �C = �A × ( �B × �C )?

(b) Does �A · ( �B × �C ) = �B · ( �C × �A) = �C · ( �A × �B)?

(c) Does �A · ( �B × �C ) = ( �A × �B ) · �C?

� 10-13. Find the vector equation of the plane which passes through the given point

P and is perpendicular to the given normal vector �N .

(a) P : (1, 2, 3) �N = ê1 + ê2 + ê3

(b) P : (−1, 3, 5) �N = 2 ê1 − ê2 + 3 ê3

(c) P : (0, 4, 5) �N = ê3

� 10-14. Find the equation of the plane which passes through the given points.

(a) (1, 2, 4), (2, 4, 8), (−1,−2, 1)

(b) (0, 0, 1), (1, 0, 0), (0, 1, 0)

(c) (0, 0, 1), (1, 0, 0), (0,−1, 0)

� 10-15. Find the perpendicular distance from the given point P to the given plane.

(a) P : (4, 5, 6) 2(x − 1) − (y − 2) − 3(z − 3) = 0

(b) P : (−2, 3,−5) (x − 3)− (y − 5) + 2(z − 3) = 0

(c) P : (−1,−1,−1) 3(x− 2) + 2(y − 2) − (z − 3) = 0

� 10-16.

Let vectors �rA, �rB, �rC define a tetrahedron 0ABC.

(a) Give a physical interpretation to the vector magnitudes

|�v1| =|1
2
�rA × �rB|, |�v2 = |1

2
�rB × �rC |

|�v3| =|1
2
�rC × �rA|, |�v4| = |1

2
(�rC − �rA) × (�rB − �rA)

(b) Show that �v1 + �v2 + �v3 + �v4 = �0
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� 10-17.

Given the position vectors �rA, �rB, �rC which defines

triangle �ABC in space. Construct the altitudes AE

to side BC and BF to side CA with the altitudes inter-

secting at point o. Construct the vector �ro and then

construct line Co and extend line to intersect side AB at

point G. Show CG ⊥ AB and altitudes meet at a point

of concurrency. Give reasons for each of the following

statements.

(a) (�rC − �rB) · (�r0 − �rA) = 0

(b) (�rC − �rA) · (�r0 − �rB) = 0

(c) Verify by subtraction (�rC − �r0) · (�rA − �rB) = 0

(d) CG ⊥ AB

(e) Altitudes meet at point of concurrency.

� 10-18. Use vectors to prove the diagonals of a rhombus are perpendicular.

� 10-19. Use vectors to prove the diagonals of parallelogram bisect one another.

� 10-20. Given a triangle �ABC with the x, y-axes passing through the circumcenter

of the triangle.

Show that �r0 = 0, �rG = 1

3
(�rA + �rB + �rC), �rH = (�rA + �rB + �rC), �rI =

a�rA + b �rB + c�rC

a + b + c

where �rA, �rB , �rC are the position vectors to the vertices A, B, C and a, b, c are the

sides of the triangle �ABC.

� 10-21.

Given a general quadrilateral with sides

�r1, �r2, �r3, �r4. (a) Find the vectors �A, �B, �C, �D join-

ing the midpoints of the quadrilateral sides as

illustrated. (b) Show that the vectors �A, �B, �C, �D

define a parallelogram.

� 10-22. Find the incenter and centroid of the triangles with vertices

(a) (1, 1, 1), (5, 6, 10), (8, 8, 0)

(b) (0, 0, 0), (5, 5, 5), (2,−2, 0)
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� 10-23.

Given the parallelogram ABCD with diagonals AC

and DB intersecting at point 0. Let E denote the mid-

point of line DC and then construct the line AE which

intersect diagonal DB at point F . Define the vectors

AB
−→

=�r1

A0
−→

=�r2

B0
−→

=�r3

AD
−→

=�r4

AE
−→

= �r5

and use these vectors to show that AF = 2 FE and DF = 2 F0

Hint: There exists scalars α and β such that α�r5 + β�r3 = �r4. Note vectors can be

moved in the plane as long as they maintain their length and direction. For example,

�r1 + �r4 − 1
2
�r1 = �r5 and �r1 + 2�r3 = �r4.

� 10-24. Given triangle �ABC with position vectors �rA, �rB, �rC to the vertices A, B, C.

Show that
[ABC] =

1

2
| (�rB − �rA) × (�rC − �rA) |

[ABC] =
1

2
| �(rC − �rB) × (�rA − �rB) |

[ABC] =
1

2
| (�rA − �rC) × (�rB − �rC) |

where [ABC] denotes the area of triangle �ABC.

� 10-25. (Messy algebra) Show in the special two dimensional case �r1 = x1 ê1 + y1 ê2,

�r2 = x2 ê1 + y2 ê2, �r3 = x3 ê1 + y3 ê3 the vector equation for the position of the circum-

center

�ro = �r1 +
|�r3 − �r1|2

D
[(�r2 −�r1)× (�r3 −�r1)]× (�r2 −�r1)+

|�r2 − �r1|2

D
(�r3 −�r1)× [(�r2 −�r1)× (�r3 −�r1)]

where

D = 2|(�r2 − �r1) × (�r3 − �r1)|2

reduces to the equations (3.17) and (9.91).
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Geometry

Chapter 11

Solid Geometry I

Three dimensional solids

In previous chapters we have used line segments

to measure one-dimensional length and we have

used squares to measure two-dimensional area with

units of length squared. Now we will use cubes to

measure volume with units of length cubed. In this

chapter we will learn how to define solids and then

find their surface area and volume as well as other

properties associated with various solid structures.

One can construct an (x, y, z) Cartesian coordi-

nate system in three dimensional space. Consider

three axes which meet at a point, called the origin,

where all three axes are perpendicular to one an-

other. The coordinate system can be right-handed

or left-handed. Extend the fingers of the right hand

to point along the positive x-axis and rotate the fin-

gers toward the y-axis. The thumb then points in

the z-direction. This then is a right-handed coor-

dinate system. If you extend the fingers of the left

hand in the direction of the x-axis and rotate the

fingers toward the y-axis and the thumb points in

the z-direction, then the coordinate system is left-

handed. Many quantities in nature are either left-

handed or right-handed. For example, in biology

there are left and right-handed DNA helices.

In the Americas most books use a right-handed coordinate system, while in

European countries many technical books use left-handed coordinate systems. Note

that many equations in science and engineering from European countries will differ

in sign from those in the Americas because of the coordinate system used.
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The right-handed coordinate system is defined

by three perpendicular planes, called the coordinate

planes. The intersection of the coordinate planes

produce the lines defining the coordinate axes. A

point in space p1 = p1(x1, y1, z1) is defined by three

coordinates (x1, y1, z1) where

x1 =distance from the yz-plane

y1 =distance from the xz-plane

z1 =distance from the xy-plane

The distance between two points P1(x1, y1, z1) and P2(x2, y2, z2) is found by using the

Pythagorean theorem to produce the distant formula in three dimensions as

P1P2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (11.1)

for the line segment P1P2. This result can be derived by examining the accompanying

figure.

Polyhedra

Whenever a solid figure is constructed using polygons, the resulting solid is called

a polyhedron1 (plural polyhedra). Anytime one deals with two congruent polygons,

called bases, that lie in parallel planes directly over one another and their vertices are

properly aligned and are connected by straight lines, then the resulting polyhedron

is called a prism. A parallelepiped is an example of a prism having bases which are

parallelograms and faces which are parallelograms.

The figure 11-1 is a sketch of two parallel planes a perpendicular distance h

separating them along with a two dimensional polygon in each plane where the

polygons are congruent and directly in line with one another. By connecting the

vertices of the two figures with lines perpendicular to both planes, one can construct

the prisms illustrated. The names associated with the prisms are determined by

the shape of the polygon base. For example, a rectangular prism would have a

1 In Greek the word ”poly” means many and the suffix ”hedron” is the Greek word for surface or face of a figure.

Thus, a polyhedron describes a figure with many faces.
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rectangular base, a triangular prism would have a triangle for its base, etc. Note

that the rectangles on the sides of the prisms are called faces.

Figure 11 -1. Polyhedra

In geometry the word ”side” is sometimes used to describe a part of a three dimen-

sional solid. The preferred terminology to be used in describing polyhedra is to refer

to the number of ”faces (F)”, ”edges (E)” and ”vertices (V)”. The faces (F), edges

(E) and vertices (V) of polyhedra are related by the Euler2 formula

F
︸︷︷︸

Faces

+ V
︸︷︷︸

V ertices

= E
︸︷︷︸

Edges

+2 (11.2)

For example, the triangular prism in figure 11-1 has 5 faces, 9 edges and 6 vertices,

giving 5+6=9+2 for the Euler formula.

Prisms are solids which can be unfolded.

Figure 11 -2. Unfolding polyhedra

2 Leonhard Euler (1707-1783) A famous Swiss mathematician.
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For example, by unfolding the figures of figure 11-1 one obtains the sketch in figure

11-2. By unfolding the solid one can obtain the surface area associated with each

part of the polyhedra. The sum of these surface areas then give the total surface

area associated with the prism. This unfolding technique can be applied to many

other solids having straight edges.

Volume of a solid

A rectangular prism is a box with width w, length � and height h. One can use

cubes to define volume by defining a unit cube C such that mC, m an integer, will

fit exactly into the box. For example, how many one inch cubes will fit into a box 6

inches long, 5 inches wide and 3 inches high? The answer will determine the volume

held by the box.

Figure 11 -3. Volume of a box

Volume of rectangular prism is determined by

how many unit cubes make up the prism.

If the box has length �, width w and height h, the volume would be

V = (w�)h = (base)(height)

This shows the volume is given by the area of the base times the height. If the box

is cut in half by a plane through the diagonal on the surface, then the area of the

triangular prism is V = (1
2
w�)h which is again the area of the triangular base times

the height.

Figure 11 -4. Volume of a triangular prism
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The volume of a rectangular prism is V = w�h as

demonstrated above. If one adds and subtracts a tri-

angular prism to each end of the rectangular prism one

can create a parallelepiped. The volume of the paral-

lelepiped will also be V = w�h which is the area of the

base times the height.

In general, the volume of a prism will always equal the area of the base times

the height. One can use this fact along with the knowledge that as the number of

sides of the regular polygonal base of a prism increases it gets closer and closer to

a circle. In the limit as the number of sides of a regular polygonal base increases

one obtains the volume of a cylinder where the top and bottom regular polygons

become circles. The volume of a cylinder is found to be equal to the area of the base

times the height or Vcylinder = πr2 h.

Figure 11 -5. Volume of a n-gon becomes volume of cylinder

That is, if a is the apothem of the regular n-gon and � is the length of a side of

the n-gon, then the area of one triangle is 1
2a� and the area of the base is n times

the area of one triangle. In the limit as n increases

lim
n→∞

n� = 2πr and lim
n→∞

a = r so that lim
n→∞

1

2
a(n�)h =

1

2
r(2πr)h = πr2h
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Platonic solids

The Platonic solids are named after the Greek mathematician and philosopher

Plato (427-347)BCE who founded an Academy devoted to the study of philosophy

and science. The Platonic solids all have congruent regular polygons for their faces.

There are only five such solids to be investigated. By unfolding these solids one can

find methods for their construction. In the following representation of the Platonic

solids there is a left and right sketch. Make note that by folding the right-hand

figure along the lines given, one can construct the left-hand figure.

Tetrahedron

The tetrahedron is bounded by four congruent equilateral triangles.

Figure 11 -6. Tetrahedron

The tetrahedron has 4 faces, 4 vertices and 6 edges. It can be demonstrated that if

� is the length of each edge of the equilateral triangles, then the tetrahedron has the

following volume and surface area.

Volume =

√
2

12
�3 Surface area =

√
3 �2
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Hexahedron

The hexahedron or cube is bounded by six congruent squares. It has six faces,

8 vertices and 12 edges.

Figure 11 -7. Hexahedron

If � is the length of the squares edges, then it can be demonstrated that the hexa-

hedron has the following volume and surface area.

Volume = �3 Surface area = 6 �2

Octahedron

The octahedron is bounded by eight congruent equilateral triangles. It has eight

faces, 12 edges and 6 vertices.

Figure 11 -8. Octahedron
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If � is the length of each edge of the equilateral triangles, then it can be demonstrated

that the volume and surface area are given by

Volume =

√
2

3
�3 Surface area = 2

√
3 �2

Dodecahedron

The dodecahedron is bounded by twelve congruent regular pentagons. If has 12

faces, 30 edges and 20 vertices.

Figure 11 -9. Dodecahedron

If � is the length of an edge on the regular pentagons, then it can be demonstrated

that the dodecahedron has the following volume and surface area

Volume =
15 + 7

√
5

4
�3 Surface area = 3

√

5(5 + 2
√

5) �2
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Example 11-1.

Figure 11 -10. The dodecahedron

The volume of a dodecahedron can be considered as a combining of 12 pyramids

with regular pentagons for their bases. One can calculate the volume of the pyramids

and thus determine the volume of the dodecahedron. Consider the section TSU

from the dodecahedron. Select a point P on the edge and construct lines PQ and

PR which are both perpendicular to line PT so that triangles �QPT and �RPT are

right triangles. Follow this by constructing the perpendicular line PP ′.

Examine the above figure and observe that β = 108◦, α = 36◦, TSU is an equi-

lateral triangle, γ = 30◦ which implies P ′R is one-half RT implying triangle �QRT is

also equilateral with QT = QR = RT.

Using trigonometry one can verify that

0B =
�

2
tan54◦ and sin 36◦ =

QP

QT



468

Also note the sine of one-half the dihederal angle is

sin θ =
0P ′

QP
=

1
2
QR

QP
=

QT

2QP
=

1

2
QP
QT

=
1

2 sin36◦
=

1
√

(5+
√

5)
10

and consequently one can find h from the equation

tan θ =
h

0B
=

h
�
2 tan 54◦

The area of triangle �0AC =
1

2
� 0B =

�2

4
tan 54◦ so the area of the regular pentagon

is
5

4
�2 tan54◦. Note that from exercises 7-29 and 7-30 one can find tan 54◦ and sin 36◦.

The volume of one pyramid is
1

3
(area of base)(height) or

V1 =
1

3
(
5

4
�2 tan54◦)(

�

2
tan54◦ tan θ) =

5

24
�3(tan54◦)2 tan

(

Arcsin(
1

2 sin 36◦
)

)

=
5 + 2

√
5

12
√

6 − 2
√

5
�3

Hence the volume of the dodecahedron is

V12 = 12V1 =
5 + 2

√
5

√

6 − 2
√

5
�3 =

√

(5 + 2
√

5)2
√

6 − 2
√

5
·
√

6 + 2
√

5
√

6 + 2
√

5
�3 =

15 + 7
√

5

4
�3

Icosahedron

The icosahedron is bounded by twenty congruent equilateral triangles. It has

twenty faces, 12 vertices and 30 edges.

Figure 11 -11. Icosahedron
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If � is the length of an edge on the equilateral triangles, then the volume and surface

area are given by

Volume =
5

12
(3 +

√
5) �3 Surface area = 5

√
3 �2

Ruled Surfaces

A ruled surface is generated by moving a line or line segment to sweep out the

surface. The moving line segment can be fixed at one point and move along a base

curve called a directrix. The moving line segment can be made to move between two

nonintersecting curves in three dimensional space called a directrix and director. A

ruled surface is said to exist when every point of a surface can be made to connect

to at least one other point on the surface to make a straight line segment. The

lines which sweep out and generate the surface are called rulings. The figures 11-12

and 11-13 are illustrations of some ruled surfaces. One can find examples of ruled

surfaces in many architectural structures.

A polyhedral angle is formed by a line segment

moving through a fixed point called the vertex and

the boundary of a polygon. The angle is sometimes

referred to as a solid angle. The moving line is

called the generatrix and the fixed polygon is called

the directrix. A trihedral angle is a polyhedral angle

whose directrix is a triangle.

Figure 11 -12. Four examples of ruled surfaces
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One method for constructing a ruled surface is

to have two curves in space, say C1 and C2 defined

by position vectors �r = �r1(t) and �r = �r2(t) having a

common parameter t. Then the vector

�r(t, λ) = �r2(t) + λ (�r1(t) − �r2(t))

is a two parameter ruled surface. Here for each

value of the parameter t there results a line � as t

is held fixed and λ is allowed to vary between two

fixed values, say λ1 ≤ λ ≤ λ2.

Definitions The vertex of a right circular cone of height h is a point directly

over the center of the circular base.

The height of a right circular cone is the perpendicular distance between the

vertex point and the base of the cone. The slant height of a right circular cone is

the straight line distance from the vertex of the cone to a point on the circumference

of the circular base.

A regular pyramid has a regular polygon for its base and has triangles for its

lateral faces. All the face triangles have a common vertex point.

The height of a regular pyramid is the perpendicular distance between the vertex

and the base.

The slant height of a regular pyramid or cone is the perpendicular distance from

the vertex to an edge of the base.

The apex of a pyramid or cone is the tip, vertex or highest point of the figure

which is opposite the base. The frustum (plural frustums) of a pyramid or cone is

that portion of the figure lying between the base of the figure and a plane parallel

to the base and cutting the figure.
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Figure 11 -13. Pyramids as ruled surfaces

Curved surfaces

A curved surface can be created by rotating a curve about an axis.

Figure 11 -14. Rotation of curves to produce a solid

Consider the semicircle y =
√

r2 − x2 in figure 11-14. If this semicircle is rotated

about the x-axis, then a sphere results. If the parabola in the figure 11-14 is rotated

about the y-axis, then a paraboloid results. If the ellipse in the above figure is rotated

about the x-axis an ellipsoid results. Many other solid shapes can be produced by

the rotation of a curve or line about an axis.
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Volume of right circular cone

To find the volume associated with a right circular cone such as the one illus-

trated in the figure 11-15 one can first approximate the volume and then take a

limiting process to find the true volume of the cone. One can construct rectangles

and rotate these rectangles about the z-axis to form disks, then a summation of the

volumes associated with each disk will give an approximation for the volume of the

cone.

As the number of disks are increased, the approximation will approach the true

volume. Observe that in the y-z plane the equation of the line passing through the

points (0, h) and (r, 0) is given by z−h = −(h
r
)y and solving for y one obtains y = r−( r

h
)z.

If the height h of the cone is divided into n-parts each of length h/n, then the radius

of the disk at any height z will be given by y = r− ( r
h
)z and the volume of the disk is

the area of the base times the height (h/n). Consider the ith disk at height zi = ih/n

with radius yi = r − ( r
h
)ih/n.

Figure 11 -15. Summation of disks to approximate volume

The volume of this disk is

Volume of ith disk = Vi = πy2
i (h/n) = π

[

r − (
r

h
)ih/n

]2

(h/n)

and a summation of these disks gives the approximate volume of the cone as

Vapprox ≈
n∑

i=1

h

n
πr2

[

1 − i

n

]2

=
n∑

i=1

h

n
πr2

[

1 − 2i

n
+

i2

n2

]

(11.3)

Recall from chapter 6 we developed the summation formulas

n∑

i=1

1 = n,
n∑

i=1

i =
n(n + 1)

2
,

n∑

i=1

i2 =
n

6
(n + 1)(2n + 1) (11.4)
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where
n(n + 1)

2
=

n2 + n

2
and

n

6
(n + 1)(2n + 1) =

2n3 + 3n2 + n

6
. Expressing the equation

(11.3) in the form

Vapprox ≈ hπr2

[

1

n

n∑

i=1

1 − 2

n2

n∑

i=1

i +
1

n3

n∑

i=1

i2

]

(11.5)

and using the results from equations (11.4) one can show

lim
n→∞

Vapprox = lim
n→∞

πr2h

[
1

n
n − 2

n2

(
n2 + n

2

)

+
1

n3

(
2n3 + 3n2 + n

6

)]

giving the volume of the cone as

Vcone =
1

3
πr2h =

1

3
(area of base)(height) (11.6)

Volume of frustum associated with right circular cone

If a right circular cone is cut by a plane parallel to its base at a distance h

above the base, then a frustum of the right circular cone is created. The situation

is illustrated in the figure 11-16 where the top portion of the right circular cone is

removed leaving the frustum. Let

Vf = volume of frustum of right circular cone

Vt = volume of top cone which is removed

Vc = volume of original cone with height (h1 + h)

then one can write

Vf = Vc − Vt

which states the volume of the frustum is volume of original cone minus the top

portion which is removed. Using equation (11.6) for the volume of a cone, we find

Vf = Vc − Vt =
π

3
r2
2(h1 + h) − π

3
r2
1h1

=
π

3
r2
2h +

π

3
(r2

2 − r2
1)h1

(11.7)
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Figure 11 -16. Frustum of right circular cone

Observe that by similar triangles one finds the proportions
h1

r1
=

h1 + h

r2
or h1 =

r1

r2 − r1
h (11.8)

Substituting for h1 from equation (11.8) into equation (11.7) one obtains

Vf =
π

3
r2
2h +

π

3
(r2

2 − r2
1)

r1

r2 − r1
h

Vf =
π

3
r2
2h +

π

3
(r2 + r1)r1h

Vf =
π

3
h

(
r2
2 + r1r2 + r2

1

)

(11.9)

which represents the equation for obtaining the volume for the frustum of a right

circular cone.

Surface area of right circular cylinder

The surface area of a right circular cylinder can be obtained by cutting it verti-

cally on a side and unfolding it. The unfolded section is a rectangle with length 2πr

and width h. This gives the lateral surface area of a cylinder as S = 2πrh

Figure 11 -17. Unfolding cylinder to find surface area
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The total surface area associated with a cylinder is obtained by adding the

surface areas of the top and bottom circles to the lateral surface area. This gives

the total surface area of the right circular cylinder as

St = 2πr2 + 2πrh

Surface area of right circular cone The lateral surface area of a right

circular cone with base radius r and slant height � can be obtained by cutting

along the slant height and unfolding the cone. This produces the figure 11-18. An

examination of this figure produces the following proportions

area of sector
area of circle

=
angle of sector

2π

and
circumference of cone base

circumference of circle with radius �
=

angle of sector
2π

(11.10)

Let As denote the area of the sector which is also the lateral surface area of the cone,

then the proportions given in equation (11.10) can be written as

As

π�2
=

θ

2π
and

2πr

2π�
=

θ

2π
(11.11)

Figure 11 -18. Unfolding cone to find surface area

The equations (11.11) simplify to

As =
1

2
θ�2 =

1

2
(θ�) � and 2πr = θ�

which gives

As = πr� (11.12)
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That is, the lateral surface area of the right circular cone is π times the radius times

the slant height. To find the total surface area one must add to the lateral surface

area the area of the base which is πr2.

Surface area of frustum of a right circular cone

The lateral surface area associated with the frustum of a right circular cone

illustrated in the figure 11-19 can be obtained by subtracting the the lateral surface

area of two cones. The larger cone with base radius r2 has the lateral surface area

πr2(�1 + �2) obtained using the lateral surface area relation from equation (11.12).

