Solutions Final Exam

No.1 Method 1: From finite Fourier Cosine Transform table we find
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Method 2: Use the definition of Fourier Cosine series
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1 [t 1 221" L
Ag = — dr=="—| ==
0 L/O T 2}0 2

and

Integrate by parts twice to obtain
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For L = m we obtain the same answer as equation (1).
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No.2 Solve % + Ay = 0 over interval 0 < =z < 1 subject to the boundary conditions
y(0) = 0 and y’(1) = 0 There are no solutions for A = 0 and A = —w?. For A\ = w? we
obtain the solution

y = Acoswx + Bsinwzx
The first condition y(0) = 0 requires that A = 0. The second condition y’(1) = 0 requires
that Bwcosw = 0 This gives the values

w=w,=02n—-1)r/2 for n=123,...

(Many of you don’t know where cosf = 0) Therefore,

Eigenvalues: w? = (2n —1)*7%/4, n=1,2,3,...
(2n — 1)z

Eigenfunctions: vy, = y,(z) = sinw,z = sin 5
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Orthogonality:  (yn, ym) = / sin( 5 sin 5
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No.3 Solve % = K% subject to the boundary conditions u(0,t) = Ty and % =0
and initial condition u(z,0) = f(z). Assume a solution u(z,t) = w(z,t) + h(z,t) and
substitute into the PDE to obtain
ow  Oh Pw  9*h
ot T (37 T 922 )
w(0,t) + h(0,t) =T,
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w(z,0) + h(z,0) =f(x)

=0

The equilibrium temperature is given by % = 0 so that we can shift the non-homogeneous

terms over to the equilibrium solution this gives the system of equations
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w(z,0) =f(z) — h(x,0)
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The solution of the h(x,t) equation is given by h(z,t) = Ty Assume a solution to the
w(z,t) equation of the form w(x,t) = F(x)G(t). By separation of variables one obtains

the differential equations
F'(z)+w?F(z) =0 and  G'(t) +w?KG(t) =0

where F'(x) is subject to the boundary conditions F'(0) = 0 and F’(L) = 0.
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given by F,(z) = sinw,z. The solution of the G(t) equation is G, (t) = e K«nt. By

(a) This gives the eigenvalues \, = w? where w, = The eigenfunctions are

superposition of solutions of the form w,(z,t) = F,(z)G,(t) we obtain the general

solution
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w(z, t) = E B,, sinwyze” Kwnt
n=1

(b) The F,,(z) solutions are orthogonal functions satisfying the conditions
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(¢) Combining the solutions for h(z,t) and w(z,t) gives the answer to part (c)

o0
u(x,t) =Ty + Z B, sinwnxe*K“’it

n=1

where from the intial condition w(z,0) = f(x) — Ty = Z B,, sinw,x This gives the

n=1
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Fourier coefficients B,, = — / (f(z) — Tp) sinwpx de = HITICT Proce
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(d) In the special case f(z) =T} the above becomes

Norm squared

2T —To) (* ATy — T,
B, = 7( ! 0) / sin w,x dr = 7( ! )
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with solution
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No. 4 Solve % Ka L+ cg“ where u(x,0) = f(z) Let u(w,t) = u = F{u(z,t);z — w}

. Now take the Fourier transform of the given PDE to obtain

ou 0%u ou
f{a} f{K%}”{ ax}
du
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= — Kw?i — iwci

The transform of the initial condition gives F {u(z,0)} = F {f(x)} or 4(w,0) = F(w) The

transformed equation has the solution
u=u(w,t) = F(w)e*K“’Zte*i“’Ct = F(w)G(w)

which suggests a convolution integral for representation of the solution. We find by the

shift theorem that
_ f_l{ —Kw?t —iwct} _ m —(z+ct)? /4Kt
g(z) e e €

The convolution integral reduces to

7>e—(m—a’:+ct)2/4Kt AT
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In the special case f(x) = §(x) the above reduces to

1
u(z,t) = 7*47TKt6_(m+Ct)2/4Kt

A plot of u(z,t) for various values of ¢ shows that the temperature drops at a fixed time
with increasing ¢ values. This means more heat is being conducted away by the convection

term.

No. 5 Solve & = Kgm‘; for 8u(2 ) = 0 and u(z,0) = f(z).

(a) Using separation of variables we assume a solution u(z,t) = F(z)G(t) and obtain the

differential equations
G'(t) + WKG(t) =0 and F"(x) + w?F(x) =0
These equations have the solutions

G(t) = oW Kt and F(z) = Acoswx + Bsinwz



This gives solutions of the form
u(z, t;w) = F(x)G(t) = [A(w) coswz + B(w) sinw:c]efszt
By superposition

u(x,t) = / [A(w) coswz + B(w) sinwx]e“"QKt dw
0

The condition % = 0 requires that B(w) = 0. The condition u(z,0) = f(z)

requires
u(z,0) = f(z) :/ A(w) coswz dw
0

This is a Fourier integral representation of f(x) with Fourier coefficient
2 oo
Alw) = = / f(x) coswz dx
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This gives the solution u(z,t) = / A(w) coswz e~ Kt duy
0
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Using Fourier Cosine Transforms we let Clu(z,t)] = u = — / u(x, t) coswx dr Now
T Jo

take Cosine transform of given equation to obtain

ou 0%u
O[E] _Kc[—axg]
du 2 0u(0, 1) o
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T + Kw“u =0

subject to the intial condition C[u(z,0)] = u(w,0) = C[f(z)] = F(w) This differential
equation has the solution

u(w,t) = F(w)e_K°"21t

The inverse Fourier Cosine transform gives the solution
e 2
u(z,t) = C Ha(w,t)] = / F(w) coswz e K« duw
0

where 5 foo
F(w) = —/ f(x) coswz dx
™ Jo

which is the same form of the solution as in part (a)
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S[1] = g/ sinwz dx
0

T
doesn’t exit because the sine function continues to oscillate forever and the integral does

not converge. Sine transform does exist in the limiting sense though.
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The inverse transform is given by

2 2
S_l[ﬁ] = f(z) :/ ﬁsinwxdw =1
w 0 W
. L o . Lo fef <1
from the given hint. i.e. The Fourier integral representation of f(z) = 0 2] > 1 is
, x
given by
f(x) = / (A(w) coswz + B(w) sinwz) dw
0
where

A(w) :%/00 f(x) coswz dx

1 o
B(w) =— / f(x) sinwz dz
Q0 — 0o
The given f(x) is only defined between -1 and 1 so that