The smaller cone with base radius r1 has the lateral surface area πr1�1. The figure

11-19 also shows two similar triangles giving the proportions

r1

r2
=

�1
�1 + �2

⇒ r2�1 = r1(�1 + �2) (11.13)

Figure 11 -19. Subtracting the lateral surface area of two cones

Subtracting the lateral surface area of the smaller cone from that of the larger cone

gives the lateral surface area SL for the frustum associated with the larger cone. One

finds

SL = πr2(�1 + �2) − πr1�1

One can rearrange terms and use equation (11.13) to express this result in the

following form
SL =π(r1 + r2)�2 + π [r1�1 − r1(�1 + �2)]

SL =π(r1 + r2)�2
(11.14)

where the term inside the square brackets is zero because of equation (11.13). The

lateral surface area of the frustum is π times the sum of the top and bottom radius
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all multiplied by the slant height. To find the total surface area of the frustum one

must add to the lateral surface area πr
2

1
plus πr

2

2
which represents the surface area

of the top and bottom of the frustum.

Rotation of line segment to calculate the surface area

There is another way that one can calculate the lateral surface area associated

with a right cylinder, right cone and frustum of a right cone. The method requires

that one analyze the rotation of a line segment AB about an axis of rotation as follows.

First find the midpoint M of the line segment AB, then construct the perpendicular

bisector of the line segment AB labeling the point where the perpendicular bisector

intersects the axis of rotation as point 0. One can then calculate the distance M0

from point 0 to M . For each solid it will be demonstrated that the

Lateral surface area = 2π M0 h (11.15)

where h is a length obtained by the projection of the line segment AB onto the axis

of rotation. In using this result we will refer to it as the surface area by rotation

theorem.

Figure 11 -23. Line segment AB rotated about an axis

Rotation of line segment AB about an axis

M0 is perpendicular bisector of line segment AB.

h is the projection of AB onto axis of rotation.

0 is point of intersection of M0 with axis of rotation.

The cylinder

In figure 11-20 the line segment AB is parallel to the

axis of rotation. The line segment M0 is the perpen-

dicular bisector of line segment AB which intersects

the axis of rotation at point 0. The distance CD = h

represents the projection of line segment AB onto

the axis of rotation. The cylinder formed when AB

is rotated about the axis of rotation has the lateral

surface area S = 2πrh where r is congruent to M0

and h is congruent to CD. Therefore, S = 2πM0h

Figure 11 -20. Cylinder
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The cone

In figure 11-21 the line segment AB has one end

attached to the axis of rotation. The line segment

M0 is the perpendicular bisector of the line segment

AB. The cone that results when the line segment

AB rotates about the axis of rotation has the lateral

surface area S = πr� where r = AC and � = AB. In

the triangle �ABC of figure 11-21 construct the line

segment ME ‖ AC. Note point M is a midpoint so

that AC = 2ME. Also triangles �0ME and �ACD

(BC = CD) are similar so that one can write the

proportional statement

AB

M0
=

CD

ME
⇒ AB · ME = M0 · CD = M0h

Therefore, the surface area can be represented

Figure 11 -21. Cone

S = πr� = π AC · AB = π(2ME) · AB = 2πAB · ME = 2π M0h

The frustum

Here the line segment AB is offset at an angle away from the axis of rotation. The

rotation of the line segment about the axis produces the frustum that we wish to

examine. The frustum produced has the surface area

Sf = π(r1 + r2)� = Sf = π(AC + BD) ·AB (11.16)

Construct the line ME parallel to both the

line segments AC and BD which represents the me-

dian of the trapezoid ABDC. The median line is

the average of the top base and bottom base of the

trapezoid so one can write ME = 1
2
(AC + BD) and so

equation (11.16) can be written in the form

Sf = π(2ME) · AB (11.17) Figure 11 -22. Frustum

By dropping a perpendicular line from point A which intersect line segment BD
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at point F, one can make note that the triangles �AFB and �M0E are similar

(�AFB ∼ �M0E) so that one can form the ratios

AB

M0
=

AF

ME
⇒ ME · AB = M0 · AF (11.18)

But AF is congruent to CD = h which is the projection of line segment AB onto the

axis of rotation. Therefore, from equations (11.17) and (11.18) one finds

Sf = π(2ME) · AB = 2π M0 · AF = 2π M0 ·CD = 2π M0 h (11.19)

Volume of the sphere

Consider a sphere of radius r as illustrated in the figure 11-24. If the sphere

is divided in half, then two hemispheres result. Consider the problem of finding

the volume of a hemisphere. Recall that the area of a circle was approximated by

circumscribing and inscribing n-gons inside a circle and then adding up the areas of

triangles associated with the n-gons and then letting the integer n get very large.

One can proceed in a similar fashion to obtain the volume of a hemisphere.

Figure 11 -24. Sphere divided in half.

Imagine the approximation for the volume of a hemisphere is obtained by stack-

ing different sized cylinders to approximate the hemisphere. These cylinders can be

generated by examining the figure 11-25 where the circle y =
√

r2 − x2 is sketched

in the first quadrant. If this curve is rotated about the y-axis, then a hemisphere

results. If the radial distance from 0 to r is divided into say 6 parts, each of length

h =
r

6
, then a series of 6 rectangles can be constructed each of height h. As each of

these rectangles is rotated about the y-axis, then 6 cylinders are formed. The volume

of each cylinder is obtained by multiplying the area of the base times the height h.
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Figure 11 -25. Use of 6 cylinders to approximate volume of hemisphere

One finds
Volume of blue cylinder =πr2 h

Volume of red cylinder =π(r2 − h2) h

Volume of green cylinder =π(r2 − 4h2) h

Volume of gray cylinder =π(r2 − 9h2) h

Volume of light blue cyclinder =π(r2 − 16h2) h

Volume of orange cylinder =π(r2 − 25h2) h

Summation of these volumes gives the following approximation for the volume of a

hemisphere

Vhemisphere ≈ πr2 h+π(r2−h2) h+π(r2−4h2) h+π(r2−9h2) h+π(r2−16h2) h+π(r2−25h2) h

Using the summation convention one can express the above result as

Vhemisphere ≈ π
6∑

i=1

[
r2 − (i− 1)2h2

]
h (11.20)

or substituting h = r
6

into equation (11.20) one obtains

Vhemisphere ≈ π
6∑

i=1

[

r2 − (i− 1)2
(r

6

)2
]

r

6
= πr3

6∑

i=1

[

1 −
(

i − 1

6

)2
]

1

6
(11.21)
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Instead of 6 cylinders produced when the curve y =
√

r2 − x2 is rotated about the

y-axis, suppose we create N cylinders. The formula approximating the volume of the

hemisphere will look exactly like equation (11.21) except now the radial distance is

divided by N instead of 6. In equation (11.21) replace 6 by N everywhere to obtain

the approximation

Vhemisphere ≈ πr3
N∑

i=1

[

1 −
(

i − 1

N

)2
]

1

N

Vhemisphere ≈ πr3

[

1

N

N∑

i=1

1 − 1

N3

N∑

i=1

(i− 1)2

] (11.22)

Recall the summation formulas from chapter 6

N∑

j=1

1 =N (11.23)

N∑

j=1

j =
N (N + 1)

2
=

N2

2
+

N

2
(11.24)

N∑

j=1

j2 =
N (N + 1)(2N + 1)

6
=

N3

3
+

N2

2
+

N

6
(11.25)

Examine the equation (11.22) and note that we desire to find the summations

N∑

i=1

1 and
N∑

i=1

(i − 1)2

The first sum is obtained from equation (11.23). In order to find the second sum-

mation make a change of variable. Let j = i− 1 and note that when i = 1, then j = 0

and when i = N , then j = N − 1. This change of the summation index produces

N∑

i=1

(i − 1)2 =
N−1∑

j=0

j2 =
N−1∑

j=1

j2 (11.26)

This last summation is the same as equation (11.25) with N replaced by N − 1.

Substituting N − 1 into equation (11.25) replacing N everywhere produces

N∑

i=1

(i− 1)2 =
N−1∑

j=1

j2 =
(N − 1)(N )(2N − 1)

6
=

N3

3
− N2

2
+

N

6
(11.27)
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Substitute the summation formulas

N∑

i=1

1 = N and
N∑

j=1

(i − 1)2 =
N3

3
− N2

2
+

N

6

into the equation (11.22)and show

Vhemisphere ≈ πr3

[
1

N
N − 1

N3

(
N3

3
− N2

2
+

N

6

)]

Vhemisphere ≈ πr3

(

1 − 1

3
+

[
1

2N
− 1

6N2

]) (11.28)

Observe that as N gets very large all the terms inside the square brackets
[

1

2N
− 1

6N2

]

(11.29)

get very small and eventually approach zero for very large values of N . Therefore,

the volume for the approximation of the hemisphere becomes

Vhemisphere = πr3

(

1 − 1

3

)

=
2

3
πr3 (11.30)

and so the volume of a sphere is given by twice the volume of a hemisphere so that

Vsphere =
4

3
πr3 (11.31)

Surface area of a sphere

Figure 11 -26.

Rotation of octagon

We will use the surface area by rotation

theorem to find the surface area of a sphere. The

surface area can be approximated by constructing

an octagon inside a semicircle and then rotating the

figure about the diameter of the circle as illustrated

in the figure 11-26. Recall from equation (11.15)

that when the line segment AB is rotated about

the axis of rotation the surface area of the cone

generated is

SAB = 2πraAG (11.32)

where ra is the apothem of the polygon and AG is

the projection of AB onto the axis of rotation.



483

Using the results from equation (11.15) one can rotate the other line segments

BC, CD, DE about the axis of rotation to obtain the surface areas

SBC =2πraG0

SCD =2πra0F

SDE =2πraFE

(11.33)

The total surface area associated with the rotation of the polygon is

S = 2πra (AG + G0 + 0F + FE) (11.34)

Observe that (AG+G0+0F +FE) = 2r where r is the circumradius of the polygon

and resulting radius of the sphere when the figure 11-26 is rotated. The rotation of

the figure 11-26 gives the following approximation for the surface area of the sphere

Ssphere ≈ 2πra(2r) (11.35)

In the limit as the number of sides of the polygon increases the apothem distance ra

approaches the circumradius distance r reducing the equation (11.35) to the formula

for the surface area of a sphere given by

Ssphere = lim
n→∞

2πra (2r) = 2πr (2r) = 4πr2 (11.36)

Plane and sphere

A plane intersecting a sphere results in a circular

cross-section. The proof is as follows. One can construct

the line 0C which is perpendicular to the plane. Select

any two points A and B on the curve of intersection

associated with the plane and sphere and then construct

the line segments CA and CB which lie in the plane. The

line 0C is common to both right triangles and so triangles �0CA and �0CB are two

right triangles having an equal leg and hypotenuse. Consequently, these triangles

are congruent and indicate that CA = CB. The points A and B are arbitrary having

an equal distance from C. Hence, the curve of intersection is a circle.

A corollary to the above is that two circles on a sphere are equal if their planes

are equidistant from the center.
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Parts of a sphere

When the circle illustrated is rotated about the di-

ameter AF then a sphere results and (i) the rotation of

an arc generates a surface area called a zone and (ii)

the rotation of an area generates a volume associated

with the zone. Consider the following:

(a) The area GEDH generates a zone called a spherical

segment having an upper and lower circular base with

GH called an altitude and represents the distance be-

tween the parallel planes defining the upper and lower

base. The resulting spherical segment has both a volume and suface area.

(b) The area FGE generates a zone called a spherical cap. Both the spherical seg-

ment and spherical cap can be thought of as having two parallel planes intersecting

the sphere at different points where in one case one of the planes is tangent to the

sphere.

(c) The areas 0BA and 0CA generate spherical cones.

(d) The area 0CB generates a spherical sector when rotated.

(e) When the arc
�

BC is rotated a zone results which is the base of the spherical

sector.

Spherical Cap

When a plane intersects a sphere it creates a spherical cap. The volume and

surface area associated with a spherical cap can be determined from the limit of an

approximation. Consider a cross section of a sphere of radius r and let the line y = H

denote the plane cutting the sphere.

To approximate the volume of the spherical cap consider the rotation of n-disks

about the y-axis. Divide the distance r − H into n-parts giving each of the disks a

thickness of d = (r −H)/n. The volume element given by the ith disk is

Vi = πx2
i d = π(r2 − y2

i ) d = π
(

r2 − [r − id]
2
)

d = π

(

r2 −
[

r − i
(r − H)

n

]2
)

(r − H)

n

Expand the above equation and show

Vi = 2πr

(
r −H

n

)2

i − π

(
r −H

n

)3

i2 (11.37)
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Figure 11 -27.

Approximation for volume of spherical cap

A summation of the volume elements from 1 to n gives the volume approximation

va =
n∑

i=1

Vi = 2πr

(
r − H

n

)2 n∑

i=1

i − π

(
r − H

n

)3 n∑

i=1

i2 (11.38)

Using the summation formulas

n∑

i=1

i =
n2

2
+

n

2
and

n∑

i=1

i2 =
n3

3
+

n2

2
+

n

6

previously derived in chapter 6, one finds

Va =
n∑

i=1

Vi = 2πr
(r− H)2

n2

[
n2

2
+

n

2

]

− π
(r −H)3

n3

[
n3

3
+

n2

3
+

n

6

]

Taking the limit as n gets very large, the volume approximation produces the true

result for the volume of the spherical cap

Vcap = πr(r − H)2 − π

3
(r − H)3 =

π

3
(r − H)2 (2r + H) (11.39)

Letting h = r−H denote the height of the spherical cap, the equation (11.39) can be

represented in the form

Vcap =
π

3
h2(3r − h) (11.40)

One can replace the rectangles in figure 11-27 by trapezoids and then find the

surface area of a spherical cap by using the rotation of line segments about the y-axis

(rotation of line segments theorem) to approximate the surface area. As the number
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of line segments increase one can demonstrate the lateral surface area associated

with a spherical cap is given by

Scap = 2πrh (11.41)

Great circles and spherical angles

The great circle of a sphere is the intersection of the sphere surface with a plane

which passes through the center of the sphere. A small circle on a sphere is created by

the intersection of the spherical surface with a plane not passing through the center

of the sphere. A spherical angle is formed when planes associated with two great

circles pass through the same point P on the surface and form a dihedral angle which

cuts out a spherical angle on the surface of the sphere. The spherical angle equals

the arc
�

AB formed by the planes creating the angle intersecting the equator of the

sphere. A zone on the sphere is the surface area on the sphere between two parallel

planes cutting the surface of the sphere. A spherical cone or sector of a sphere is

constructed by adding a cone with vertex at the sphere center and the cone based

attached to the spherical cap base. This gives the volume of the spherical cone as

Figure 11 -28.

Spherical angle, spherical zone, spherical cone or sector of sphere

Volume of spherical cone =Volume of spherical cap + Volume of cone

V =
π

6
h(3a2 + h2) +

π

3
a2(r − h)

V =
π

6
h(3(2rh − h2) + h2) +

π

3

[
(2rh − h2)(r − h)

]

which simplifies to

V =
2

3
πr2h
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Figure 11 -29.

Spherical zone, spherical segment or spherical frustum

A spherical segment, spherical zone or spheri-

cal frustum is obtained by removing a small spher-

ical cap from a large spherical cap as illustrated in

the figure 11-29. The volume of the spherical frus-

tum can be represented

Vf =
π

6
(H + h)(3a2 + (H + h)2) − π

6
H(3b2 + H2)

Make the substitution R = H + h and show the vol-

ume of a spherical frustum can be expressed

Vf =
π

6

(
R(3a2 + R2

)
− π

6
(R − h)(3b2 + (R − h)2)

A cross section of the spherical frustum shows the top radius b and bottom radius

a satisfy the equations

a2 + y2
0 = r2, b2 + (y0 + h)2 = r2, ⇒ y0 =

a2 − b2 − h2

2h

Substituting R = H + h = r − y0 into the equation for the spherical frustum volume

one obtains after simplification

Vf =
π

6

[
3b2h + h3 + (3a2 − 3b2 − 3h2)r + 3hr2 − (3a2 + 3b2 + 3h2 − 6hr)y0 + 3hy2

0

]
(11.42)



488

Now substitute into the above equation

y0 =
a2 − b2 − h2

2h
and r =

√

a2 + y0

and simplify to obtain the result

Vf =
π

6
h

[
3a2 + 3b2 + h2

]
(11.43)

In a similar fashion one can use the rotation of line segments to calculate the

surface area associated with a spherical frustum. One finds the surface area of a

spherical frustum is given by

Sf = 2πr h (11.44)

The total surface area of the spherical frustum is obtained by adding the surface

area of the two bases giving

SfT = 2πrh + πa2 + πb2

Right pyramid with square base

Consider the right pyramid with square base illustrated in the figure 11-30, where

the height of the pyramid is h and the square base has a bottom length of 2b on any

side.

Figure 11 -30.

Square pyramid approximation of volume

To find the volume of the pyramid one can start off by first getting an approximate

value for the volume and then improve on the approximate value obtained. For

example, suppose the volume of the pyramid is approximated by 5 prisms stacked

one upon the other as illustrated in the figure 11-30. The dimensions of the prisms
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used in the approximation can be obtained by taking a cross section of the pyramid

and showing a section in the y−z plane produces the line z−h = −
(

h
b

)
y or y = b

(
1 − z

h

)
.

Figure 11 -31.

Cross section of pyramid.

If the height h of the pyramid is divided into 5 parts, then the volume of each disk

is the area of each base times the height of the disk or (h/5). Using the equation of

the line describing the slant line of the prism one can examine the figure 11-31 to

determine the length of the sides associate with each base of the stacked prisms.

Use y = b
(
1− z

h

)
to determine length of 1

2
side

z y length of side

0 b 2b

h/5 b(1-1/5) 2b(1-1/5)

2h/5 b(1-2/5) 2b(1-2/5)

3h/5 b(1-3/5) 2b(1-3/5)

4h/5 b(1-4/5) 2b(1-4/5)

By squaring the length of the prism side and multiplying by the height h/5 one

can obtain the volume of each prism. Addition of these volumes gives an approxi-

mation Va for the volume of the pyramid as

Va ≈ (2b)2
h

5
+ [2b (1 − 1/5)]

2 h

5
+ [2b (1 − 2/5)]

2 h

5
+ [2b (1 − 3/5)]

2 h

5
+ [2b (1 − 4/5)]

2 h

5

Using the summation convention introduced in chapter 6, this approximation

can be expressed

Va ≈
5∑

i=1

[

2b

(

1 − (i − 1)

5

)]2
h

5
(11.45)
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Instead of 5 prisms, suppose one used n prisms, where n is a large integer. The

volume approximation would be the same as equation (11.45) except that all the 5’s

in equation (11.45) would be replaced by the integer n to obtain

Va ≈
n∑

i=1

[

2b

(

1 − (i− 1)

n

)]2
h

n
(11.46)

Expand the equation (11.46) and represent it in the form

Va ≈=
n∑

i=1

4b2

[

1 − 2
(i − 1)

n
+

(i− 1)2

n2

]
h

n

Va ≈=4b2 h

n

n∑

i=1

1 − 8b2 h

n2

n∑

i=1

(i− 1) + 4b2 h

n3

n∑

i=1

(i− 1)2
(11.47)

We have previously shown the summation terms in equation (11.47) can be repre-

sented
n∑

i=1

1 = n,
n∑

i=1

(i − 1) =
n2

2
− n

2
,

n∑

i=1

(i − 1)2 =
n3

3
− n2

2
+

n

6

Using these results in the equation (11.47) one finds the volume approximation for

the pyramid with n prisms can be represented

Va ≈ 4b2h − 4b2h

(

1 − 1

n

)

+ 4b2h

(
1

3
− 1

2n
+

1

6n2

)

Observe that as the integer n gets very large, then the terms that are divided by n

all get very small, so that in the limit as n → ∞ one obtains

Vpyramid = lim
n→∞

Va =
1

3
(4b2)h =

1

3
(base)(height) (11.48)

The surface area of the pyramid is four times the area of one triangular face. A

single triangular face as the area

As =
1

2
(2b)�

where � is the slant height and 2b is the length of the triangle base. Therefore, the

total lateral surface area of the pyramid is Spyramid = 4As = 2(2b)�. One can use the

Pythagorean theorem to calculate the slant height since �2 = b2 + h2. Observe that

the lateral surface area of the pyramid can be written in the alternative form

Spyramid =
1

2
[2b� + 2b� + 2b� + 2b�] =

1

2
P� =

1

2
P

√

b2 + h2 (11.49)
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where P = 8b is the perimeter of the base and � is the slant height of the pyramid.

To obtain the total surface area associated with the pyramid one must add the area

associated with the square base (2b)2 to the lateral surface area.

Frustum of a square pyramid

The frustum of a square pyramid is obtained by a plane parallel to the base of

the pyramid and cutting the top off. The situation is illustrated in the figure 11-32.

One can calculate the volume of a large pyramid and then calculate the volume of a

smaller pyramid, where the smaller pyramid represents the top of the pyramid that

was removed to form the frustum. The volume of the frustum of a pyramid is then

the volume of the larger pyramid minus the volume of the smaller pyramid. Let the

height of the original square pyramid be (h2 +h) and its base denoted by b1. Let the

height of the pyramid cut off to form the frustum be h2 and its base denoted by b2,

then one can express the volume of the pyramid frustum as

Vfrustum =
1

3
(b1)

2(h2 + h) − 1

3
(b2)

2(h2) (11.50)

which represents the volume of the original pyramid minus the portion removed.

Figure 11 -32.

Frustum of pyramid and its cross section.

This result can be expressed in a different form involving only h, the height of the

frustum and also the quantities A1, A2 representing the areas of the top base and

bottom base of the frustum. If one makes use of similar triangles one can write the

proportion
h2

h2 + h
=

b2

b1
⇒ h2 =

b2

b1 − b2
h (11.51)
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Replace the h2 in equation (11.50) using the results from equation (11.51) and show

Vfrustum =
1

3
b2
1

[
b2

b1 − b2
h + h

]

− 1

3
b2
2

[
b2

b1 − b2
h

]

Vfrustum =
1

3
h

[
b2(b

2
1 − b2

2) + (b1 − b2)b
2
1

b1 − b2

]

Vfrustum =
1

3
h

[

A1 + A2 +
√

A1A2

]

=
1

3
h

(
b2
1 + b1b2 + b2

2

)

(11.52)

where A1 = b2
1 and A2 = b2

2 are the areas of the top and bottom of the frustum.

Let � denote the slant height of each face of the frustum. Each face of the

frustum is a trapezoid with lateral surface area

Sfrustum = 4

[
1

2
(b1 + b2)�

]

Let 4b1 = p1 and 4b2 = p2 denote the perimeter of the top and bottom faces, then the

lateral surface area can be expressed

Sfrustum =
1

2
(p1 + p2)� (11.53)

The total surface area of the frustum requires the addition of the top and bottom

areas to the lateral surface area.

Lateral surface area of pyramid

The lateral surface area of a regular pyramid

with n-sides is obtained by first finding the area of

one triangular face

S1 =
1

2
AB �1 =

1

2
(base)(height)

where AB is base of triangle and �1 is the slant height

as illustrated in the accompanying figure.

The total lateral surface area of n-faces is

St = nS1 =
n

2
AB �1 =

1

2
p1�

where p1 = n AB is the perimeter of the base.

If the pyramid is cut by a plane parallel to the base, then a frustum of a regular

pyramid is created. The lateral surface area for this frustum is

S =
1

2
p1�1 −

1

2
p2�2 (11.54)
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where p1 is the perimeter of the lower base and p2 is the perimeter of the upper base.

Note that the original pyramid and top pyramid cut by the plane are similar figures

so that one can write
p2

p1
=

�2
�1

or p2�1 = p1�2 (11.55)

Therefore, the equation (11.54) can be expressed

S =
1

2
[p1�1 − p1�2 + p2�1 − p2�2] =

1

2
(p1 + p2)(�1 − �2) =

1

2
(p1 + p2)� (11.56)

where � = �1 − �2 is the slant height of the frustum. The equation (11.56) shows the

lateral surface area associated with a frustum of a regular pyramid having n-faces is

given by the average perimeter of the top and bottom bases multiplied by the slant

height � which is the same as our previous result for a square pyramid.

Cavalier’s principle in three dimensions

Consider two parallel planes P1 and P2 with two

solids between them. Cavalier’s first principle states

that if every plane P parallel to both planes P1 and

P2 cuts the two solids to produce equal area cross-

sections, then the volumes of the two solids will be

equal. Cavalier’s second principle states that if the

cross-sections have areas in the ratio A1

A2
, then the

volumes of the solids will have the ratio V1

V2
= A1

A2
.

Cavalier’s principle implies the following. If the bases at top and bottom are of

equal area, then

A right cylinder and slanted right cylinder of the same height have equal volume.

A right prism and slanted right prism of the same height have equal volumes

A right pyramid and slanted right pyramid of the same height have equal volumes

The Cavalier’s principle does not require that

the solids be similar in shape. The only thing re-

quired is that as the plane P moves up and down

and remains parallel to planes P1 and P2, then the

cross-sectional areas of the two solids must be equal

for all possible cross-sections. Whenever this oc-

curs, then the solids have equal volume.
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Note that Cavalier’s principle says the volumes are the same. However, the

lateral surface area changes as is illustrated in the following examples.

Example 11-2.

Find the volume and surface area for the cylinder and slanted cylinder.

Solution:

Let V denote volume, S the lateral surface area, h the height of the solid and a the

radius of circle perpendicular to the sides of the oblique cylinder.

Figure 11 -33. Cylinder and slanted cylinder

cylinder

Volume =(area of base)(height)

V =(πr2) h

lateral surface area =(perimeter)(height)

S =2πr h

total surface area =St = 2πr h + 2(πr2)

oblique or slanted cylinder

Volume =(area of base)(height)

V =(πr2)� sinα = πr2 h

lateral surface area

S =(2πr)� =
2πr h

sin α

total surface area

St =2πr � + 2(πr2) = 2πr (� + r)

Example 11-3.

Find the volume and surface area for a prism and oblique prism.

Solution:

Let V denote volume, A the area of the base, S the lateral surface area, p the

perimeter of the base, � the slant height of the oblique prism, pN the perimeter of



495

the prism and AN the area of a normal section to sides of oblique prism and h the

height of the prisms.

Figure 11 -34. Prism and oblique prism

One can then verify the following.

prism

V =(area of base)(height)

V =A h

S =(perimeter of base)(height)

S =p h

total surface area

St =p h + 2A

oblique prism

V =(area of base)(height)

V =A h or or V = AN �

S =pN �

total surface area

St =pN � + 2A

Cavalier’s principle implies each of the solids in figure 11-35 have a volume given

by

Volume =
1

3
(area of base)(height)

Figure 11 -35. All solids have volume 1
3(area of base)(height)
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That is, we have demonstrated the cone has a volume given by V = 1
3b h so that if the

area of all the bases in figure 11-35 are the same and all heights and cross sections

are the same, then they all must have the same volume given by the relation

V =
1

3
(area of base)(height)

Example 11-4. Consider a cylinder with base πr2 and height r. Place a cone

within the cylinder as illustrated in the figure below.

Place next to this cylinder a hemisphere with radius r and then cut both figures

by a plane at a height h. The cross-section produced through the cylinder is a washer

shaped area. This area equals A = π(r2 − h2) since the slope of the cone is unity.

The cross-sectional area of the sphere is a circle with radius x =
√

r2 − h2. The cross-

sectional area of the sphere is also A = π(r2−h2). By Cavalier’s theorem the volumes of

these two solids are equal. The volume of the cone is Vcone =
1

3
(base)(height) =

1

3
(πr2)(r)
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and the volume of the cylinder is Vcylinder = (base)(height) = (πr2)(r) Therefore the

volume associated with the cross-sectional area is

V = Vcylinder − Vcone = πr3 − 1

3
πr3 =

2

3
πr3 = Vhemisphere

Therefore, by Cavalier’s principle and symmetry, the volume of the sphere is given

by Vsphere =
4

3
πr3.

Theorems of Pappus

Pappus3 of Alexandria derived two propositions or theorems for determining the

volume and surface area associated with solids created by rotation of an area about

an axis.

The first proposition of Pappus states that the surface area associated with a

solid of revolution equals the product

(Length of arc around area rotated)(distance traveled by the centroid of the arc)

The second proposition of Pappus states that the volume associated with a solid

of revolution equals the product

(cross-sectional area rotated)(distance traveled by the centroid of the area)

Example 11-5.

Consider the circle (x− r + R

2
)2+z2 =

(
R − r

2

)2

which is revolved about the z−axis

to form a torus with inner radius r and outer radius R as illustrated.

The surface area is

S =(Length of arc around area rotated)(distance traveled by the centroid of the arc)

S =

(

2π(
(R− r)

2

)(

2π
R + r

2

)

= π2(R2 − r2)

3 Pappus of Alexandria (290-350)CE mathematician and philosopher.
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since the origin of the circle is the centroid for the arc.

The volume is found to be

V =(cross-sectional area rotated)(distance traveled by the centroid of the area)

V =

(

π

(
R − r

2

)2
) (

2π
R + r

2

)

=
π2

4
(R − r)(R2 − r2)

Similar solids

In the following discussions make note that if two solids are similar, then their

ratio of areas is proportional to the square of the similarity ratio and the ratio of

their volumes is proportional to the cube of the similarity ratios.

Cylinders

Two similar cylinders provides one with the sim-

ilarity ratios
r

r′
=

h

h′ . The lateral surface area of the

two similar cylinders are S = 2πrh and S′ = 2πr′h′ giving

the ratio

S

S′ =
2πrh

2πr′h′ =

(
r′ h

h′

)
h

r′h′ =
h2

h′2
=

r2

r′2

The volumes of the two similar cylinders are V = πr2h

and V ′ = πr′2h′ giving the ratio

V

V ′ =
πr2h

πr′2h′ =

(
h
h′

r′
)2

h

r′2h′ =
h3

h′3 =
r3

r′3

Right circular cones

Examine the two similar right circular cones and

produce the similarity ratios
r

r′
=

h

h′ =
�

�′
. The lateral

surface area of the two similar cones are S = πr� and

S′ = πr′�′ giving the ratio

S

S′ =
πr�

πr′�′
=

(
h
h′

r′
) (

h
h′

�′
)

r′�′
=

h2

h′2 =
r2

r′2

The volumes of the similar cones are V = 1
3
πr2h and V ′ = 1

3
πr′2h′ giving the ratio

V

V ′ =
1
3πr2h
1
3πr′2h′ =

(
r′ h

h′

)2
h

r′2h′ =
h3

h′3 =
r3

r′3
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Tetrahedrons

Two similar tetrahedrons have the similarity

ratios
AB

A′B′
=

AC

A′C ′
=

BC

B′C ′
=

h

h′ . The surface areas

of the two similar tetrahedrons are given by

S = 4[ABC] and S′ = 4[A′B′C ′]

giving the ratio

S

S′ =
[ABC]

[A′B′C ′]
= similarity ratio squared =

h2

h′2

from previous investigation involving ratio of areas.

The volumes of the similar tetrahedrons are V = 1
3 [ABC] h and V ′ = 1

3 [A′B′C ′] h′

giving the ratio
V

V ′ =
1
3
[ABC] h

1
3
[A′B′C ′] h′ =

[ABC]

[A′B′C ′]

h

h′ =
h2

h′2
h

h′ =
h3

h′3

Two similar solids

In general if two solids are similar, then the ratio of the surface areas will be

proportional to the similarity ratio squared and the ratio of the volumes will be

proportional to the similarity ratio cubed. This can be proven as follows. One can

select a certain size small tetrahedron and then approximate the similar solids by a

summation of tetrahedrons. If Ti is the volume of the ith tetrahedron, then one can

write the fact that the two solids are similar by writing

T1 + T2 + · · ·+ Tn ∼ T ′
1 + T ′

2 + ·+ T ′
n

and the ratio of the volumes is

V

V ′ =
T1 + T2 + · · ·+ Tn

T ′
1 + T ′

2 + · · ·+ T ′
n

=
T1

T ′
1

=
h3

h′3

Similarly if Si is the surface area of the ith tetrahedron, then the ratio of surface

areas becomes
S

S′ =
S1 + S2 + · · ·+ Sn

S′
1 + S′

2 + · · ·+ S′
n

=
S1

S′
1

=
h2

h′2

These ratios holding even in the limit as n gets very large.
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Exercises

� 11-1. Name the solid and test Euler’s formula.

� 11-2.

The volume and surface area of a tetrahedron with edge of length

s are given by V =
√

2
12

s3 and S =
√

3 s2 To verify this proceed as follows.

(a) Find the altitude a associated with one face.

(b) Find the area of one face.

(c) Find the distance d from an edge to the center of one face.

(d) Find the height h of the pyramid.

(e) Find the volume equal to one-third the area of base times the

height.

(f) Find the surface area of the tetrahedron.

� 11-3.

(a) Find the volume and surface area associated with one-half of an octahedron

having an edge length s.

(b) Show the total volume is V =
√

2
3

s3 and the surface area is S = 2
√

3 s2

� 11-4. Find the volume of the solid illustrated.

� 11-5. Find the diagonal of the cube having each side of length 8.

� 11-6. Prove the diagonals of a parallelepiped meet at a point of concurrency.
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� 11-7.
Find the volume of the cylinder which has been

cut by a plane as illustrated in figure (a) where h1 is

the smallest height and h2 is the largest height associ-

ated with the cross-section and r is the radius of the

cylinder.

Hint: Make it into a problem with symmetry.

� 11-8.

For the cube illustrated,

(a) Prove any three diagonals intersect at a point.

(b) Use symmetry and find the number of pyra-

mids created by the diagonals.

(c) Verify the volume of these pyramids is given

by
1

3
(base)(height)

� 11-9.

Consider the solid formed by a horizontal slicing of the dihedral angle formed by

two identical isosceles triangles and a rectangular base as illustrated with top line

c centered over the base. Divide the height h into n−parts and form a sandwich-

shaped rectangle at height zi = ih
n
.

(a) Show the sides of the sandwich-shaped rectangle are given by

�1 = a − (a − c)

h
zi, �2 = b − b

h
zi, i = 1, 2, . . . , n

(b) Show the volume associated with the sandwich-shaped element is Vi = �1�2
h

n
(c) Use the summation formulas from chapter 6 to show the total volume of the

dihedral angle solid is

V = lim
n→∞

n∑

i=1

Vi =
bh

6
(2a + c)
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� 11-10.

The figure at the right is called an obelisk and

results when one examines a frustum of the dihedral

angle solid illustrated in the previous problem. Use the

results from the previous problem to show the volume

of the obelisk is given by

V =
h

6
[(2a2 + a1)b2 + (2a1 + a2)b1]

Hint: The whole equals the sum of its parts.

� 11-11.

Find the volume and surface area of the hollow cylinder

with height h, inner radius r and outer radius R.

� 11-12.

On Archimedes tomb is the picture of a sphere with

radius r placed inside a cylinder of radius r and height 2r.

(a) Find the relation between volume of sphere

and volume of cylinder.

(b) Find the relation between total surface area of sphere

and total surface area of cylinder.

� 11-13.

The figure is a sketch of two circles intersecting with

chord AB joining the points of intersection. If C and C ′

are the centers of the circles, then prove that two spherical

surfaces intersecting will always produce a circle.

Hint: What happens if the attached figure is rotated about the line CC ′?

� 11-14. (The octahedron)

Let s denote the length of the sides of the eight congruent equilateral triangles.

(a) Show by symmetry the octahedron can be made up of two pyramids.

(b) Prove the surface area of the octahedron is S = 2
√

3 s2

(c) Prove the volume of the octahedron is V =

√
2

3
s3
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� 11-15.

(a) Find the diagonal and volume of the parallelepiped.

(b) Find the volume of a triangular slanted prism.

� 11-16. The dodecahedron has a surface area which is made up of twelve congruent

regular pentagons. Assume the pentagons have each side of length �.

(a) Show the area of one face is S1 =
1

4

√

5(5 + 2
√

5) �2

(b) Show the total surface area of the dodecahedron is S12 = 3

√

5(5 + 2
√

5 �2

� 11-17. A cylinder is constructed inside a right circular

cone as illustrated.
(a) Find the similarity ratio between the upper right

cone and larger right cone.

(b) Find the distance r1 if the surface area of the upper

cone equals the orange area between two circles.

� 11-18. Find the surface area and volume created when

the following figures are rotated about the z-axis.

Figure Centroid Area

x̄ z̄

x̄ = b+a sin θ
3

z̄ = a cos θ
3

1
2
ba cos θ

x̄ = 4r
3π

z̄ = 4r
3π

1
4
πr2

x̄ = 1
2
b z̄ = 1

2
a ab
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� 11-19. Special case associated with proof of Euler’s formula E = V +F−2 for convex

polyhedra.

One proof of Euler’s formula is a generalization of the following process applied

to the special polyhedron which is a cube.

(a) Color any vertex red and then move and color an edge going to another vertex

which is not colored red. Repeat the process, each time moving to a vertex which

is not colored red until there are no more vertices to move to.

(b) Let R equal the number of red edges and V the number of vertices. Show that

R = V − 1

(c) All the edges which are not red are to be colored blue. Let B equal the number

of blue edges and F the number of faces. Show that B = F − 1.

(d) Add the red and blue edges and show the total number of edges is E = V +F − 2.

(e) You try this process on a tetrahedron and some other polyhedron.

� 11-20. Fill in the following table.

Volume change with edge size change

Edge size Volume of cube

s

2s

3s

4s

5s

� 11-21. Find the cross-sectional area associated with a plane intersecting with a

sphere. Assume the plane is a perpendicular distance of h from the center of the

sphere.

� 11-22.
Two parallel planes intersecting a sphere

creates a zone.

(a) Find the surface area of the zone.

(b) Find the volume of the zone.
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Geometry

Chapter 12

Solid Geometry II

Prismatoid

Given two parallel planes where all the vertices of a polyhedron lie only in these

planes. Any solid satisfying these conditions is called a prismatoid. The faces of a

prismatoid that lie within a parallel plane are called the bases of the prismatoid.

We use the notation Bu, B� for the area of the upper and lower bases. The altitude

h of a prismatoid is the perpendicular distance between the parallel planes. A plane

midway between the upper and lower planes cuts the prismatoid in a section called

the midsection with area denote by M .

Figure 12 -1. Finding the volume of a prismatoid

The figure 12-1 illustrates a prismatoid with height h. Select a point 0 in the

middle section and construct straight lines from 0 to the vertices of the upper, middle

and lower parallel planes. By passing planes through these lines one can divide the

prismatoid into many pyramids all having a common vertex 0. If any pyramid is

not triangular, then a construction must be performed to make it into a triangular

pyramid.
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By joining point 0 to the vertices of the upper figure gives a pyramid with volume

V1 =
1

3
(base)(height) =

1

3
Bu

h

2
(12.1)

In a similar fashion construct lines from 0 to the vertices of the lower figure to

produce a pyramid with volume

V2 =
1

3
(base)(height) =

1

3
B�

h

2
(12.2)

Examine the triangle �0DE which cuts the triangle �ABC in line DE. Recall

that ratio of areas are proportional to the square of their similarity ratios so that

one can write
[DEC]

[ABC]
=

(h
2
)2

h2
⇒ [DEC] =

1

4
[ABC] (12.3)

One can now examine the volume of the tetrahedron

Volume 0 − DEC =
1

4
Volume 0 −ABC =

1

3
(base)(height) =

1

3
[ODE]

h

2
(12.4)

Hence, one can write

Volume 0 −ABC =
4

6
h[0DE] (12.5)

As you move around point 0, the fractional part of the total volume can be calculated

in a similar fashion as above. Summation of these volumes gives

V3 =
4

6
h ([0DE] + [0FE] + [0FG] + [0GH ] + [0HI ] + [0ID]) =

4

6
h M (12.6)

The total volume of the prismatoid is then

V = V1 + V2 + V3 =
1

6
h (Bu + B� + 4M) (12.7)

where h is the height of the prismatoid, Bu is the area of upper figure, B� is area of

lower figure and M is the area of the midsection.
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Plane sections

If a pyramid with a polygon for its base is cut by three planes parallel to the

base, one of the planes through the base and another plane through the vertex and

the remaining plane cutting all edges of the pyramid, then similar pyramids are

created as illustrated in the figure 12-2.

Figure 12 -2. Pyramid cut by three planes parallel to base

This can be proven by observing that the face V AB of the pyramid consists of

similar triangles so that one can write
V A

V A′
=

V B

V B′
. If one does this for each face of

the pyramid one finds

V A

V A′
=

V B

V B′
=

V C

V C ′
=

V D

V D′
=

h′

h + h′
(12.8)

The last ratio results when the bases of the altitudes are joined to each vertex to

form similar right triangles. For example, �0V A ∼ �0′V A′. The equation (12.8)

gives the similarity ratio’s associated with the similar figures and so one can write

pyramid ABCD ∼ A′B′C ′D′.
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Recall that the ratio of the pyramid bases B′ and B is proportional to the

similarity ratio squared giving

B

B′
=

[ABCD]

[A′B′C ′D′]
=

(h + h′)2

(h′)2
or B′ =

(h′)2

(h + h′)2
B (12.9)

.

The volume of the smaller pyramid is V ′ =
1

3
(area of base)(height) =

1

3
B′h′ and

the volume of the larger pyramid is V =
1

3
(area of base)(height) =

1

3
B(h + h′). Using

equation (12.9) one can show the ratio of the volumes is given by

V

V ′
=

1
3
B(h + h′)

1
3
B′h′

=
(h + h′)2

(h′)2
(h + h′)

h′
=

(h + h′)3

(h′)3

showing the ratio of the volumes of similar figures is proportional to the similarity

ratio cubed.

Each face of the pyramids is a triangle and so the lateral surface area is a

summation of these face areas.

The frustum created when V ′ is subtracted from V has the volume

Vfrustum = V − V ′ =
1

3
B(h + h′) − 1

3
B′h′ =

1

3
B(h + h′) − 1

3
B

(h′)2

(h + h′)2
h′

=
1

3
B

[

(h + h′)3 − h′3

(h + h′)2

]

=
1

3
Bh

[

1 +
h′

h + h′
+

(

h′

h + h′

)2
]

=
1

3
Bh

[

1 +

√

B′

B
+

B′

B

]

Each face of the frustum is a trapezoid so that the area of each trapezoid can be

calculated to obtain the lateral surface area.

In the special case of a regular square pyramid where B = b2
1 and B′ = b2

2 the

above equation reduces to

Vfrustum =
1

3
h[b2

1 + b1b2 + b2
2]

verifying our previous result.

Plane intersecting a triangular prism

A truncated triangular prism results when a plane intersects a triangular prism.

The situation is illustrated in the figure 12-3 where the intersecting plane produces
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the truncated prism ABCDEF. The truncated triangular prism can be divided into

three triangular pyramids

E −�ABC, E −�ACD, E −�CFD (12.10)

It will be demonstrated that the volume associated with the pyramids in equation

(12.10) is the same as the volume associated with the pyramids

E −�ABC, F −�ABC, D −�ABC (12.11)

which all have the common base �ABC but with different vertices D, E, F at heights

h1, h2, h3. One can then use the fact that the volume of any one pyramid is
1
3
(area base)(height) to obtain the total volume of the truncated prism. That is,

the volume of the pyramids D −�ABC + E − �ABC + F −�ABC is the same as the

volume of the truncated triangular prism.

The above assertions can be demonstrated by construction of the planes ACE

and DCE which divides the truncated triangular prism into the three triangular

pyramids indicated above. Observe that the line EB is parallel to the lines AD and

CF and consequently is parallel to the plane ACFD.

Figure 12 -3. Triangular prism cut by a plane
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Note the triangular pyramids E−�ACD and B−�ACD have the same altitudes so

that these pyramids have the same volume. Two solids which have the same volume

are said to be equivalent to each other. This equivalencey is expressed by writing

E−�ACD ≡ B−�ACD. Observe also that in the pyramid B−�ACD one can take D

as a vertex with triangle �ABC as the base and so one has D −�ABC ≡ E −�ACD.

In a similar fashion one can show AD ‖ EB and that

E −�CFD ≡ B −�CFD ≡ D −�BCF ≡ A −�BCF ≡ F −�ABC

Consequently, the volume of the truncated triangular prism is given by

V =
1

3
(h1 + h2 + h3) [ABC] (12.12)

where [ABC] is the area of the triangle base �ABC.

The total surface area of the truncated triangular prism is the sum of the areas

from the top and bottom triangles added to the summation of the face areas where

each face is a trapezoid.

Cartesian coordinates

A point (x, y, z) in three dimensional Cartesian co-

ordinates is illustrated in the diagram on the right.

For points (x, y) in two dimensions it was found con-

venient at times to introduce polar coordinates (r, θ)

to represent various quantities. In three dimensions it

is often convenient to represent points (x, y, z) in cylin-

drical coordinates or spherical coordinates.

Cylindrical coordinates

Cylindrical coordinates (r, θ, z) are related to rect-

angular coordinates (x, y, z) by the equations

x =r cos θ

y =r sin θ

z =z

x2 + y2 =r2

tan θ =
y

x

z =z

(12.13)

Note the radial distance r is projected onto the x and y axes to obtain the above

equations.
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Spherical coordinates

The relation between Cartesian coordinates

(x, y, z) and spherical coordinates (ρ, θ, φ) can be

obtained as follows. First examine the projec-

tion of the line segment 0P = ρ onto the xy-plane

to obtain ρ sin θ (the orange line). Next exam-

ine the projection of the orange line onto the

x-axis and its projection onto the y-axis to obtain

x = ρ sin θ cos φ, y = ρ sin θ sin φ (12.14)

The projection of line 0P = ρ onto the z-axis gives

z = ρ cos θ (12.15)

These projections give the coordinate transformations from spherical coordinates

(ρ, θ, φ) of a point P on the surface to Cartesian coordinates (x, y, z) of the point P as

x =ρ sin θ cos φ, 0 ≤ θ ≤ π

y =ρ sin θ sin φ, 0 ≤ φ ≤ 2π

z =ρ cos θ

ρ2 =x2 + y2 + z2

θ = arctan
y

x

φ = arccos
z

√

x2 + y2 + z2

(12.16)

The angle θ is called the polar angle and the angle φ is called the azimuthal

angle. Using algebra the parameters θ and φ can be eliminated from the equations

(12.16) to obtain the Cartesian coordinate equation for the sphere as

x2 + y2 + z2 = ρ2 (12.17)

The special case of a unit sphere results when

ρ = 1. In what follows we will work with unit

spheres to make things simpler. One can always

add a nonzero value ρ > 1 at any time and scale

things accordingly. Note that a point P on the sur-

face of a unit sphere with surface coordinates (θ1, φ1)

can be associated with a vector from the origin to

point P on the surface of the unit sphere
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This vector is represented

�r1 = 0P
−→

= sin θ1 cosφ1 ê1 + sin θ1 sin φ1 ê2 + cos θ1 ê3

where ê1, ê2, ê3 are unit vectors in the directions of the x, y, z axes.

Make note of the fact that �r1 is a unit vector from the center of the unit sphere

to point P on the surface of the unit sphere.

Great circles

The curve of intersection of a sphere with a

plane is called a circle of the sphere. The curve

of intersection between sphere and plane is called a

great circle of the sphere whenever the plane passes

through the center of the sphere. Any plane inter-

secting a sphere which does not pass through the

center of the sphere produces what is called a small

circle of the sphere.

Great circles on a sphere are used to define the shortest distance between two

points on a sphere. These curves of shortest distance are called geodesics. The planes

of great circles intersect to form the angles associated with spherical geometry. A line

perpendicular to a great circle and passing through the center of the circle intersects

the sphere at two points called poles associated with the great circle. For example,

the North and South poles in relation to the equator of the Earth (assuming the

Earth to be a sphere). The polar distance associated with a circle of the sphere is

the spherical distance from any point on the circle to its nearest pole (either pole if

circle is equator of the sphere).

Polar point
Every plane and sphere intersection produces a circle.

This circle has a polar point P associated with it such that

all the arcs
�

PA =
�

PB =
�

PC are equal. That is the planes

0AP , 0BP , 0CP produce great circles for any points C on the

circle of intersection and so all the polar angles are equal.
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Parametric equations for representing a circle In an orthogonal two-

dimensional system of coordinates the parametric equations for the representation

of a circle centered at the origin is given by

x = cos t y = sin t ⇒ x2 + y2 = 1

and a position vector �r(t) to a point on the circumference of the circle has the

representation

�r = �r(t) = x(t) ê1 + y(t) ê2 = cos t ê1 + sin t ê2, 0 ≤ t ≤ 2π (12.18)

in terms of a parameter t and orthogonal base vectors ê1 and ê2 having unit length.

In a non-orthogonal coordinate system with base vectors ê1 and Ê2, which are

also unit vectors, we want to represent the above vector �r(t) giving the position of a

point on the unit circle.

Figure 12 -4. Orthogonal and non-orthogonal coordinate systems

Assume that

�r(t) = cos t ê1 + sin t ê2 = f(t) ê1 + g(t) Ê2 (12.19)

where f(t) and g(t) are to be determined. Take the dot product of both sides of

equation (12.19) with the unit vector ê1 and show

cos t = f(t) + g(t) Ê2 · ê1
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Next take the dot product of both sides of equation (12.19) with the unit vector ê2

to obtain

sin t = g(t) Ê2 · ê2

Note the dot product relations

Ê2 · ê1 = cos θ Ê2 · ê2 = cos(
π

2
− θ) = sin θ

where θ is the angle between the vectors ê1 and Ê2 when their origins coincide. These

dot products show

cos t = f(t) + g(t) cosθ

sin t = g(t) sinθ
⇒

g(t) =
sin t√

1 − cos2 θ

f(t) = cos t − sin t

(

cos θ√
1 − cos2 θ

) (12.20)

The position vector describing the circle in a non-orthogonal coordinate system can

therefore be represented

�r = �r(t) =

(

cos t − sin t
cos θ√

1 − cos2 θ

)

ê1 +
sin t√

1 − cos2 θ
Ê2 (12.21)

where ê1 and Ê2 are non-orthogonal unit vectors, �e1 · Ê2 = cos θ and 0 ≤ t ≤ 2π.

Parametric equations for a great circle

Consider two points on the surface of the unit sphere with surface coordinates

(θ1, φ1) and (θ2, φ2). These surface points can also be represented in Cartesian coordi-

nates by vectors from the origin to each of the surface points on the sphere. These

vectors are written

�r1 = sin θ1 cos φ1 ê1 + sin θ1 sin φ1 ê2 + cos θ1 ê3

�r2 = sin θ2 cos φ2 ê1 + sin θ2 sin φ2 ê2 + cos θ2 ê3

Since the sphere is a unit sphere the above vectors are unit vectors and one can

verify that �r1 · �r1 = �r2 · �r2 = 1 .
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Figure 12 -5. Vectors �r1, �r2 from origin to surface of sphere.

Note the following

(i) Two known points on the surface of the sphere together with the origin of

the sphere gives three points which determine a plane. The intersection of this plane

with the sphere produces a great circle.

(ii) The cross product �r1 × �r2 = �N is a normal vector to this plane and can be

used to determine the equation of the plane.

(iii) The great circle of the sphere lies in the plane of the vectors �r1 and �r2.

(iv) In the plane of the great circle, the vectors �r1 and �r2 can be used as a set of

non-orthogonal base vectors to represent the vector equation for the great circle as

�r = �r(t) =

(

cos t − sin t
cos θ√

1 − cos2 θ

)

�r1 +
sin t√

1 − cos2 θ
�r2 (12.22)

Note that this equation has the same form as equation (12.21) with ê1 replaced by

�r1 and Ê2 replaced by �r2. The equation (12.22) produces the parametric equations

x = x(t) =f(t) sin θ1 cos φ1 + g(t) sin θ2 cosφ2

y = y(t) =f(t) sin θ1 sin φ1 + g(t) sin θ2 sinφ2

z = z(t) =f(t) cos θ1 + g(t) cos θ2

(12.23)

where f(t) = cos t−sin t

(

cos θ√
1 − cos2 θ

)

and g(t) =
sin t√

1 − cos2 θ
are functions which provide

the appropriate scaling associate with the non-orthogonal coordinate system. Note

the special case where θ = π
2
, then the equations (12.22) becomes equations (12.18)

and �r1 · �r2 = 0 indicating the vectors are perpendicular.
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Polar point

Every plane and sphere intersection produces a circle.

This circle has a polar point P associated with it such that

all the polar angles and arcs
�

PA =
�

PB =
�

PC associated with

the polar angles are equal. That is the planes 0AP , 0BP ,

0CP produce great circles producing equal arcs from P to

any points A, B, C on the circle of intersection and so all the

polar angles are equal.

The lune

The special case where two great circles intersect, the

resulting spherical surface is called a lune. The points A and

B are antipodal points1 and the surface area ADBCA defines

the lune. The arc
�

ACB can be thought of as being able

to rotate about the axis AB through the antipodal points.

The dihedral angle θ = ∠C0D of the planes defining the two

intersecting great circles can vary such that 0 ≤ θ ≤ 2π.

Let A� denote the area of the lune and let As denote the total surface area of the

sphere. As θ varies the area of the lune is proportional to the size of the dihedral

angle θ so one can write the proportion

A�

θ
=

As

2π
⇒ A�

θ
=

4πr2

2π
⇒ A� = 2θr2

or the surface area of the lune is given by

A� = Surface area lune = 2θr2

In the special case the sphere is a unit sphere, then the surface area is given by

A� = 2θ.

1 An antipodal point is an opposite point on a circle or sphere. They lie on the ends of a line through center of

circle or sphere.
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Spherical triangle Consider three great circles which intersect at surface

points A, B and C on the unit sphere as illustrated in the figure 12-6.

Figure 12 -6. Spherical triangle ABC

Whenever the three surface points A, B and C do not lie on the same great circle,

then the intersection of three great circles produces two spherical triangles. In all

future discussions we will only be interested in the smaller spherical triangle. The

points A, B, C on the surface are called the vertices of the spherical triangle ABC and

the arcs
�

AB = γ,
�

AC = β,
�

CB = α, representing smaller arcs from great circles and

define the sides of the spherical triangle. When the vertices are connected to the

center of the sphere a trihedral angle is formed. Note that because the sphere is a

unit sphere the arc lengths for the spherical triangle sides are equal to the face angles

of the trihedral angle and are measured in radians. The angular measure, in radians,

associated with the vertices A, B, C are defined by the dihedral angles associated with

the trihedral angle. By convention the length of any side of a spherical triangle on

a unit sphere is always less than π radians.
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Spherical polygons

Whenever three or more arcs of great circles

intersect to form closed convex loops, then a spher-

ical polygon results. The arcs of the great circles

are the sides of the spherical polygon. By connect-

ing the vertices of the polygon to the center of the

unit sphere one forms a polyhedral angle. The sides

of the spherical polygon are equal to the face angles

of the polyhedral angles.

The vertex angles of the spherical polygon are defined by the dihedral angles asso-

ciated with the polyhedral angle faces. All convex spherical polygons can be broken

up into connected spherical triangles and so we shall study only spherical triangles.

Polar spherical triangles

If �rA, �rB, �rC are vectors from the origin of the unit sphere to the vertices of the

spherical triangle ABC, then a trihedral angle is formed as illustrated. Examine the

cyclic rotation of the cross products of these vectors

�N 1 =�rA × �rB is vector ⊥ to face 0AB.

�N 2 =�rB × �rC is vector ⊥ to face OBC.

�N 3 =�rC × �rA is vector ⊥ to face OCA.

Extending these vectors to intersect with the unit sphere, they can be used to

determine points A′, B′, C ′ on the unit sphere which are vertices of a new spherical

triangle A′B′C ′ called the polar spherical triangle associated with the spherical tri-

angle ABC. Another way of producing the polar spherical triangle is as follows.

(i) Arc
�
AB is part of a great circle centered at the origin of the unit sphere.

(ii) The line perpendicular to this great circle which passes through the origin

intersects the sphere at two opposite points called antipodal points. Antipodal points

lie on opposite ends of a spheres diameter.

(iii) The antipodal point lying on the same side of the plane as the third vertex

C is denoted C ′.

(iv) In a similar fashion one can examine the great circles through the arcs
�
BC

and
�

CA and determine their poles A′ and B′.



519

(v) The spherical triangle A′B′C ′ is called the polar triangle associated with

spherical triangle ABC.

Still another way to view spherical triangle ABC is to assume that each vertex

A, B and C is a pole point associated with a great circle.

Figure 12 -7. Construction of polar spherical triangle A′B′C ′

Each vertex of the spherical triangle ABC is considered as a pole associated with

a great circle. The three great circles created intersect at the points A′, B′, C ′ and

the shorter geodesics of these great circles form the polar triangle A′B′C ′.

One can show that if polar triangle A′B′C ′ results from spherical triangle ABC,

then polar triangle ABC results from spherical triangle A′B′C ′. That is, see figure

12-7, if vertex B is the pole of
�

A′C ′ and vertex C is the pole of
�

A′B′ , then vertex A′

is a quadrant distance from arc
�

BC , so vertex A′ is a pole of arc
�

BC . In a similar

fashion one can argue that B′ is a pole of arc
�
AC and C ′ is a pole of arc

�
AB .

Angle relation between polar triangles

Todhunter2 showed that the spherical angles and

sides of polar triangles are related by the

equations

a′ =π − A, b′ = π − B, c′ = π − C

A′ =π − a, B′ = π − b, C ′ = π − c
(12.24)

with all measures in radians. The equations (12.24)

give a definite relationship between polar triangle sides

and angles.

2 Isaac Todhunter (1820-1884) an English mathematician.
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Extend the sides
�

AB and
�

AC to intersect the side
�

B′C ′ at the points D and E as

illustrated above. Note that each spherical triangle is a polar triangle of the other

and consequently the arcs
�

B′E and
�

DC ′ are both π
2

radians because B′ is a pole of

side
�

ACE and C ′ is a pole of side
�

ABD . Therefore

�

B′E +
�

DC ′ = π (12.25)

radians. Examine the above polar triangles and observe that

�

B′E =
�

B′D +
�

DE and
�

DC ′ =
�

DE +
�

DE ′ (12.26)

which allows one to express equation (12.25) in the form

�

B′D +
�

DE +
�

EC ′

︸ ︷︷ ︸

a′

+
�

DE
︸︷︷︸

A

= π (12.27)

which demonstrates the first of Todhunters results. The other results are derived in

a similar fashion.

Special case

Given a right spherical triangle having minor arcs

of a great circle for each side of the triangle, then one

can always extend two of the sides of the triangle to

have these sides meet to form a lune as illustrated

on the left. This lune then is composed of two right

spherical triangles �ABC and A′BC. If one is given

the spherical angle α and side
�
BC and one is asked to

find other parts of the right spherical triangle, then an

ambiguity arises because the spherical angles ∠A = α and ∠A′ = α are the same.

Consequently, two spherical triangles can be formed with the given information. If

the original spherical triangle is labeled as �ABC and the other spherical triangle

of the lune is labeled �A′B′C ′ where
�

B′C ′ =
�

BC , then the following relations exits

between the sides of these two spherical triangles.

B′ = π − B, b′ = π − b, c′ = π − c
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A special case of the above situation arises whenever an isosceles spherical tri-

angle is divided into two symmetric right spherical triangles by constructing an arc

from the vertex of the isosceles triangle to the base of the triangle.

Spherical triangles and trihedral angles

In order to have a proper spherical triangle

ABC, the sides of the spherical triangle have to be

the smaller arcs of great circles. By connecting the

surface vertices of the spherical triangle with lines

to the origin of the unit sphere, one creates the tri-

hedral angles a = ∠C0B, b = ∠C0A, c = ∠A0B.

Recall that the arc length s =
�

AB associated with a circle of radius r is given

by s = rθ, where θ = ∠A0B is the central angle associated with the arc length. In

the special case the radius is r = 1, then the arc length is s = c = θ. Therefore, each

of the trihedral angles associated with the spherical triangle must equal the sides of

the spherical triangle so that
�

AB = c,
�

BC = a,
�

CA = b. Each of these angles must be

less than π radians.

One of the properties associated with the tri-

hedral angles is that the sum of any two face angles

of a trihedral angle is always greater than the third

face angle. For example, to show a + b > c one can

proceed as follows. Examine the graph of a cosine

function as illustrated.

Observe that for 0 ≤ x ≤ π the cosine function is continuously decreasing, there-

fore if a + b > c, then cos c > cos(a + b). So instead of proving a + b > c for trihedral

angles we will prove cos c > cos(a + b) over the interval 0 to π, because this is easier to

prove.
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Use the cosine expansion formula and write

what we are trying to prove, namely

cos c > cos a cos b − sina sin b

and note if the origin of the unit sphere is labeled

0, and �A, �B, �C are labeled as vectors from the origin

to the surface points A, B, C, then one can employ

the definitions of dot and cross products to write

cos b =
�A · �C

| �A|| �C |
, cos c =

�A · �B

| �A|| �B |
, cos a =

�B · �C

| �B || �C |
, sin b =

| �A × �C |
| �A|| �C |

, sin a =
| �B × �C |
| �B || �C |

and note the sphere is a unit sphere so that | �A| = | �B | = | �C | = 1.

Recall the vector identity from chapter 10

( �A × �B) · ( �C × �D) = ( �A · �C )( �B · �D) − ( �A · �D)( �B · �C ) (12.28)

which can be expressed in the form

( �A · �D)( �B · �C ) = ( �A · �C )( �B · �D)− ( �A × �B) · ( �C × �D) (12.29)

Write the identity (12.29) in the special case where one replaces �D = �B and �B = �C

to obtain

( �A · �B)( �C · �C ) = ( �A · �C )( �C · �B) − ( �A × �C ) · ( �C × �B) (12.30)

Using the inequality

|a − b| ≥ ||a| − |b||

one can show

|( �A · �B)( �C · �C )| =|( �A · �B)( �B · �D) − ( �A × �C ) · ( �C × �B)|

≥| �A · �B || �B · �C | − | �A × �C || �C × �B |

to obtain

cos c ≥ cos b cosa − sin b sina = cos(a + b)

the inequality holding only in the case the vectors �A, �B, �C are coplaner. Similar

arguments apply to all face angles of the trihedral angle and so one can say the sum

of any two face angles of a trihedral angle is always greater than the third face angle.
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In terms of spherical triangles one can state that –Each side of a spherical triangle

is less than the sum of the other two sides.

Shortest distance between points on sphere

The shortest curve between two points on a sphere is

along the minor arc of a great circle joining the points. To

prove this assertion let A and B denote two points on a

sphere with the arc
�

AB produced by a great circle passing

through the points A and B. Select any other path (the red

curve) on the surface of the sphere which connects A to B.

If the point C is on this path, then one can construct the great circle arcs
�
AC and

�

CB . This creates the spherical triangle ABC and so one can state that

�

AB <
�

AC +
�

CB

since each side of a spherical triangle must be less than the sum of the other two

sides. If the red line coincides with the sides of the triangle the assertion is proven.

If the red curve does not coincide with the sides of the spherical triangle, then

select a point D on the red curve which is not on the arcs
�

AC and
�

CB . Create the

great circle arcs
�

AD and
�

DC to form another spherical triangle. One can then write
�

AC <
�

AD +
�

DC . Therefore
�

AB <
�

AD +
�

DC +
�

CB

Continuing in this fashion an inequality can be constructed showing
�
AB is the short-

est curve between the given points.

Sum of face angles of convex polyhedral angle

Consider unit vectors ê1, ê2, ê3 situated at the origin of a three dimensional

coordinate system. Let triangle �A0B with angles α0, β0, γ0 lie in the plane of the

ê1, ê2 vectors and let the origin 0 move in the ê3 direction a distance h > 0 to point

C to form triangle �ABC in three dimensional space with angles α, β, γ.
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Figure 12 -8. Two dimensional triangle changing to three dimensional triangle

Show γ < γ0 for all values of h > 0. To show this, construct the vectors �r2 and �r3 in

the ê1, ê2 plane together with the vector �r1 = �r2 + h ê3 in three dimensional space.

Calculate the dot products �r2 · �r3 and �r1 · �r3 and show

�r2 · �r3 = |�r2||�r3| cosα0 and �r1 · �r3 = |�r1||�r3| cosα

Note the �r1 · �r3 = (�r2 + h ê3) · �r3 = �r2 · �r3 so that one can conclude

|�r2||�r3| cosα0 = |�r1||�r3| cosα or cosα =
|�r2|
|�r1|

cos α0 (12.31)

If the vector �r2 is fixed and |�r1| increases, then cosα decreases and α increases. A

similar type analysis shows that as h increases, then the angle β increases.
Therefore, for h > 0 we have α > α0 and β > β0.

We know that in every planar triangle the sum of

the interior angles is π radians and so we can write

α0 + β0 + γ0 = π and α + β + γ = π

If α + β > α0 + β0 = π− γ0, then α + β + γ > α0 + β0 + γ.
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This implies α0 + β0 + γ < π or π − γ0 + γ < π ⇒ γ < γ0

We can now use the above result to show that the sum of the face angles of any

convex polyhedral angle is less than 2π radians. Let P denote the center of the base

polygon and construct lines from P to each vertex of the polygon as illustrated in

the accompanying figure with only five vertices.

If the polygonal base has n-sides, let the

central angles surrounding point P be denoted

γ10, γ20, . . . , γn0 and label the face angles of the con-

vex polyhedral angle as γ1, γ2, . . . , γn. We have previ-

ously demonstrated that the following inequalities

must hold for each triangular face

γ1 < γ10, γ2 < γ20, . . . , γn < γn0

so that by addition

γ1 + γ2 + · · ·+ γn < γ10 + γ20 + · · ·+ γn0 = 2π

since the sum of the angles surrounding point P

equals 2π radians.

This demonstrates the fact that the sum of the face angles of any convex poly-

hedral angle is less than 2π radians. An equivalent statement is that the sum of the

sides of a spherical polygon is less than 2π radians.

Sum of interior angles of spherical triangle

The two previous results can now be used to

show that the sum of the angles of a spherical trian-

gle must be greater than π radians and less than 3π

radians. For the spherical triangle illustrated one

must show

π < ∠A + ∠B + ∠C < 3π (12.32)

This can be accomplished by first constructing the

associated polar triangle and recalling that
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∠A +
�

B′C ′ = π, ∠B +
�

A′C ′ = π, ∠C +
�

A′B′ = π

so that by addition

∠A + ∠B + ∠C +
�

B′C ′ +
�

A′C ′ +
�

A′B′ = 3π (12.33)

Here the arcs
�

B′C ′ ,
�

A′C ′ ,
�

A′B′ are the same as the face angles associated with the

spherical triangle �A′B′C ′ trihedral angle. We have previously shown the sum of

these face angles must be less than 2π so one can write

�

B′C ′ +
�

A′C ′ +
�

A′B′ < 2π (12.34)

also one can write the inequality

�

B′C ′ +
�

A′C ′ +
�

A′B′ > 0 (12.35)

Recall that when unequals are subtracted from equals, then the results are unequal

in the reverse order. Subtraction of (12.34) from (12.33) shows that

∠A + ∠B + ∠C > π

and subtraction of (12.35) from (12.33) shows that

∠A + ∠B + ∠C < 3π (12.36)

Therefore one can write

π < ∠A + ∠B + ∠C < 3π (12.37)

which shows that the summation of the interior angles of a spherical triangle must

lie somewhere between π and 3π radians.

Spherical excess

The quantity ε defined by

ε = A + B + C − π (12.38)

is called the spherical excess and represents the difference between a summation of

the interior angles of a spherical triangle and the summation of the interior angles of

a plane triangle. The spherical excess will be used to calculate the area of a spherical

triangle.
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Surface area of spherical triangle

To demonstrate that the surface area of spherical triangle �ABC is equal to the

spherical excess one can define

SABC = Surface area of spherical �ABC

and then show

SABC = (A + B + C − π) = ε

Figure 12 -9. Diagram for determining surface area of spherical triangle �ABC

Observe in figure 12-9 the total surface area of the sphere is Stotal = 4πr2. In the

figure 12-9 think of the great circle through the points B and C (green great circle) as

an equator which divides the sphere in half. The area of the lower half of the sphere

is then given by Shemi = 2πr2. Let the lower hemisphere be divided up into many
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spherical triangles whose surface area we know will add up to 2πr2. For example,

SCAB + SCAB′ =lune with vertex B, where B, B′ are antipodal points

with area of lune ABB′ =2Br2 (12.39)

SABC + SB′C′A =lune with vertex A, where A, A′ are antipodal points

with area of lune AAA′ =2Ar2 (12.40)

SABC + SBAC′ =lune with vertex C, where C, C ′ are antipodal points

with area of lune ACC′ =2Cr2 (12.41)

where A, B, C are the dihedral angles which define the interior angles of the spherical

triangle.

An examination of figure 12-9 shows SABC = SA′B′C′ by symmetry so that addition

of the equations (12.39), (12.40), (12.41) gives the result

3SABC + SCAB′ + SB′C′A + SBAC′ = 2(A + B + C)r2 (12.42)

which can be written as

2SABC + SA′B′C′ + SCAB′ + SB′C′A + SBAC′

︸ ︷︷ ︸

2πr2

= 2(A + B + C)r2 (12.43)

The surface areas SA′B′C′ + SCAB′ + SB′C′A + SBAC′ = 2πr2 because this surface area

covers the lower hemisphere. Consequently the equation (12.43) can be written as

2SABC + 2πr2 = 2(A + B + C)r2 or SABC = (A + B + C − π)r2 (12.44)

This demonstrates that the surface area of a spherical triangle is equal to the spher-

ical excess times the radius squared. In the special case the sphere is a unit sphere

the equation (12.44) becomes

SABC = Surface area of spherical �ABC = (A + B + C − π) = ε (12.45)

which reads that the surface area is equal to the spherical excess in radians.



529

Introduction to spherical trigonometry

Spherical trigonometry examines the rela-

tions between the angles and sides of a spherical

triangle in relation to various trigonometric func-

tions. Let spherical triangle �ABC lie on a unit

sphere with �A, �B, �C unit vectors from the origin

of the sphere to the respective vertices as illus-

trated in the accompanying figure. One can make

use of the definitions for the vector dot and cross

products to show

�A · �B =cos c

�B · �C =cos a

�A · �C =cos b

| �A × �B | =sin c

| �B × �C | =sin a

| �C × �A| =sin b

(12.46)

since the vectors �A, �B, �C are unit vectors.
Note also that the arc lengths on the great circles are given by s = rθ and in

the special case r = 1, then the central angle also equals the arc length in radians.

Consequently, one can write a =
�
BC , b =

�
AC , c =

�
AB .

The cosine identities for spherical trigonometry

The equations for the planes defining the dihedral angles, which are used to

define the spherical triangle angles, can be calculated using the normal vectors to

these planes. The normal vectors can be calculated using the vector cross product

notation.
normal vector to plane A0C �N 1 = �C × �A

normal vector to plane B0C �N 2 = �C × �B

so that the dot product �N 1 · �N 2 defines the dihedral angle C since

�N 1 · �N 2 = | �N 1|| �N 2| cosC =
(

| �C || �A| sin b
)(

| �B || �C | sina
)

cosC = sin a sin b cosC (12.47)

Using the vector identity (10.39) one can verify

�N 1 · �N 2 = ( �C × �B) · ( �C × �A) = ( �C · �C )( �B · �A) − ( �C · �A)( �B · �C ) = cos c − cos b cosa (12.48)

Things equal to the same thing are equal to each other so one can equate equations

(12.47) and (12.48) to obtain

cos c − cos b cosa = sina sin b cosC (12.49)
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which relates spherical triangle angle C with the spherical triangle sides a, b, c.

Note that equation (12.49) has the cyclic

property of rotating the symbols in the equation

to obtain a new equation. This is equivalent to

saying ”What has been done once can be done

again, but with a different set of symbols.” Per-

forming a cyclic rotation of the symbols in equa-

tion (12.49) one obtains the equations

cos a = cos b cos c + sin b sinc cos A

cos b = cos c cosa + sin c sina cos B

cos c = cosa cos b + sin a sin b cosC

(12.50)

These equations are identities known as the cosine rules for spherical trigonometry.

They are used to calculate the spherical triangle angles if the sides of the triangle are

known. All other trigonometric relations for spherical triangles can be derived from

the identities (12.50). The identities in equations (12.50) also apply to the polar

triangle �A′B′C ′ associated with the spherical triangle �ABC so that one can write

the equations (12.50) using primed variables. The new equations in the primed

variables can then be rewritten using the polar triangle angle relations from the

equations (12.24) to obtain another cosine rule for spherical triangles. For example,

write the first equation in (12.50) in terms of the polar angle primed variables to

show

cos a′ = cos b′ cos c′ + sin b′ sin c′ cos A′ (12.51)

Now use the equations (12.24) to express equation (12.51) in the form

cos(π −A) = cos(π − B) cos(π −C) + sin(π − B) sin(π − C) cos(π − a)

which simplifies to − cosA = cos B cos C − sin B sin C cos a or

cos A = − cosB cos C + sinB sin C cosa (12.52)

Applying a cyclic rotation of symbols to the variables in equation (12.52) one finds

cos A =− cos B cos C + sinB sinC cos a

cos B =− cos C cos A + sinC sin A cos b

cos C =− cos A cosB + sinA sinB cos c

(12.53)

giving another set of cosine rules which are used to obtain the spherical triangle

sides if the angles are known.
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The sine rule for spherical trigonometry

By definition

| �N 1 × �N 2| = |( �C × �A) × ( �C × �B )| = | �C × �A|| �C × �B | sinC = sin b sina sinC (12.54)

One can employ the vector identities 10.35 to 10.40 to show

|( �C × �A) × ( �C × �B)| = | �C [ �B · ( �C × �A)] − �B [ �C · ( �C × �A)| = | �A · ( �B × �C )| (12.55)

where we have used the cyclic property of the scalar triple product to calculate the

dot product �C · ( �C × �A) = �A · ( �C × �C ) = 0 and also the fact that | �C | = 1 because it is a

unit vector. Equating the equations (12.54) and (12.55) one finds

sin C =
| �A · ( �B × �C )|

sina sin b
⇒ sin C

sin c
=

| �A · ( �B × �C )|
sin a sin b sinc

(12.56)

The previous arguments can also be applied to the spherical angles A and B, which is

equivalent to performing a cyclic rotation applied to the symbols in equation (12.56)

to obtain the sine rule for spherical triangles

sin A

sin a
=

sin B

sin b
=

sinC

sin c
=

| �A · ( �B × �C )|
sin a sin b sin c

(12.57)

where we have applied the cyclic properties of the triple scalar product to obtain

the above result.

Cotangent Rule for spherical trigonometry

The cotangent formulas, sometimes called the

four-part formulas, are based upon one knowing

four consecutive parts of a spherical triangle. If

one moves counterclockwise about a spherical tri-

angle one can write the appearance of angles and

sides in a cyclic fashion as

AcBaCbAcBaCbAcBaCb . . . (12.58)

Select any four consecutive terms from the pattern given by equation (12.58) for

example, say one selects CbAc. The four consecutive symbols selected have inner

terms and outer terms as illustrated.
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The cotangent rule for writing out the cotangent formulas is given by3

cos

(

inner

side

)

cos

(

inner

angle

)

= cot

(

outer

side

)

sin

(

inner

side

)

− cot

(

outer

angle

)

sin

(

inner

angle

)

(12.59)

This produces the cotangent four-part formulas

CbAc cos b cosA =cot c sin b − cotC sinA

bAcB cos c cosA =cot b sin c − cotB sinA

AcBa cos c cosB =cota sin c − cot A sinB

cBaC cos a cosB =cot c sina − cot C sin B

BaCb cos a cosC =cot b sina − cot B sin C

aCbA cos b cosC =cota sin b− cot A sinC

(12.60)

The bAcB formula from equations (12.60) is derived as follows. Start with the

cosine identities from equations (12.53) and the sine identities from equations (12.57)

and write

cos b = cos c cosa + sin c sina cosB

and substitute for cos a to show

cos b = cos c (cos b cos c + sin b sin c cosA) + sin a
cos B

sin B
[sin c sinB]

and then simplify this equation to the form

cos b sin2 c = sin b sin c cos c cosA + sin a cotB[sin b sinC]

3 From Issac Todhunter (1820-1884), text on Spherical Trigonometry, available from the internet.
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Divide both sides by sin b sin c and simplify to obtain the desired result

cot b sinc = cos c cosA + cotB sin A

The other equations are derived in a similar manner.

Half-angle formula

In solving for the angles and sides of a spherical triangle associated with a

spherical triangle, the following half-angle formulas are often used.

Sides known

If the sides a, b, c of a spherical triangle are known, then one can define s =
a + b + c

2
as the semiperimeter of the spherical triangle and then show that

sin2

(

A

2

)

=
sin(s − b) sin(s − c)

sin b sin c

cos2
(

A

2

)

=
sin s sin(s − a)

sin b sin c

tan2

(

A

2

)

=
sin(s − b) sin(s − c)

sin s sin(s − a)

(12.61)

The above results can be derived from the trigonometric relations

cos2 A + sin2 A =1

cos2 A − sin2 A =cos 2A

2 sin2 A =1 − cos 2A

2 cos2 A =1 + cos 2A
(12.62)

The equations on the right-hand side of (12.62) are obtained by subtraction and

addition of the equations on the left-hand side of (12.62). In the equations on the

right-hand side of (12.62) replace A by A
2

and then substitute for cos A from the

equations (12.50) to show

2 sin2

(

A

2

)

=1 −
[

cos a − cos b cos c

sin b sin c

]

=
cos b cos c + sin b sin c − cos a

sin b sinc

=
cos(b− c)− cos a

sin b sin c

2 cos2
(

A

2

)

=1 +

[

cos a − cos b cos c

sin b sin c

]

=
cosa − cos b cos c + sin b sin c

sin b sin c

=
cosa − cos(b + c)

sin b sin c
(12.63)

Using the cosine formula

cos(α − β) − cos(α + β) = 2 sinα sin β (12.64)
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together with the relations
2α = a + b − c

2β = a − b + c

s − b =
a + c − b

2
= β

s − c =
a + b − c

2
= α

the left-hand side of equation (12.63) becomes

2 sin2

(

A

2

)

= 2
sin(s − b) sin(s − c)

sin b sin c
(12.65)

Using the same formula for the difference of two cosine functions together with

the relations
2α =a + b + c

2β =b + c − a

s − a =
b + c − a

2

s =
a + b + c

2

(12.66)

the right-hand side of equation (12.63) becomes

2 cos2
(

A

2

)

= 2
sin s sin(s − a)

sin b sin c
(12.67)

The tangent function is the sine function divided by the cosine function and

so the equations (12.65) and (12.67) can be used to calculate a result for tan2
(

A
2

)

.

These half-angle formulas can be summarized as

sin2

(

A

2

)

=
sin(s − b) sin(s − c)

sin b sin c

cos2
(

A

2

)

=
sin s sin(s − a)

sin b sin c

tan2

(

A

2

)

=
sin(s − b) sin(s − c)

sin s sin(s − a)

(12.68)
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A cyclic rotation of symbols will produce similar equations for

sin2

(

B

2

)

, cos2
(

B

2

)

, tan2

(

B

2

)

sin2

(

C

2

)

, cos2
(

C

2

)

, tan2

(

C

2

)

Angles known

If the angles A, B, C of the spherical triangle are known, then one can define

S =
A + B + C

2
and proceed as before to derive the half-angle relations

sin2
(a

2

)

=
− cos(S) cos(S −A)

sinB sin C
, cos2

(a

2

)

=
cos(S −B) cos(S − C)

sin B sinC

tan2
(a

2

)

=
− cosS cos(S − A)

cos(S − B) cos(S −C)

(12.69)

For example, in the relation 2 sin2
(a

2

)

= 1− cosa substitute from equation (12.53)

the relation

cos a =
cosA + cos B cosC

sin B sin C

and show
2 sin2

(a

2

)

=
sin B sin C − cosA − cos B cosC

sin B sinC

=
− cos(B + C) − cos A

sinB sin C

(12.70)

Using the formula for the sum of two cosine terms cos(α− β) + cos(α + β) = 2 cosα cos β

with α + β = B + C and α− β = A one can verify α = S and β = S −A so that equation

(12.70) can be expressed in the form

2 sin2
(a

2

)

= −2
cosS cos(S − A)

sin B sin C

which simplifies to the first equation in (12.69). The remaining equations of (12.69)

are derived in a similar fashion.

A cyclic rotation of the symbols in the equations (12.69) above will produce

equations for

sin2

(

b

2

)

, cos2
(

b

2

)

, tan2

(

b

2

)

sin2
( c

2

)

, cos2
( c

2

)

, tan2
( c

2

)
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Special right spherical triangles

In a spherical triangle there can be one, two or three right angles. In the accom-

panying figure the triangle �ABC has three right angles and is called a trirectangular

spherical triangle. The spherical triangle �DBC has two right angles and is called a

birectangular spherical triangle. If the vertex C moves off the z-axis, there results a

spherical triangle with only one right angle which is called a right spherical triangle.

Figure 12 -10. Right spherical triangles

One can sketch tangent lines to the spherical triangle sides to better illustrate the

dihedral angles which define the angles of the spherical triangle.

A spherical triangle has six parts, AcBaCb con-

sisting of angles and sides. The spherical triangle

can be completely solved if any three of the six

parts are known. A right spherical triangle needs

only two known parts, in addition to the right an-

gle, to completely determine the remaining parts.

In the special case angle C is a right angle in any of the equations (12.50),

(12.53), (12.57), then one can employ trigonometry and algebra to simplify these

equations to the following ten equations which are used to determine the remaining

parts of a right spherical triangle when two parts and the right angle are known.

cos c =cos a cos b

sin a =sin A sin c

sin b =sin B sin c

tan a =tanA sin b

tan b =tanB sin a

tan b =cos A tan c

tan a =cos B tan c

cos A =sin B cos a

cos B =sin A cos b

cos c =cotA cot B

(12.71)



537

Napier’s rules

John Napier4 felt that it was unnecessary to memorize the set of equations

(12.71) used for the solution of right spherical triangles. He devised the following

method for obtaining these 10 equations.

Figure 12 -11.

Napier’s labeling

Given a spherical right triangle one can label the sides

with 5 labels as illustrated in the figure on the right.

Select any one of these 5 labels and call it the middle

label. The labels on each side of the middle label are

then called the adjacent labels and the remaining labels

are called the opposite labels.

Napier’s rule 1
The sine of any middle label is equal to the product

of the tangents of the adjacent labels.

Napier’s rule 2
The sine of any middle label is equal to the product

of the cosines of the opposite labels.

For example, using rule 1 one can write

sin(90 −B) = tana tan(90 − c) ⇒ cos B = tana cot c or tan a = cos B tan c

sin a = tan b cotB ⇒ tan b = tan B sin a

Using rule 2 one can write

sin b = cos(90 − c) cos(90− B) or sin b = sin c sinB

sin(90 −A) = cos(90 −B) cos a or cosA = cosa sin B

4 John Napier (1550-1617) A Scottish mathematician well known for development of logarithms.
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Projection of area

Recall that one can approximate an area by slicing

it up into many rectangles and writing the approx-

imation A ≈
∑n

i=1 �iwi where �i is the length and wi

is the width of the ith rectangle. The limiting sum

A = limn→∞

∑n

i=1 �iwi then gives the exact area.

Consider the situation when two planes P, P ′ in-

tersect to produce the line EF and dihedral angle θ.

A figure in plane P is then projected onto the plane

P ′. Note that lines in plane P which are perpendicular

to EF have the projection � cos θ while lines parallel to

EF have the same length when projected to the other

plane. For example, in the figure illustrated one finds

AB = A′B′ and C ′D′ = CDcos θ.
Let A denote the area of the figure in plane P which

becomes the area A′ when projected onto plane P ′. One

can then show A′ = A cos θ. To prove this assertion make

parallel slices where each slice is perpendicular to the

line of intersection EF of the two planes. These parallel

lines slice the area to produce rectangles so that one can

write A = limn→∞

∑n

i=1 �iwi Each line �i when projected

to the other plane becomes �i cos θ and the projected

area is A′ = limn→∞

∑n

i=1 �iwi cos θ = A cos θ.

Example 12-1. If the area in plane P is the circle πa2, then the distance one-

half AB is the radius a of the circle. When this distance is projected onto the plane

P ′ the projected distance also has length a. The other diameter GH is perpendicular

to EF and so when projected onto the plane P ′ becomes GH cos θ or the radius a = GH
2

becomes GH
2

cos θ. Define b = GH
2

cos θ = a cos θ, then the area of the circle πa2 when

projected onto plane P ′ becomes the ellipse with area πa2 cos θ. But a cos θ = b so the

area of the ellipse
x2

a2
+

y2

b2
= 1 is πab.
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Solid Angle

In the study of plane geometry an angle θ, in ra-

dians, was defined by using the dimension-less ratio
s

r
where

s =arc length on circumference of a circle

r =radius of circle

θ =
s

r
in radians

where one radian is defined as the angle resulting when

s = r. Observe that as the arc length s varies from 0

to 2πr, then the angle θ varies from 0 to 2π radians.

In solid geometry a solid angle Ω in units called

steradians (sr), is defined using the dimension-less ra-

tio
S

r2
, where

S =Surface area cut by a general cone with vertex

at the center of sphere.

r =radius of sphere

Ω =
S

r2

As the surface area S varies from 0 to 4πr2, the solid angle Ω varies from 0 to

4π steradians. Here one steradian is defined as the solid angle formed when the

spherical surface area S equals the sphere radius squared. The solid angle Ω is

used in many areas of science, physics and engineering. It arises in deriving many of

the basic equations used in physics. It is used in radiation therapy for determining

radiation in a given direction measured in steradians. It occurs in calculating cross

sections used in radiation scattering. It arises in the study of flux of electric and

magnetic fields, weather radar, light intensity and many other areas of study where

angular measure in three dimensions is required.

Note that if one knows the value of Ω, then the surface area of the sphere cut

by a general cone is given by S = Ω r2.
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Exercises

� 12-1.

Find the volume of the barn illustrated.

� 12-2. Name three special cases of a prismatoid which have previously been inves-

tigated. Does the formula

V =
1

6
h (Bu + B� + 4M)

hold in these special cases?

� 12-3. Use the prismatoid formula and find the volume of a prism and a pyramid.

� 12-4. Use the prismatoid formula and find the volume of a cone and a cylinder.

� 12-5. Assume a prismatoid with regular polygon upper base Bu and side su having a

lower base B� which is a similar regular polygon to the upper base with corresponding

sides s�.

(a) Show the corresponding sides of the middle figure M is 1
2
(su + s�)

(b) Show
Bu

M
=

s2
u

[1
2
(su + s�)]2

(c) Show
B�

M
=

s2
�

[1
2
(su + s�)]2

(d) Calculate 4M in terms of
√

BuB�

(e) Use the prismatoid formula to calculate the volume associated with the frustum

of a pyramid.

� 12-6. Use the prismatoid formula to find the volume of a sphere with radius r.

� 12-7. Use Napier’s rules to verify the 10 equations (12.71).
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� 12-8. Spherical trigonometry and navigation

Even though the earth is not an exact sphere,

one can use spherical trigonometry to find the

distance between two points on the earths sur-

face. For example, to find the distance between

London (51.507◦ N, 0.128◦ W ) and New York City

(40.713◦ N, 74.001◦ W ) one can use the spherical

trigonometry formula

cos c = cos a cos b + sina sin b cosC

where

angular difference between north pole and London is

a =90◦ − 51.507◦ = 38.493◦

angular difference between north pole and New York City

b =90◦ − 40.713◦ = 49.287◦

difference in longitude between cities

∠C =74.001◦ − 0.128◦ = 73.873◦

so that

cos c = cos
(

38.493 ∗ π

180

)

cos
(

49.287 ∗ π

180

)

+sin
(

38.493 ∗ π

180

)

sin
(

49.287 ∗ π

180

)

cos
(

73.873 ∗ π

180

)

which computes to cos c = 0.641568 which implies c = arccos(0.641568) = 50.091◦. On

the earths surface the conversion factor between degrees and miles is approximately5

1◦ = 69 miles. Using this conversion factor one finds c corresponds to the distance

50.091◦ ∗ 69 miles
◦

= 3456.279miles as the approximate distance between London and

New York City.

5 The distance of 1◦ latitude varies over the surface of the earth. The distance of 1◦ longitude depends upon

what latitude you are at. The approximate conversion is

1◦ longitude = cos(degree latitude)times(length of 1◦ at the equator)

At the equator 1◦ ≈ 69.172 miles.
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The following are latitude and longitude locations for various cities. Pick two

cities (different from the example above) and use spherical trigonometry to find the

distance between them.

City Latitude Longitude

Los Angeles 34.052◦ N 118.244◦ W

Tokyo 35.690◦ N 139.692◦ E

Sydney 33.869◦ S 151.209◦ E

Calcutta 22.573◦ N 88.364◦ E

City Latitude Longitude

New York City 40.713◦ N 74.001◦ W

London 51.507◦ N 0.128◦ W

Moscow 55.756◦ N 37.617◦ E

Rio de Janeiro 22.907◦ S 43.173◦ W

� 12-9.

Given the ellipsoid x2

a2 + y2

b2
+ z2

c2
= 1. Use the pris-

matoid formula to find the volume of an ellipsoid.

Hint: See the example 12-1.

� 12-10.

(a) Construct a cylinder of height 2r enclosing a sphere of radius r. Find volume of

sphere in terms of the volume of the cylinder and then find the area of the sphere

in terms of the lateral area of the cylinder

(b) Construct a cone of height 2r inside a cylinder with base πr2 and height 2r. Find

volume of cone in terms of the volume of the cylinder. Find volume of cone in terms

of the volume of a sphere.

(c) If a sphere is inscribed within a cube, then find the ratio of volume of sphere

divided by volume of cube. Show this ratio is approximately one half.

� 12-11. If V is the volume of a sphere and S denotes its surface area, then show

that S =
3
√

36πV 2

� 12-12.

Prove that if two same size spheres intersect, then

the plane of intersection is perpendicular to the line

connecting the sphere centers.
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� 12-13.

A bowling ball is inserted into a watertight box

where all sides of the box touch the bowling ball. The

space inside the box will hold 1 gallon of water. What

is the volume of the bowling ball and what is the size

of the box?

Hint: 1 US Gallon = 231 cubic inches.

� 12-14.

An optimization problem in geometry is to find either the maximum number of

geometric objects that can be packed into a given container or to find how to pack

a given number of geometric objects into as few containers as possible.

(a) Find the smallest square that will hold 6 unit circles.

(b) Find the smallest circle that will hold 6 unit squares.

(c) Find the smallest equilateral triangle that will hold 5 unit circles.

(d) Find the smallest cube that will hold 5 unit spheres.

� 12-15. Find the smallest circle which will hold n unit squares where n has the

values

Number of squares Radius of smallest circle

1

2

3

4

5

� 12-16. Let r denote the radius of a sphere with a spherical triangle having angles

of 60◦, 80◦ and 85◦. Find the area of the triangle.
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� 12-17.

Given three parallel planes p1, p2, p3 with the dis-

tance h
2

apart as illustrated in the accompanying fig-

ure. Any line from point 0 in plane p1 to a point in

plane p2, when extended will intersect plane p3. If you

move the point in plane p2 around to form a simple

closed curve with area A one generates a conical sur-

face between planes p1 and p2. By extending all lines

from 0 to plane p2 onto the plane p3 a dilatation is

performed creating a simple closed curve in plane p3

with area A′. The areas A and A′ are similar. You can

imagine the areas A and A′ to be similar shaped figures such as circles, triangles,

squares, etc.

(a) Show the plane areas satisfy
A

A′
=

1

4
(b) Show the large general cone has volume given by V = 1

3
A′h

(c) Show the volume of the general frustum between planes p2 and p3 is given by

Vfrustum = 7
24

A′h

(d) Check the above results in the special case A and A′ are area of circles.

(e) Check the above results in the special case A and A′ are area of squares.
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Geometry

Chapter 13

Additional Topics

One simply geometric concept that can be generalized to create a more compli-

cated topic is the following.

Pedal triangle

Select a point P inside or outside of a given triangle

�ABC and from the point P drop perpendicular lines

to each side of the given triangle �ABC as illustrated

in the figure on the right. Let the perpendicular lines

intersect the given triangle sides at the points A1, B1, C1

as illustrated. These intersection points define a new

triangle �A1B1C1 called the pedal triangle of point P .

A circle circumscribed about the pedal triangle is called the pedal circle.

The original triangle �ABC has a pedal triangle �A1B1C1 associated with the

point P called a first generation pedal triangle associated with point P . If the process

is repeated, one can form a pedal triangle associated with point P and triangle

�A1B1C1. This would produce a pedal triangle �A2B2C2 called a second generation

pedal triangle associated with the point P . By repeating this simple process one can

form second, third, fourth,. . . generation pedal triangles associated with the selected

point P .

In general the interior angles associated with each generation of pedal triangles

will all be different in comparison with the original triangle �ABC. However, the

following theorem has been discovered

Theorem

The third generation pedal triangle associated with the point P and the original

triangle are similar triangles.

This implies that the original, third, sixth,... generation pedal triangles are all

similar to one another. Similarly, one can state that the second, fifth, eighth,. . .

generation pedal triangles will all be similar to one another and so forth.
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The same thing can be done with quadrilaterals. Select a point P inside the

quadrilateral and drop perpendiculars to the sides to obtain intersection points or

vertices which define a first generation pedal quadrilateral. Repeating this process

one can construct second, third, fourth,. . . generation pedal quadrilaterals associated

with the point P .

Theorem

The fourth generation pedal quadrilateral associated with a point P and the

original quadrilateral will be similar quadrilaterals.

It turns out that the procedure of selecting a point P and then dropping per-

pendiculars to the sides of triangles and quadrilaterals can also be performed with

n-gons and one can show

Theorem

The nth generation pedal n-gon associated with a point P is similar to the orig-

inal n-gon.

Polygons and star polygons

One rule of construction for polygons is the trans-

formation of vertices from P → P ′ defined by a transla-

tion followed by a rotation through an angle θ. That is,

one can start with a unit line segment having an origin

and an endpoint. The line segment can be translated

one unit and then rotated counterclockwise through

an angle θ = 2π
n

where n is a positive integer. This produces a new starting point

where the process can be repeated. This repeated translation and rotation is re-

peated until the process starts to repeat itself. The result is a polygon having n

sides.

If the integer n is replace by a rational number greater than 2, say n = p
d

where

p, d are coprime with d > 1, then the angle of rotation is θ = 2π
n

= 2πd
p

and the

sides of the polygon begin crossing one another. The resulting polygons are called

star polygons. Familiar star polygons are the pentagram, hexagram, heptagram,

octagram, enneagram, decagram,. . .. The following are some selected star polygons.
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Figure 13 -1. Selected star polygons
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Schläfi1 introduced the notation {p/d} for representing star polygons where p

represents the number of lines used and d > 1 represents the number of rotations

before line comes back to its starting position. The integer d is called the density of

the polygon.

Assume one starts with the unit line segment from

(0, 0) to (1, 0) and applies the translation rotation con-

struction rule for polygons. For n = 5 one would obtain

the pentagon of density 1 by connecting the points

(1, 0)

(1 + cos θ, sin θ)

(1 + cos θ + cos 2θ, sin θ + sin2θ)

(1 + cos θ + cos 2θ + cos 3θ, sin θ + sin2θ + sin3θ)

(1 + cos θ + cos 2θ + cos 3θ + cos 4θ, sin θ + sin2θ + sin3θ + sin4θ)

(13.1)

where θ = 2π
5
.

In the case of star polygons one would connect the points

(1, 0)

(1 + cos θ, sin θ)

(1 + cos θ + cos 2θ, sin θ + sin 2θ)

(1 + cos θ + cos 2θ + cos 3θ, sin θ + sin 2θ + sin 3θ)

...

(1 +

p−1
∑

i=1

cos iθ,

p−1
∑

i=1

sin iθ)

(13.2)

where θ = 2π d
p
.

Many polygonal and star polygonal patterns can be found in the study of

two dimensional crystallography, x-ray diffraction, architecture, biology, chemistry,

physics, atomic physics and lattice structure.

Graph paper

The following is a presentation of four different types of graph paper for repre-

senting lines and curves in two-dimensions.

1 Ludwig Schläfi (1814-1895) A swiss mathematician who studied geometric figures.
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Cartesian equal spaced graph paper
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Polar graph paper
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Triangular or ternary graph paper
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Hexagonal graph paper
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There are many types of graph paper used in the sciences and engineering. The

previous examples are just a very small sampling from the large variety of graph

paper that is available.

Note that the polar coordinate graph paper has rays emanating from the origin

at equally spaced angular distances around the origin and then concentric circles

are constructed representing constant distances from the origin. In many cases the

types of graph paper one finds have been derived in order that one can use straight

lines in certain special circumstances.

Polar coordinates
Cartesian coordinates uses distances from two perpendicular lines to locate a

point. Another method to locate a point is to specify its distance r and direction θ

from a fixed point. This alternative representation (r, θ) for locating a point is called

a polar coordinate representation.

rectangular coordinates (x, y) polar coordinates (r, θ)

polar axis

x2 + y2 = ρ2 x = r cos θ,

tan θ = y
x

y = r sin θ
√

x2 + y2 = r
r = ρ

Figure 13 -3. Rectangular and polar coordinate systems

To construct a polar coordinate system one selects an origin for the polar co-

ordinates and labels it 0. Next construct a half-line 0X similar to the x-axis of the

rectangular coordinate system. This half-line is called the polar axis or initial ray

and the origin is called the pole of the polar coordinate system. By placing another

line on top of the polar axis and rotating this line counterclockwise about the pole

through a positive angle θ, measured in radians, one can create a ray emanating

from the origin at an angle θ as illustrated in the figure 13-4.

On polar coordinate graph paper rays are illustrated emanating from the origin

at equally spaced angular distances around the origin and then concentric circles



554

are constructed representing constant distances from the origin. A point in polar

coordinates is then denoted by the number pair (r, θ) where θ is the angle of rotation

associated with the ray and r is a distance outward from the origin along the ray.

The polar origin or pole has the coordinates (0, θ) for any angle θ. All points having

the polar coordinates (ρ, 0), with ρ ≥ 0, lie on the polar axis.

Figure 13 -4.

Construction of polar axes Figure 13 -5. Points (−r, θ) and (r, θ)

For a point (r, θ) in polar coordinates the quantity r is called the radius vector

and the quantity θ is called the vectorial angle. Counterclockwise rotations for θ

are considered as positive and clockwise rotations are considered as negative. Make

note of the following three facts.

1 The angle θ can be increased or decreased any multiple of 2π without changing

the point (r, θ).

2 Positions (−r, θ) and (r, θ + π) are different representations for the same point.

3 One can verify that the point (r, θ) in polar coordinates has multiple representa-

tions. For example

(r, θ) = [(−1)nr, θ ± 2nπ] for n = 0, 1, 2, 3, . . . (13.3)

Straight lines in polar coordinates

A straight line in polar coordinates having the slope-intercept form y = mx + b,

with b �= 0, can be converted to polar coordinates as follows. Make the transformation

x = r cos θ and y = r sin θ and then solve for r to obtain the polar form for the straight

line r =
b

sin θ − m cos θ
with b �= 0.
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A more general form for the straight line in polar

coordinates is to first find p the perpendicular distance

from the origin to the line �. This perpendicular dis-

tance is inclined at an angle α. The general point (r, θ)

on the line can then be determined by using trigonom-

etry on a right triangle to show cos(α − θ) = p
r
. The

equation of the line in polar coordinates is then

r = p sec(α − θ) (13.4)

Note that

(i) If the line passes through the origin, then it polar form is θ = c a constant,

−∞ < r < ∞.

(ii) The Cartesian line y = c a constant, has the polar form r = c sec(θ − π/2)

(iii) The Cartesian line x = c a constant, has the polar form r = c sec θ

Curves in polar coordinates

A polar curve having the form r as a function of θ written r = f(θ), may be

sketched by assigning values to θ and then calculating the value for r defined by the

function f(θ).
Example 13-1. Sketch the curve r = f(θ) = 3 sin θ − 2.

Solution Construct a table of values for the function of θ.

r r

θ degrees θ radians 3 sin θ − 2 θ degrees θ radians 3 sin θ − 2

0◦ 0 -2.00000 180◦ π -2.00000

15◦ π
12

-1.22354 195◦ 13π
12

-2.77646

30◦ π
6

-0.50000 210◦ 7π
6

-3.50000

45◦ π
4

0.12132 225◦ 5π
4

-4.12132

60◦ π
3

0.59808 240◦ 4π
3

-4.59808

75◦ 5π
12

0.89778 255◦ 17π
12

-4.89778

90◦ π
2

1.00000 270◦ 3π
2

-5.00000

105◦ 7π
12

0.89778 285◦ 19π
12

-4.89778

120◦ 2π
3

0.59808 300◦ 5π
3

-4.59808

135◦ 3π
4

0.12132 315◦ 7π
4

-4.12132

150◦ 5π
5

-0.50000 330◦ 11π
6

-3.50000

165◦ 11π
12

-1.22354 345◦ 23π
12

-2.77646

180◦ π -2.00000 360◦ π -2.00000
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Figure 13 -6. Graph of 3 sin θ − 2

As an exercise verify the following polar plots.

Points in polar coordinates

A point in polar coordinates is denoted by the number pair (r, θ) where θ is the

counterclockwise angle of rotation from the polar axis and a positive value for r is

a distance outward from the origin along the ray. The polar origin or pole has the

coordinates (0, θ) for any angle θ. All points having the polar coordinates (ρ, 0), with
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ρ ≥ 0, lie on the polar axis. Also note that a ray at angle θ can be extended to

represent negative distances along the ray. Points (−r, θ) can also be represented by

the number pair (r, θ + π) for positive r values.

Alternatively, one can think of a rectangular point (x, y) and the corresponding

polar point (r, θ) as being related by the equations

θ = arctan(y/x),

r =
√

x2 + y2,

x =r cos θ

y =r sin θ
(13.5)

Example 13-2.

To transform an equation from Cartesian coordinates to polar coordinates make

the substitutions x = r cos θ, y = r sin θ.

The equation of a circle centered at the origin with radius ρ is x2 + y2 = ρ2. In polar

coordinates this equation becomes r = ρ for all values of θ.

The general equation of a line is Ax + By = C. This equation becomes

Ar cos θ + Br sin θ = C or r =
C

A cos θ + B sin θ

Recall the normal form for equation of a straight

line in Cartesian coordinates is x cos α + y sin α = p.

In polar coordinates the equation of the line is

r cos θ cosα + r sin θ sin α = p which simplifies to

r cos(θ − α) = p or r = p sec(θ − α) (13.6)

The equation x2 + y2 − 2ax − 2by = 0 is a circle. Recall this can be written

(x2 −2ax+a2)+(y2 −2by+ b2) = a2 + b2 or (x−a)2 +(y− b)2 = a2 + b2. In polar coordinates

this equation is written r = 2a cos θ + 2b sin θ.
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Distance Between Two Points in the Plane

Figure 13 -7.

Distance between points

in polar coordinates.

If two points are given in polar coordinates

as (r1, θ1) and (r2, θ2), as illustrated in the fig-

ure 13-7, then one can use the law of cosines

to calculate the distance d between the points

since

d2 = r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2) (13.7)

Conic Sections
A general equation of the second degree has the form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (13.8)

where A, B, C, D, E, F are constants. All curves which have the form of equation (13.8)

can be obtained by cutting a right circular cone with a plane.

Recall that a right circular cone can be generated by two parallel congruent

circles with their centers aligned one over the other and a point V half-way between

the circles on the line connecting the circle centers. A line from the upper circle

circumference through point V to a point on the circumference of the lower circle is

called a generator of the cone. The set of all generators produces the right circular

cone.

The figure 13-8(b) illustrates a horizontal plane intersecting the cone in a circle.

The figure 13-8(c) illustrates a nonhorizontal plane section which cuts two opposite

generators. The resulting curve of intersection is called an ellipse. Figure 13-8(d)

illustrates a plane parallel to a generator of the cone which also intersects the cone.

The resulting curve of intersection is called a parabola. Any plane cutting both the

upper and lower parts of a cone will intersect the cone in a curve called a hyperbola

which is illustrated in the figure 13-8(e).
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Figure 13 -8. The intersection of right circular cone with a plane.

Conic sections were studied by the early Greeks. Euclid2 supposedly wrote four

books on conic sections. The Greek geometer Appollonius3 wrote eight books on

conic sections which summarized Greek knowledge of conic sections and his work

has survived the passage of time. Appollonius is also responsible for the names

parabola, ellipse and hyperbola.

Conic sections can be defined using either polar coordinates or Cartesian coordi-

nates as follows. Select a point f , called the focus, and a line D not through f . This

line is called the directrix. The set of points P satisfying the condition that the dis-

tance from f to P , call it r = Pf , is some multiple e times the perpendicular distance

from P to the directrix. Let d = PP ′ represents the perpendicular distance from the

point P to the directrix D, then the resulting equation for a conic section in polar

coordinates is obtained from the equation r = ed with the geometric interpretation

of this equation illustrated in the figure 13-9.

2 Euclid of Alexandria (325-265 BCE)
3 Appollonius of Perga (262-190 BCE)
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Figure 13 -9.

Defining a conic section.

The plane curve resulting from the polar

equation

r = ed (13.9)

is called a conic section with eccentricity e, focus

f and directrix D and if the eccentricity e satisfies

0 < e < 1, the conic section is an ellipse.

e = 1, the conic section is a parabola.

e > 1, the conic section is a hyperbola.

e = 0, the conic section is a circle.

Note that in addition to the focus and directrix there is associated with each

conic section the following quantities.

The vertex V

The vertex V of a conic section is the midpoint of the line from the focus

perpendicular to the directrix.

Axis of symmetry

The line through the focus and perpendicular to the directrix is called an

axis of symmetry.

Focal parameter distance 2p

This is the perpendicular distance from the focus to the directrix, where p

is the distance from the focus to the vertex or distance from vertex to directrix.

Latus rectum 2�

This is a chord parallel to a directrix and perpendicular to a focus which

passes between two points on the conic section. The latus rectum is used as a

measure associated with the spread of a conic section.

If � is the semi-latus rectum intersecting the conic section at the point where

x = p = d
2
, one finds r = � = ed = 2ep. Note that in general d = 2p + r cos θ so that the

ratio r
d

= e becomes
r

2p + r cos θ
= e or

r =
2ep

1 − e cos θ
=

�

1 − e cos θ
(13.32)

is the polar form for the equation of a conic section.
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Representing conic section curves

The conic section curves can be thought of as a collection of point (x, y) where

x and y are related in some fashion. The mathematical notation for representing a

set of points satisfying some condition is

C = { (x, y) | Condition satisfied by x and y }

which is read ” C is the set of points (x,y) such that the following condition is

satisfied.” These (x, y) values are plotted on Cartesian graph paper and the points

are connected by a smooth curve.

Parabola
The parabola can be defined as the locus of points (x, y) in a plane, such that

(x, y) moves to remain equidistant from a fixed point (x0, y0) and fixed line �. The fixed

point is called the focus of the parabola and the fixed line is called the directrix of

the parabola. The midpoint of the perpendicular line from the focus to the directrix

is called the vertex of the parabola.

In figure 13-10(b), let the point (0, p) denote the focus of the parabola symmetric

about the y-axis and let the line y = −p denote the directrix of the parabola. If (x, y)

is a general point on the parabola, then

d1 =distance from (x, y) to focus =
√

x2 + (y − p)2

d2 =distance from (x, y) to directrix = y + p

If d1 = d2 for all values of x and y, then

√

x2 + (y − p)2 = y + p or x2 = 4py, p �= 0 (13.11)

This parabola has its vertex at the origin, an eccentricity of 1, a semi-latus rectum

of length 2p, latus rectum of 2� = 4p and focal parameter of 2p.

The parabola is the set of points

C = { (x, y) | x2 = 4py }
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Figure 13 -10.

Parabolas symmetric about the x and y axes.

Other forms for the equation of a parabola are obtained by replacing p by −p

and interchanging the variables x and y. For p > 0, other standard forms for the

equation of a parabola are illustrated in the figure 13-11. In the figure 13-11 observe

the upward/downward and left/right opening of the parabola depend upon the sign

before the parameter p, where p > 0 represents the distance from the origin to the

focus. By replacing x by −x and y by −y one can verify the various symmetries

associated with these shapes.

Figure 13 -11.

Other forms for representing a parabola.
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Using the translation of axes equations, the vertex of the parabolas in the fig-

ure 13-11 can be translated to a point (h, k). These translated equations have the

representations

(x − h)2 =4p(y − k)

(x − h)2 = − 4p(y − k)

(y − k)2 =4p(x− h)

(y − k)2 = − 4p(x − h)
(13.12)

Also note that the lines of symmetry are also shifted.

One form for the parametric representation of the parabola (x−h)2 = 4p(y− k) is

given by

P = { (x, y) | x = h + t, y = k + t2/4p, −∞ < t < ∞ } (13.13)

with similar parametric representations for the other parabolas.

Use of determinants

The equation of the parabola passing through the three distinct points (x1, y1),

(x2, y2) and (x3, y3) can be determined by evaluating the determinant4

∣

∣

∣

∣

∣

∣

∣

y x2 x 1
y1 x2

1 x1 1
y2 x2

2 x2 1
y3 x2

3 x3 1

∣

∣

∣

∣

∣

∣

∣

= 0

provided the following determinants are different from zero.

∣

∣

∣

∣

∣

∣

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

∣

∣

∣

∣

∣

∣

�= 0, and

∣

∣

∣

∣

∣

∣

x1 y1 1
x2 y2 1
x3 y3 1

∣

∣

∣

∣

∣

∣

�= 0

Ellipse
The eccentricity e of an ellipse satisfies 0 < e < 1 so that for any given positive

number a one can state that

ae <
a

e
, 0 < e < 1 (13.14)

Consequently, if the point (ae, 0) is selected as the focus of an ellipse and the line

x = a/e is selected as the directrix of the ellipse, then in relation to this fixed focus

and fixed line a general point (x, y) will satisfy

4 Determinants and their properties are discussed in chapter 6.
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d1 =distance of (x, y) to focus =
√

(x − ae)2 + y2

d2 =⊥ distance of (x, y) to directrix = |x− a/e|

The ellipse can then be defined as the set of points (x, y) satisfying the constraint

condition d1 = ed2 which can be expressed as the set of points

E1 = { (x, y) |
√

(x − ae)2 + y2 = e|x − a/e|, 0 < e < 1 } (13.15)

Applying some algebra to the constraint condition on the points (x, y), the ellipse

can be expressed in a different form. Observe that if d1 = ed2, then

(x − ae)2 + y2 =e2(x − a/e)2

or x2 − 2aex + a2e2 + y2 =e2x2 − 2aex + a2

which simplifies to the condition

x2

a2
+

y2

a2(1 − e2)
= 1 or

x2

a2
+

y2

b2
= 1, b2 = a2(1− e2) (13.16)

where the eccentricity satisfies 0 < e < 1. In the case where the focus is selected as

(−ae, 0) and the directrix is selected as the line x = −a/e, there results the following

situation

d1 =distance of (x, y) to focus =
√

(x + ae)2 + y2

d2 =⊥ distance of (x, y) to directrix = |x + a/e|

The condition that d1 = ed2 can be represented as the set of points

E2 = { (x, y) |
√

(x + ae)2 + y2 = e|x + a/e|, 0 < e < 1 } (13.17)
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As an exercise, show that the simplification of the constraint condition for the set

of points E2 also produces the equation (13.16).

Examine the limiting case where e → 0. In this case the foci of the ellipse

approach each other and the ellipse becomes a circle with foci going to the origin

(0, 0) and the directrix x = a
e

going to the line at infinity. The circle being a limiting

case of the ellipse when the eccentricity is zero. Note that the equation (13.9)

becomes

r = lim
e→0

e d = lim
e→0

e
a

e
⇒ r = a

which is the equation of a circle in polar coordinates.

Figure 13 -12. The ellipse
x2

a2
+

y2

b2
= 1

Define the constants

c = ae and b2 = a2(1− e2) = a2 − c2 (13.18)

and note that b2 < a2, then from the above discussion one can conclude that an

ellipse is defined by the equation

x2

a2
+

y2

b2
= 1, 0 < e < 1, b2 = a2(1 − e2), c = ae (13.19)
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and has the points (ae, 0) and (−ae, 0) as foci and the lines x = −a/e and x = a/e as

directrices. The resulting graph for the ellipse is illustrated in the figure 13-12. This

ellipse has vertices at (−a, 0) and (a, 0), a latus rectum of length 2b2/a and eccentricity

given by
√

1 − b2/a2.

In the figure 13-12 a right triangle has been constructed as a mnemonic device

to help remember the relations given by the equations (13.18). The distance 2a

between (−a, 0) and (a, 0) is called the major axis of the ellipse and the distance 2b

from (0,−b) to (0, b) is called the minor axis of the ellipse. The origin (0, 0) is called

the center of the ellipse.

Figure 13 -13. Symmetry of the ellipse.

Some algebra can verify the following property satisfied by a general point (x, y)

on the ellipse. Construct the distances

d3 =distance of (x, y) to focus (c, 0) =
√

(x − c)2 + y2

d4 =distance of (x, y) to focus (−c, 0) =
√

(x + c)2 + y2

(13.20)

and show

d3 + d4 =
√

(x − c)2 + y2 +
√

(x + c)2 + y2 = 2a (13.21)
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One can use this property to define the ellipse as the locus of points (x, y) such

that the sum of its distances from two fixed points equals a constant.

The figure 13-13 illustrates that when the roles of x and y are interchanged, then

the major axis and minor axis of the ellipse are reversed. A shifting of the axes so

that the point (x0, y0) is the center of the ellipse produces the equations

(x − x0)
2

a2
+

(y − y0)
2

b2
= 1 or

(y − y0)
2

a2
+

(x − x0)
2

b2
= 1 (13.22)

These equations represent the ellipses illustrated in the figure 13-13 where the centers

are shifted to the point (x0, y0).

The ellipse given by
(x − h)2

a2
+

(y − k)2

b2
= 1 which is centered at the point (h, k)

can be represented in a parametric form5. One parametric form is to represent the

ellipse as the set of points

E = { (x, y) | x = h + a cos θ, y = k + b sin θ, 0 ≤ θ ≤ 2π } (13.23)

involving the parameter θ which varies from 0 to 2π.

Circle
A circle is the locus of points (x, y) in a plane equidistant from a fixed point

called the center of the circle. Note that no real locus occurs if the radius r is

negative or imaginary. It has been previously demonstrated how to calculate the

equation of a circle. The figure 13-14 is a summary of these previous results. The

circle x2 + y2 = r2 has eccentricity zero and latus rectum of 2r. Parametric equations

for the circle (x − x0)
2 + (y − y0)

2 = r2, centered at (x0, y0), are

x = x0 + r cos t, y = y0 + r sin t, 0 ≤ t ≤ 2π

5 The parametric representation of a curve or part of a curve is not unique.
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When dealing with second degree equations of the form x2 + y2 + αx + βy = γ,

where α, β and γ are constants, it is customary to complete the square on the x and

y terms to obtain

(x2 + αx +
α2

4
) + (y2 + βy +

β2

4
) = γ +

α2

4
+

β2

4
→ (x +

α

2
)2 + (y +

β

2
)2 = r2

where it is assumed that r2 = γ + α2

4
+ β2

4
> 0. This produces the equation of a circle

with radius r which is centered at the point
(

−α
2
,−β

2

)

.

Figure 13 -14.

Circle about origin and circle translated to point (x0, y0)

Hyperbola
Let e > 1 denote the eccentricity of a hyperbola. Again let (ae, 0) denote the focus

of the hyperbola and let the line x = a/e denote the directrix of the hyperbola. The

hyperbola is defined such that points (x, y) on the hyperbola satisfy d1 = ed2 where

d1 is the distance from (x, y) to the focus and d2 is the perpendicular distance from

the point (x, y) to the directrix. The hyperbola can then be represented by the set

of points

H1 = { (x, y) |
√

(x − ae)2 + y2 = e|x−a/e|, e > 1 }
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A simplification of the constraint condition on the set of points (x, y) produces

the alternative representation of the hyperbola

x2

a2
− y2

a2(e2 − 1)
= 1, e > 1 (13.24)

Placing the focus at the point (−ae, 0) and using as the directrix the line x = −a/e,

one can verify that the hyperbola is represented by the set of points

H2 = { (x, y) |
√

(x + ae)2 + y2 = e|x + a/e|, e > 1 }

and it can be verified that the constraint con-

dition on the points (x, y) also simplifies to the

equation (13.24).

Define c = ae and b2 = a2(e2 − 1) = c2 − a2 > 0 and note that for an eccentricity

e > 1 there results the inequality c > a. The hyperbola can then be described as

having the foci (c, 0) and (−c, 0) and directrices x = a/e and x = −a/e. The hyperbola

represented by
x2

a2
− y2

b2
= 1, b2 = a2(e2 − 1) = c2 − a2 (13.25)

is illustrated in the figure 13-15.

Figure 13 -15. The hyperbola
x2

a2
− y2

b2
= 1
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This hyperbola has vertices at (−a, 0) and (a, 0), a latus rectum of length 2b2/a and

eccentricity of
√

1 + b2/a2. The origin is called the center of the hyperbola. The line

containing the two foci of the hyperbola is called the principal axis of the hyperbola.

Setting y = 0 and solving for x one can determine that the hyperbola intersects

the principal axis at the points (−a, 0) and (a, 0) which are called the vertices of the

hyperbola. The line segment between the vertices is called the major axis of the

hyperbola or transverse axis of the hyperbola. The distance between the points (b, 0)

and (−b, 0) is called the conjugate axis of the hyperbola. The chord through either

focus which is perpendicular to the transverse axis is called a latus rectum. One

can verify that the latus rectum intersects the hyperbola at the points (c, b2/a) and

(c,−b2/a).

Write the equation (13.25) in the form

y = ± b

a
x

√

1 − a2

x2
(13.26)

and note that for very large values of x the right-hand side of this equation ap-

proaches 1. Consequently, for large values of x the equation (13.26) becomes the

lines

y =
b

a
x and y = − b

a
x (13.27)

These lines are called the asymptotic lines associated with the hyperbola and are

illustrated in the figure 13-15. Note that the hyperbola has two branches with each

branch approaching the asymptotic lines for large values of x.

Let (x, y) denote a general point on the above hyperbola and construct the dis-

tances
d3 =distance from (x, y) to the focus (c, 0) =

√

(x − c)2 + y2

d4 =distance from (x, y) to the focus (−c, 0) =
√

(x + c)2 + y2

(13.28)

Use some algebra to verify that

d4 − d3 = 2a (13.29)

This property of the hyperbola is sometimes used to define the hyperbola as the

locus of points (x, y) in the plane such that the difference of its distances from two

fixed points is a constant.

The hyperbola with transverse axis on the x-axis have the asymptotic lines

y = + b
a
x and y = − b

a
x. Any hyperbola with the property that the conjugate axis has

the same length as the transverse axis is called a rectangular or equilateral hyperbola.
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Rectangular hyperbola are such that the asymptotic lines are perpendicular to each

other.

Figure 13 -16. Conjugate hyperbola.

If two hyperbola are such that the transverse axis of either is the conjugate axis

of the other, then they are called conjugate hyperbola. Conjugate hyperbola will

have the same asymptotic lines. Conjugate hyperbola are illustrated in the figure

13-16.

The figure 13-17 illustrates that when the roles of x and y are interchanged, then

the transverse axis and conjugate axis of the hyperbola are reversed. A shifting of the

axes so that the point (x0, y0) is the center of the hyperbola produces the equations

(x − x0)
2

a2
− (y − y0)

2

b2
= 1 or

(y − y0)
2

a2
− (x − x0)

2

b2
= 1 (13.30)

The figure 13-17 illustrates what happens to the hyperbola when the values of x and

y are interchanged.
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If the foci are on the x-axis at

(c, 0) and (−c, 0), then
x2

a2
− y2

b2
= 1

If the foci are on the y-axis at

(0, c) and (0,−c), then
y2

a2
− x2

b2
= 1

Figure 13 -17.

Symmetry of the hyperbola .

The hyperbola
x2

a2
− y2

b2
= 1 can also be represented in a parametric form as the

set of points

H = H1 ∪ H2 where

H1 ={ (x, y) | x = a cosh t, y = b sinht, −∞ < t < ∞ }

and H2 ={ (x, y) | x = −a cosh t, y = b sinh t, −∞ < t < ∞ }

(13.31)

which represents a union of the right-branch and left-branch of the hyperbola. Simi-

lar parametric representations can be constructed for those hyperbola which undergo

a translation or rotation of axes. Remember that the parametric representation of

a curve is not unique.

Rotation of axes

Rotation of axes Unit vectors

If the (x, y)-axes are rotated about

the origin to form a new set of barred

axes (x̄, ȳ), then the relation between the

old and new coordinate systems is ob-

tained by using projections. Note the

the vector �r from the origin to a point

P remains invariant under a rotation of

axes and so one use this distance under

the conditions



573

(i) �r is projected onto the x̄ and ȳ axes.

(ii) �r is projected onto the x and y axes.

If ê1, ê2 are unit vectors in the (x, y)-coordinates and ê1, ê2 are unit vectors in

the barred coordinates, then one can write

�r = x ê1 + y ê2 = x̄ ê1 + ȳ ê2 (13.32)

since �r is to be an invariant.

One can verify the following dot product relations between the unit vectors in

the two systems

ê1 · ê1 =cos θ

ê1 · ê2 =cos(
π

2
+ θ) = − sin θ

ê2 · ê1 =cos(
π

2
− θ) = sin θ

ê2 · ê2 =cos θ
(13.33)

Taking the dot product of equation (13.32) with the vectors ê1 and ê2 one finds

�r · ê1 =projection of �r onto x-axis = x = x̄ ê1 · ê1 + ȳ ê2 · ê1

�r · ê2 =projection of �r onto y-axis = y = x̄ ê1 · ê2 + ȳ ê2 · ê2

(13.34)

or the old system of coordinates (x, y) in terms of the new rotated sytem of coordi-

nates (x̄, ȳ) is given by
x =x̄ cos θ − ȳ sin θ

y =x̄ cos θ + ȳ cos θ
(13.35)

Taking the dot product of equation (13.32) with the vectors ê1 and ê2 one finds

�r · ê1 =projection of �r onto x̄ axis = x̄ = x ê1 · ê1 + y ê2 · ê1

�r · ê2 =projection of �r onto ȳ axis = ȳ = x ê1 · ê2 + y ê2 · ê2

(13.36)

or the new system of coordinates (x̄, ȳ) in terms of the old system of coordinates (x, y)

is given by
x̄ = x cos θ + y sin θ

ȳ =− x sin θ + y cos θ
(13.37)

There are occasions in mathematics where equations in an (x, y) system of coor-

dinates become simplified if they are expressed in a rotated (x̄, ȳ) coordinate system.

To achieve this simplification the equations (13.35) and (13.37) will be needed.
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General Equation of the Second Degree
Consider the equation

ax2 + bxy + cy2 + dx + ey + f = 0, (13.38)

where a, b, c, d, e, f are constants, which is a general equation of the second degree. If

one performs a rotation of axes by substituting the rotation equations

x = x̄ cos θ − ȳ sin θ and y = x̄ sin θ + ȳ cos θ (13.39)

into the equation (13.38), one obtains the new equation

ā x̄2 + b̄ x̄ ȳ + c̄ ȳ2 + d̄ x̄ + ē ȳ + f̄ = 0 (13.40)

with new coefficients ā, b̄, c̄, d̄, ē, f̄ defined by the equations

ā =a cos2 θ + b cos θ sin θ + c sin2 θ

b̄ =b(cos2 θ − sin2 θ) + 2(c− a) sin θ cos θ

c̄ =a sin2 θ − b sin θ cos θ + c cos2 θ

d̄ =d cos θ + e sin θ

ē = − d sin θ + e cos θ

f̄ =f

(13.41)

As an exercise one can show the quantity b2 − 4ac, called the discriminant, is an

invariant under a rotation of axes. One can show b2−4ac = b̄2−4āc̄. The discriminant

is used to predict the conic section from the equation (13.38). For example, if

b2−4ac < 0, then an ellipse results, if b2−4ac = 0, then a parabola results, if b2−4ac > 0,

then a hyperbola results.

In the case where the original equation (13.38) has a cross product term xy, so

that b �= 0, then one can always find a rotation angle θ such that in the new equations

(13.40) and (13.41) the term b̄ = 0. If the cross product term b̄ is made zero, then one

can complete the square on the x̄ and ȳ terms which remain. This completing the

square operation converts the new equation (13.39) into one of the standard forms

associated with a conic section. By setting the b̄ term in equation (13.41) equal to

zero one can determine the angle θ such that b̄ vanishes. Using the trigonometric

identities

cos2 θ − sin2 θ = cos 2θ and 2 sin θ cos θ = sin 2θ (13.42)

one can determine the angle θ which makes the cross product term vanish by solving

the equation

b̄ = b cos 2θ + (c − a) sin 2θ = 0 (13.43)
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for the angle θ. One finds the new term b̄ is zero if θ is selected to satisfy

cot 2θ =
a − c

b
(recall our hypothesis that b �= 0) (13.44)

Example 13-3. (Conic Section) Sketch the curve 4xy − 3y2 = 64

Solution

To remove the product term xy from the

general equation

ax2 +bxy+cy2+dx+ey+f = 0 of a conic, the axes

must be rotated through an angle θ determined

by the equation cot 2θ = a−c
b

= 3

4
. For the given

conic a = 0, b = 4, c = −3.

This implies that cos 2θ = 3/5 = 1 − 2 sin2 θ or 2 sin2 θ = 2/5 giving sin θ = 1/
√

5 and

cos θ = 2/
√

5. The rotation equations (13.39) become

x =
1√
5
(2x̄ − ȳ) and y =

1√
5
(x̄ + 2ȳ)

The given equation then becomes

4

(

2x̄ − ȳ√
5

)(

x̄ + 2ȳ√
5

)

− 3

(

x̄ + 2ȳ√
5

)2

= 64

which simplifies to the hyperbola
x̄2

82
− ȳ2

42
= 1 with respect to the x̄ and ȳ axes.



576

Example 13-4.

The parametric forms for representing conic sections are not unique. For a, b

constants and θ, t used as parameters, the following are some representative para-

metric equations which produce conic sections.

Parametric form for conic sections

Conic Section x y parameter

Circle a cos θ a sin θ θ

Parabola at2 2at t

Ellipse a cos θ b sin θ θ

Hyperbola a sec θ b tan θ θ

Rectangular Hyperbola at a/t t

The symbols a, b > 0 denote nonzero constants.

The shape of the curves depends upon the range of values assigned to the pa-

rameters representing the curve. Because of this restriction, the parametric repre-

sentation usually only gives a portion of the total curve. Sample graphs using the

parameter values indicated are given below.



577

Three dimensional graphics

In the following discussions it will be demonstrated how to construct curves

and surfaces in three dimensional space. In order to examine a curve or surface in

three dimensions one will need a computer program capable of taking equations and

plotting them.

In addition to a graphics program one will need to know about the exponential

functions and hyperbolic functions. We will use the exponential functions y = ex and

y = e−x where e = 2.7182818284590452354 . . . is an irrational number known as Euler’s

number. Graphs of these functions are illustrated in the figure below.

Figure 13 -18. The exponential functions ex and e−x

The irrational number 2.7182818284590452354 . . . occurs so often in mathematics it

is given the symbol e just like 3.1415926535897932385 . . . was given the symbol π. The

irrational number e can be calculated from any of the limits

lim
n→∞

(

1 +
1

n

)n

= e, lim
n→∞

(

1 − 1

n

)n

=
1

e
, e =

∞
∑

m=0

1

m!
= 1 + 1 +

1

2 · 1 +
1

3 · 2 · 1 + · · ·

where 0! is defined to be 1.

Associated with exponential functions ex and e−x are the hyperbolic functions

defined by

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, tanhx =

sinhx

coshx

and the reciprocal functions

cschx =
1

sinhx
, sechx =

1

coshx
, cothx =

1

tanhx

Graphs of these functions are illustrated below.
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Figure 13 -19. The hyperbolic functions

The hyperbolic functions have the properties

cosh 2x − sinh 2x = 1, sech 2x + tanh 2x = 1, coth2x − csch 2x = 1

Surfaces and curves

A three dimensional surface can be represented by the implicit equation of the

form f(x, y, z) = 0. If one can solve for z, then an explicit form for representing the

surface is z = F (x, y). For example, the unit sphere is given by x2 + y2 + z2 − 1 = 0

which is an implicit equation. By solving for z the unit sphere can be represented by

the upper hemisphere z = +
√

1 − x2 − y2 and the lower hemisphere z = −
√

1 − x2 − y2

which are explicit equations. If z = 0, then a curve in the xy-plane results. Curves

in xyz space can be defined as the intersection of surfaces or by defining a set of

parametric equations.

Curves

The parametric form for the representation of a curve in space is to specify the

coordinates (x, y, z) as a function of a single variable, say t, and write

x = x(t), y = y(t), z = z(t)

The vector form for the curve is then

�r = �r(t) = x(t) ê1 + y(t) ê2 + z(t) ê3

Some example three dimensional curves are illustrated below.
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Right-handed
Helix Parametric Equations Parameters

x =r cos θ

y =r sin θ

z =αθ

0 ≤ θ ≤ 2π

Left-handed
Helix Parametric Equations Parameters

x =r sin θ

y =r cos θ

z =αθ

0 ≤ θ ≤ 2π

(p,q) Torus knot Parametric Equations Parameters

x =(a sin(qθ) + b) sin(pθ)

y =(a sin(qθ) + b) cos(pθ)

z =a cos(qθ)

b > a

0 ≤ θ ≤ 2π
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Example 13-5.

A plane intersects a sphere to form a circle. Find the equation of the circle.

Solution

Let (xs, ys, zs) denote the center of the sphere hav-

ing a radius R. The equation of the sphere can then

be expressed in the scalar form

(x − xs)
2 + (y − ys)

2 + (z − zs)
2 = R2

or the vector form

|�r − �rs| = R, �r = x ê1 + y ê2 + z ê3, �rs = xs ê1 + ys ê2 + zs ê3

The equation of the plane intersecting the sphere can be expressed in the scalar

form

N1x + N2y + N3z + D = 0 (13.45)

or the vector form

�N · (�r − �r0) = 0, �r0 = x0 ê1 + y0 ê2 + z0 ê3, �N = N1 ê1 + N2 ê2 + N3 ê3

where �r0 is the position vector to a point in the plane and �N is a normal vector to

the plane and D = −�r0 · �N is a constant.

When the normal vector �N is placed at the origin of the sphere, then a line

through the center of the sphere (xs, ys, zs) and the center of the circle (xc, yc, zc) has

the form

�r = �r(λ) = �rs + λ �N

where λ is a parameter. The line can also be represented by the parametric equations

x = xs + λN1, y = ys + λN2, z = zs + λN3 (13.46)

This line intersects the plane when the equations (13.46) are substituted into the

equation (13.45) to obtain

N1(xs + λN1) + N2(ys + λN2) + N3(zs + λN3) + D = 0 (13.47)

which implies λ must have the value

λ∗ =
−(N1xs + N2ys + N3zs + D)

N2

1
+ N2

2
+ N2

3

=
− �N · �rs −D

�N · �N
(13.48)
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The line from the center of the sphere is normal to the plane of the circle and

intersects the center of circle at the point (xc, yc, zc) given by

xc = xs + λ∗N1, yc = ys + λ∗N2, zc = zs + λ∗N3

We know the radius of the sphere and can calculated the

distance d between the center of the sphere and center of the

circle. This distance is

d = |�rc − �rs| =
√

(xc − xs)2 + (yc − ys)2 + (zc − zs)2

and using the Pythagorean theorem one can determine the radius of the circle as

r =
√

R2 − d2 (13.49)

A vector �a = a1 ê1 + a2 ê2 + a3 ê3 is perpendicular to the vector �N if

�N · �a = N1a1 + N2a2 + N3a3 = 0 (13.50)

Assume N3 �= 0 and

(i) Select positive values for a1 and a2

(ii) Select a3 =
−N1a1 −N2a2

N3

The vector �a will then be perpendicular to the normal vector �N .
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Using the above information one can construct the follow-

ing unit vectors.

êα =
�a

|�a| =
a1 ê1 + a2 ê2 + a3 ê3

√

a2
1 + a2

2 + a2
3

= α1 ê1 + α2 ê2 + α3 ê3

ên =
�N

| �N |
=

N1 ê1 + N2 ê2 + N3 ê3
√

N2
1 + N2

2 + N2
3

= n1 ê1 + n2 ê2 + n3 ê3

and then use the vector cross product to define the unit vector

êβ = êα × ên = β1 ê1 + β2 ê2 + β3 ê3

Note the unit vectors ên, êβ, êα form a right-handed system and the unit vectors êα

and êβ can be used to define the circle created by the plane and sphere intersecting.

The equation of the circle is given by

�r = �rc + r cos θ êα + r sin θ êβ , 0 ≤ θ ≤ 2π

This circle can also be represented using the parametric form

x =xc + r cos θ α1 + r sin θ β1

y =yc + r cos θ α2 + r sin θ β2

z =zc + r cos θ α3 + r sin θ β3

(13.51)

Surfaces

The parametric form for the representation of a surface is to have three equations

x = x(u, v), y = y(u, v), z = z(u, v)

in terms of two parameters, say u, v, which define the points (x, y, z) on the surface

as u and v range over a set of specified values. The vector form for representing the

surface is

�r = �r(u, v) = x(u, v) ê1 + y(u, v) ê2 + z(u, v) ê3
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Sphere

To find the parametric equations for the representation of a sphere having a

radius ρ. Let u = θ and v = φ from spherical coordinates be the parameters for the

representation of the sphere. For P an arbitrary point on the surface of the sphere

one finds the projection of the line segment 0P onto the xy-plane is ρ sin θ.

When ρ sin θ is projected onto first the x-axis and then

the y-axis one finds

x = ρ sin θ cos φ, y = ρ sin θ sin φ

The projection of 0P onto the z-axis gives z = ρ cos θ.

This give the parametric equations defining the sphere

as

x = ρ sin θ cos φ, y = ρ sin θ sin φ, z = ρ cos θ (13.52)

where θ is restricted so that 0 ≤ θ ≤ π and φ is restricted so that 0 ≤ φ ≤ 2π.

Note that parametric representations of surfaces are not

unique. For example, a plane parallel to the xy-plane will cut

the sphere in a circle with radius r. The parametric equation

for a circle is

x = r cos t, y = r sin t

with t a parameter ranging from 0 to 2π. The radius r of the

circle associated with a plane intersecting a sphere with radius ρ at distance h above

the xy-plane is determined by the Pythagorean theorem as r =
√

ρ2 − h2. This gives

an alternative parametric representation for the sphere as

x =
√

ρ2 − h2 cos t, y =
√

ρ2 − h2 sin t, z = h

for −ρ ≤ h ≤ ρ and 0 ≤ t ≤ 2π.
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Cylinders
y = sinx

y = sin x

An equation y = f(x) is a curve in the two dimensional

plane of the xy-axes. In three dimensions y = f(x) is a

cylindrical surface for a ≤ z ≤ b. For example, the curve

given by y = sinx in two dimensions is a curve, but in three

dimensions it is a cylindrical surface with a ≤ z ≤ b. If

the range for z is not specified it is an infinite cylindrical

surface in the z-direction. A circle x2 + y2 = r2 becomes

an infinite cylinder in the z direction when moving the

equation from two dimensions to three dimensions.

The parametric equation for a cylinder in three dimen-

sions is

x = r cos θ, y = r sin θ, z = h (13.53)

for 0 ≤ θ ≤ 2π and 0 ≤ h ≤ H.

Surfaces of revolution

An implicit curve F (x, y) = 0 or an explicit curve

y = f(x) in two dimensions can be rotated about an axis

to produce a three dimensional surface. For example,

when the parabola y = x2 is revolved about the y-axis

every point P on the curve y = x2 moves in a circle

with radius CP = x =
√

y = r and having the equation

x2 + z2 = r2 = y. The surface generated by a rotation of

the parabola is called a paraboloid of revolution. One

parametric representation of this surface is

x =
√

v cos u, y = v, z =
√

v sin u, 0 ≤ u ≤ 2π, 0 ≤ v ≤ H (13.54)
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Example 13-6.

Examine the curves (a) the line segment y = H= a constant, (b) the line y = x

and (c) the curve y =
√

x − x0 which are rotated about the x-axis to create a surface

of revolution.

Figure 13 -20. Surfaces of revolution

(a) When the line segment is rotated about the x-axis a cylinder results having the

equation y2+z2 = H2 for a ≤ x ≤ b. The parametric representation for this surface

is

x = u, y = H cos θ, z = H sin θ

for a ≤ u ≤ b and 0 ≤ θ ≤ 2π.

(b) When the line y = x is rotated about the x-axis a right circular cone results

having the equation y2 + z2 = x2. The parametric equation for this surface is

x = u, y = u cos t, z = u sin t

for 0 ≤ t ≤ 2π and 0 ≤ u ≤ H.

(c) When the curve y = f(x) =
√

x − x0 is rotated about the x-axis there results the

paraboloid y2 + z2 = [f(x)]2 or y2 + z2 = x − x0. The parametric equation for the

representation of this surface is

x = u, y =
√

u − x0 cos t, z =
√

u − x0 sin t

for 0 ≤ t ≤ 2π and x0 ≤ u ≤ H.
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Note that the parametric equations are given in terms of two parameters. If one

uses algebra to eliminate the parameters, then the equation of the surface in terms

of x, y and z results.

Surfaces
The following are some well known surfaces along with equations which can be

used to construct the surfaces. Some of these surfaces are surfaces of revolution. In

most of these equations the lower case letters at the beginning of the alphabet such

as a, b, c, . . . are to be considered as constants.

Cone Equation Parametric Equations Parameters

x2 + y2 =
z2

c2

x =u cos v

y =u sinv

z =cu

0 ≤ v ≤ 2π

0 ≤ u ≤ 1

Elliptic
Cone Equation Parametric Equations Parameters

x2

a2
+

y2

b2
=

z2

c2

x =
au

c
cos v

y =
bu

c
sinv

z =u

0 ≤ v ≤ 2π

0 ≤ u ≤ 1
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Sphere Equation Parametric Equations Parameters

x2 + y2 + z2 = ρ2

x =ρ cosφ sin θ

y =ρ sinφ sin θ

z =ρ cosθ

0 ≤ θ ≤ π

0 ≤ φ ≤ 2π

Zone of Sphere Equation Parametric Equations Parameters

x2 + y2 + z2 = ρ2

x =ρ cosφ sin θ

y =ρ sinφ sin θ

z =ρ cos θ

π

3
≤ θ ≤ 2π

3

0 ≤ φ ≤ 2π

Ellipsoid Equation Parametric Equations Parameters

x2

a2
+

y2

b2
+

z2

c2
= 1

x =a cos φ sin θ

y =b sinφ sin θ

z =c cos θ

0 ≤ θ ≤ π

0 ≤ φ ≤ 2π
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Paraboloid Equation Parametric Equations Parameters

x2 + y2 = cz
x =

√
cv cosφ

y =
√

cv sinφ

z =v

0 ≤ v ≤ H

0 ≤ φ ≤ 2π

Elliptic
Paraboloid Equation Parametric Equations Parameters

x2

a2
+

y2

b2
= cz

x =a
√

cv cosφ

y =b
√

cv sin φ

z =v

0 ≤ v ≤ H

0 ≤ φ ≤ 2π

Elliptic
Cylinder Equation Parametric Equations Parameters

x2

a2
+

y2

b2
= 1

x =a cosφ

y =b sinφ

z =v

0 ≤ φ ≤ 2π

0 ≤ v ≤ H
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Hyperbolic
Paraboloid

Equation Parametric Equations Parameters

x2

a2
− y2

b2
= cz

x =
a

2
(u + v)

√
c

y =
b

2
(u − v)

√
c

z =uv

− d ≤ u ≤ d

− d ≤ v ≤ d

Hyperbolic
Paraboloid Equation Parametric Equations Parameters

x2

a2
− y2

b2
= cz

x =u

y =v

z =
1

c

(

u2

a2
− v2

b2

)

− 0.5 ≤ u ≤ 0.5

− 0.5 ≤ v ≤ 0.5

a = b = 1, c =
1

3

Hyperboloid of
one sheet

Equation Parametric Equations Parameters

x2

a2
+

y2

b2
− z2

c2
= 1

x =a cosu coshv

y =b sinu coshv

z =c sinhv

0 ≤ u ≤ 2π

− 1 ≤ v ≤ 1
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Hyperboloid of
two sheets Equation Parametric Equations Parameters

x2

a2
− y2

b2
− z2

c2
= 1

x = ± a coshv

y =b cosu sinhv

z =c sinu sinhv

0 ≤ u ≤ 2π

− 1 ≤ v ≤ 1

Torus Equation Parametric Equations Parameters

(R−
√

x2 + y2)2+z2 = r2,

R > r
x =(R + r cos v) cosu

y =(R + r cos v) sinu

z =r sinv

0 ≤ u ≤ 2π

0 ≤ v ≤ 2π

Möbius
Strip Equation Parametric Equations Parameters

F (x, y, z) = 0∗

x =(R − v cos
θ

2
) cos θ

y =(R − v cos
θ

2
v) sin θ

z =v sin
θ

2

0 ≤ θ ≤ 2π

− a ≤ v ≤ a

∗ F (x, y, z) = −R2y + x2y + y3 − 2Rxz − 2x2z − 2y2z + yz2 = 0. The Möbius strip is a

one-sided surface. It is known as a cubic surface with boundaries.
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Exercises

� 13-1. Given triangle �ABC with vertices A(0, 0), B(50, 100), C(100,−50). Find the

vertices of the pedal triangle associated with the point P (26, 22).

� 13-2.

In chemistry when one studies reactions involving

three quantities A, B, C one can use an equilateral tri-

angle with equal spaced lines drawn parallel to each

side. This creates triangular coordinates which can be

used to represent concentrations called mole fractions.

A point P with coordinates (yA, yB, yC) = (0.5, 0.1, 0.4) is

illustrated in the accompanying figure.

(a) Show that when using triangular coordinates

yA +yB +yC = 1. That is prove the sum of the distances

associated with a point in triangular coordinate equals the length of one side of the

triangle.

(b) One important property of triangular coordinates is associated with straight

lines connecting a vertex and opposite edge as the red line illustrated. The signifi-

cance of these special lines is that as the concentration of A increases the quantities

B and C will always remain in the same initial proportion. To show this use similar

triangles associated with any two different points p1 and p2 on the red line and show
yB1

yC1

=
yB2

yC2

� 13-3. How many triangular graphs are inside a hexagonal graph?

� 13-4. Plot the following curves in polar coordinates.

(a) r = sin θ (b) r = cos θ

� 13-5.

(a) Plot the points (2, π
6
) and (

√
3, π

3
) in polar coordinates.

(b) Find the distance between these points.
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� 13-6. Sketch the following conic sections

(a) x2 + y2 = r2 (b) (x − h)2 + (y − k)2 = r2

� 13-7. Sketch the following conic sections

(a) y = x2 (b) x = y2

� 13-8. Sketch the following conic sections

(a)
x2

a2
+

y2

b2
= 1, a > b (b)

x2

b2
+

y2

a2
= 1, a > b

� 13-9. Sketch the following conic sections

(a)
x − x0)

2

a2
+

(y − y0)
2

b2
= 1, a > b (b)

(x − x0)
2

a2
− (y − y0)

2

b2
= 1

� 13-10. Sketch the following surfaces indicating the x, y, z axes and then describe

the surface.

(a) y2 + z2 =
x2

c2
(b) z2 + x2 =

y2

c2

� 13-11. Sketch the following surfaces indicating the x, y, z axes and then describe

the surface.

(a)
y2

a2
+

z2

b2
=

x2

c2
(b)

z2

a2
+

x2

b2
=

y2

c2

� 13-12. Sketch the following surfaces indicating the x, y, z axes and then describe

the surface.

(a)
y2

a2
+

z2

b2
+

x2

c2
= 1 (b)

z2

a2
+

x2

b2
+

y2

c2
= 1

� 13-13. Sketch the following surfaces indicating the x, y, z axes and then describe

the surface.

(a) y2 + z2 = cx (b) z2 + x2 = cy

� 13-14. Sketch the following surfaces indicating the x, y, z axes and then describe

the surface.

(a)
y2

a2
+

z2

b2
= cx (b)

z2

a2
+

x2

b2
= cy
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� 13-15. Sketch the following surfaces indicating the x, y, z axes and then describe

the surface.

(a)
y2

a2
+

z2

b2
= 1 (b)

z2

a2
+

x2

b2
= 1

� 13-16. Sketch the following surfaces indicating the x, y, z axes and then describe

the surface.

(a)
y2

a2
− z2

b2
= cx (b)

z2

a2
− x2

b2
= cy

� 13-17. Sketch the following surfaces indicating the x, y, z axes and then describe

the surface.

(a)
y2

a2
+

z2

b2
− x2

c2
= 1 (b)

z2

a2
+

x2

b2
− y2

c2
= 1

� 13-18. Sketch the following surfaces indicating the x, y, z axes and then describe

the surface.

(a)
y2

a2
− z2

b2
− x2

c2
= 1 (b)

z2

a2
− x2

b2
− y2

c2
= 1
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APPENDIX A

Units of Measurement

The following units, abbreviations and prefixes are from the
Système International d’Unitès (designated SI in all Languages.)

Prefixes.

Abbreviations
Prefix Multiplication factor Symbol

exa 1018 W
peta 1015 P
tera 1012 T
giga 109 G

mega 106 M
kilo 103 K

hecto 102 h
deka 10 da
deci 10−1 d

centi 10−2 c
milli 10−3 m

micro 10−6 µ
nano 10−9 n
pico 10−12 p

femto 10−15 f
atto 10−18 a

Basic Units.

Basic units of measurement
Unit Name Symbol

Length meter m
Mass kilogram kg
Time second s

Electric current ampere A
Temperature degree Kelvin ◦ K

Luminous intensity candela cd

Supplementary units
Unit Name Symbol

Plane angle radian rad
Solid angle steradian sr
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DERIVED UNITS
Name Units Symbol

Area square meter m2

Volume cubic meter m3

Frequency hertz Hz (s−1)
Density kilogram per cubic meter kg/m3

Velocity meter per second m/s
Angular velocity radian per second rad/s

Acceleration meter per second squared m/s2

Angular acceleration radian per second squared rad/s2

Force newton N (kg · m/s2)
Pressure newton per square meter N/m2

Kinematic viscosity square meter per second m2/s
Dynamic viscosity newton second per square meter N · s/m2

Work, energy, quantity of heat joule J (N · m)
Power watt W (J/s)

Electric charge coulomb C (A · s)
Voltage, Potential difference volt V (W/A)

Electromotive force volt V (W/A)
Electric force field volt per meter V/m
Electric resistance ohm Ω (V/A)

Electric capacitance farad F (A · s/V)
Magnetic flux weber Wb (V · s)

Inductance henry H (V · s/A)
Magnetic flux density tesla T (Wb/m2)

Magnetic field strength ampere per meter A/m
Magnetomotive force ampere A

Physical Constants:

• 4 arctan 1 = π = 3.14159 26535 89793 23846 2643 . . .

• limn→∞

(

1 + 1

n

)

n

= e = 2.71828 18284 59045 23536 0287 . . .

• Euler’s constant γ = 0.57721 56649 01532 86060 6512 . . .

• γ = limn→∞

(

1 + 1

2
+ 1

3
+ · · · + 1

n
− log n

)

Euler’s constant
• Speed of light in vacuum = 2.997925(10)8 m s−1

• Electron charge = 1.60210(10)−19 C

• Avogadro’s constant = 6.0221415(10)23 mol−1

• Plank’s constant = 6.6256(10)−34 J s

• Universal gas constant = 8.3143J K−1 mol−1 = 8314.3J Kg−1 K−1

• Boltzmann constant = 1.38054(10)−23 J K−1

• Stefan–Boltzmann constant = 5.6697(10)−8 W m−2 K−4

• Gravitational constant = 6.67(10)−11 N m2kg−2
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Index

A

abscissa, 285

absolute value, 415

acute angle, 27, 36

acute, 271

alternate interior angles, 54

altitude, 117, 384

altitudes of triangle, 179

amplitude, 287

analytic geometry, 3

angle between intersecting lines, 330

angle bisector theorem, 200

angle bisector, 179, 304

angle measurement, 28

angle-angle-side, 64

angle-side-angle, 63

angles in triangle, 55, 388

angles known, 535

angles spherical triangle, 525

angular measure, 23

apex, 470

apothem, 35, 92

arc length, 32, 351, 364

area of circle, 129

area of irregular polygons, 100

area of parallelogram, 412

area of polygon, 91, 208, 340

area of quadrilateral, 96, 374

area of special figures, 96

area of the parallelogram, 412

Area of triangle, 58, 60, 321, 413

area, 57, 59

arithmetic mean, 13

ASA, 63

astronomy, 305

asymptotic lines, 570

axiom, 48

axis of symmetry, 560

B

barycentric coordinates, 452

base 16 numbers, 21

base 2 numbers, 20

base 8 number, 21

base angles, 196

base b numbers, 21

base vectors, 402

basis vectors, 402

bi-conditional, 238

bisect an angle, 196

bride’s chair, 142

C

Cartesian geometry, 3

Cartesian graph paper, 549

Cauchy-Schwartz inequality, 406

Cavalier’s principle, 493

Cavalieri’s principle for plane figures, 211

center of dilatation, 79

central angle, 32, 351

centroid 192, 195

Ceva’s theorem, 173

cevians, 170, 223

chord 37, 351

circle in 3-dimensions, 580

circle, 18, 31, 72, 129, 158, 326, 351, 567

circles in contact, 185

circular functions, 281

circumcenter, 113, 383, 438

circumference, 32

circumscribed circle, 92, 113, 381

circumscribed polygon, 208, 262

cofunction formulas, 290

cofunctions, 278

collinear vectors, 400

collinear, 34, 220

commutative law, 404

complementary angles, 30, 271

complete the square, 354

component form, 406, 408

compound statements, 234

computer and π, 307

conclusion, 68. 236

concurrent, 51

conditions for circle, 355

cone, 478

congruence, 48

congruent chords, 124

congruent triangles, 124

conic sections, 558

conjugate hyperbola, 571

conjunction, 234

construction of parallel line, 109, 186

contrapositive, 236
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converse of Thales theorem, 95

converse, 236

Conversion of angles, 25

convex polygon, 35

coordinates of incenter, 208

coplanar, 34

coprime, 154

corollary, 68

corresponding angles, 54

cosine function, 275

cosine identities, 529

cosine rules, 530

cotangent rule, 531

cross product formula, 411

cross product of unit base vectors, 411

cross product property of ratios, 11

cross product, 410

crossed polygon, 35

curved surfaces, 471

cyclic changing, 317

cyclic properties, 530

cyclic quadrilateral, 369

cylinder, 474

D

decagon, 47

deductive reasoning, 240

definitions, 32, 50

degrees, 24

Descartes, 3

determinant form cross product, 416

determinant, 257

determinants and parabola, 563

diagonal line of polygon, 35

diagonals of kite, 99

diagonals of parallelogram, 71

diagonals of rhombus, 69

difference formula, 294

dihedral angle, 428

dilatation, 79

directed line segment, 2

direction cosines, 405

direction numbers, 406

directrix, 560

disjunction, 235

distance between two points, 557

distance formula, 157

distance from point to line, 334, 426

distributive law, 404

divide line segment, 187

dodecagon, 47, 128

dodecahedron, 466

dot product for unit base vectors, 404

dot product of vectors, 403

dot product, 408

double-angle formulas, 291

E

edges, 460

Elements, 1

ellipse, 47, 160, 563

ellipsis, 14

equation of a circle, 158, 352

equation of angle bisector, 335

equation of line, 5

equation of plane, 421

equation of sphere, 511

equidistant, 205

equilateral triangle, 36, 156, 199

estimate for π, 261

Euclid’s congruence, 63

Euclid’s proof of Pythagorean theorem , 142

Euclid, 1

Euler formula, 460

Euler line, 221

even function, 282

exclusion, 238

extended law of sines, 322

exterior angles of polygons, 90, 339

exterior angles, 34

F

face angles, 523

faces, 460

finding equation of circle, 356

finding midpoint, 107

focal parameter, 560

foci, 47

focus, 560

forms for straight lines, 8

free vectors, 398, 418

frustum of cone, 473

frustum of pyramid, 491

frustum, 470, 473

functions, 272

G

general equation of second degree, 574

general form for line, 8

generalization and abstraction, 233
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geometric figures, 185

geometric mean, 13

geometric proof of Pythagorean theorem, 138

geometric shapes, 45

geometric tools, 106

geometrical series, 242

golden ratio, 19

grad, 26

gradian, 26

graph of function, 273

graph paper, 548

graphs of trigonometric functions, 285

great circle equation, 514

great circles, 486, 512

greater angle theorem, 119

Greek alphabet, 11

H

half-angle formulas, 293, 533

harmonic division, 226

heptagon, 47

Heron’s formula, 164

heuristic, 65

hexadecimal number, 21

hexagon, 47

hexagonal graph paper, 552

hexahedron, 464

hyperbola, 568

hypothesis, 68, 236

I

icosahedron, 468

if-then, 236

implication, 235

implies, 236

incenter, 179, 206, 436

indirect proof, 185, 240

inductive reasoning, 240

inequalities for triangles, 151

inequalities, 123, 353

initial side, 23

inner product of vectors, 403

inradius, 322

inscribed angle theorem, 126

inscribed angle, 125

inscribed circle, 125, 380

inscribed polygons, 263

integers, 14

intercept theorem, 195

intercept-form for line, 8

interior angles of polygons, 89, 337

interior angles, 34, 55

intersecting lines, 53, 330

intersection of angle bisectors, 436

intersection of secant lines, 364

intersection of tangent lines, 366

intersection of two planes, 427

intersection, 328

inverse functions, 296

inverse trigonometric functions, 297

irrational numbers, 16

irregular polygon, 34, 100, 343

isosceles triangle, 36, 156, 196

iteration, 264

J

K

kite, 47, 99

L

larger side theorem, 119

lateral surface area, 492

latus rectum, 560, 569

law of cosines, 316, 419

law of detachment, 236

law of sines, 315, 418, 443

law of tangents, 319

left-handed coordinates, 459

lemma, 68

length of sides, 387

light year, 307

line segment, 2, 30

line, 5, 51

linear combination, 400

linear dependence, 400

linear independence, 400

lines perpendicular, 80

logic, 234

lune, 329, 516

M

magnitude of vector, 397, 403

math symbols, 31, 52

mathematical induction, 242

median line, 191

median, 192, 386, 401

medians of triangle, 178

Menelaus theorem, 216

midpoint of trapezoid, 98
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midpoint theorem, 103

midpoint, 10, 387

minutes, 24

Miquel point, 371

mirror image, 298

multiple angle formulas, 292

multi-valued functions, 298

N

n-gon, 46, 90, 341

names for number systems, 23

names of regular polygons, 47

Napier’s rules, 537

negation, 234

nine point circle, 223

non-orthogonal coordinate system, 513

nonagon, 47

noncollinear vectors, 400

noncollinear, 34

noncoplanar, 34

normal form for line, 332

normalized vector, 402

notation, 49

number bases, 20

numbers with different bases, 13

numbers, 13

O

obtuse angle, 27, 36

obtuse, 271

Occam’s razor, 242

octagon, 47

odd function, 282

one-to-one correspondence, 272

opposite angles, 53, 369

orthocenter, 117, 438, 444

orthogonal coordinate system, 513

orthogonal vectors, 405

outer product, 410

P

Pappus theorem, 497

parabola, 561

parallax, 307

parallel intercept theorem, 104

parallel lines, 57

parallelogram law, 398

parallelogram, 37, 47, 71, 96, 302

parametric equations of circle, 358

parametric equations, 513

parametric form for line, 8

parsec, 307

pedal triangle, 545

pentagon, 47

perimeter of polygon, 35

perimeter, 35

perpendicular bisector, 112

perpendicular distance, 425

perpendicular line, 80

pi, 16

plane and sphere, 483

plane section, 2, 507

plane, 34, 51

Platonic solids, 464

point of concurrency, 51

point, 2

point-slope formula for line , 8

polar axes, 553

polar coordinates, 553

polar curves, 555

polar spherical triangle, 518

polygons, 34

polyhedra, 460

polyhedral angle, 523

polyhedron, 460

postulate, 48

power of a point theorem, 377

principal value properties, 300

prismatoid, 505

prisms, 461

product formula, 294

projection, 152, 320, 404, 416

proof by contradiction, 185

properties of cross product, 411

properties of vectors, 398

proportion, 11,94

proportional sides, 73

protractor, 28

Ptolemy’s theorem, 369

pyramid, 488

pyramids, 471

Pythagorean identities, 283

Pythagorean theorem, 137, 283

Pythagorean triples, 154

Q

quadrilateral inside circle, 128

quadrilateral, 37, 194, 368, 546
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R

radian measure, 26

radius of regular polygon, 35

radius perpendicular to chord, 124

ratio of areas theorem, 223

rational numbers, 14

ray, 23

reciprocal functions, 285

reciprocal property, 227

rectangle, 37

rectangular coordinates, 553

reductio ad absurdum, 185

reflection, 74

regular polygon, 34

relation between polar triangles, 519

Reuleaux triangle, 368

rhombus, 47, 69, 96

RHS, 65

right angle - hypotenuse-side, 65

right angle, 28, 36

right circular cone, 472

right spherical triangle, 536

right-hand rule, 410

right-handed coordinates, 459

rotated ray, 23

rotation to calculate surface area, 477

rotation, 24, 73, 471, 477

Routh’s theorem, 224

ruled surfaces, 469

S

sagitta, 327

SAS, 63

scalar product of vectors, 403

scalar, 397

scale factor, 73

scalene triangle, 36

secant line for circle, 37

secant lines, 365

seconds, 24

section formula using vectors, 432

section formula, 189

sector of circle, 32

sector, 32

sector, 351

segment of circle, 352

semi-perimeter, 165

semicircle, 34

shortest distance, 121, 324, 523

SI, 27

side splitter theorem, 94

side-angle-side, 63

sign convention, 217

sign variation, 281

similar polygons, 73

similar triangle proof of Pythagorean theorem, 139

similar triangles, 73, 94

similarity and area, 76

similarity, 73

simple polygon, 36

Simson line, 219

simultaneous equations, 358

sine function, 275

sine rules, 531

single valued, 296

slant height, 470

slope of sides, 388

slope, 5, 8

slope-intercept form for line , 8

slopes of perpendicular lines, 80

solid angle, 539

solid geometry, 459

solids, 459

special angles, 27

special right triangles, 277

special values, 283

sphere and plane, 483

sphere, 479

spherical angles, 486

spherical cap, 484

spherical coordinates, 511

spherical excess, 526

spherical polygons, 518

spherical triangle, 516

spherical trigonometry, 529

square root of 2, 18

square, 37

SSS, 63

star polygons, 546

Stewart’s formula, 202

Stewart’s theorem, 170

straight angle, 28

straight line, 8

sum formula, 245

sum of interior angles, 56

summation sign, 245

summation symbol
∑

, 90

summation to approximate volume, 472

Summerians, 24

sums and differences, 288

supplementary angles, 31, 271

surface area cone, 475

surface area cylinder, 474

surface area of sphere, 482
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surface area pyramid, 490

surface area spherical triangle, 527

surface area, 477

surfaces of revolution, 584

surfaces, 582

system of equations, 259

T

tangency, 351

tangent function, 275

tangent line to circle, 37

tangent to circle, 108

tangent-chord theorem, 360

terminal side, 23

terminology, 68

tetrahedron, 434, 462

Thale’s intercept theorem, 195

Thales theorem for circle, 161

Thales theorem of proportion, 94

the ellipse, 47

The number pi, 16

then and now, 166

theorem, 68

three dimensional solids, 459

transitive property, 50

translation, 73, 353

transversal line, 54

transverse axis, 569

trapezoid, 47, 51, 97

triangle area, 61

triangle example, 387

triangle exterior angles, 56

triangle inequality, 120, 407

triangle properties, 378

triangle sides, 389

triangle, 36

triangular graph paper, 551

trigonometric form for circumcenter, 443

trigonometric form for orthocenter, 444

trigonometric functions and circle, 275

trigonometric functions, 274, 279, 287

trigonometric identities, 284, 288

trigonometry, 271

trihedral angle, 521

trilinear coordinates, 446

triple cross product, 415

triple scalar product, 415

triple vector product, 417

trisection point, 401

truth table, 235

two column proof, 70

U

undecagon, 47

unfolding, 475

union, 328

unit sphere, 512

unit vectors, 402, 405

V

vector addition, 398

vector components, 406

vector equation for plane, 421

vector equation of line, 420

vector form for centroid, 435

vector form for circumcenter, 440

vector identities , 415

vector notation, 399

vector subtraction, 398

vectors, 397

vertex angle, 34

vertex, 23, 470, 560

vertical angles, 53

vertical line test, 274

vertices, 401, 460

Viviani theorem, 200

volume of a solid, 462

volume of parallelepiped, 433

volume of sphere, 479

volume of tetrahedron, 434

volume of the parallelepiped, 416

volume, 462

W

Wallace line, 219

Z

Index
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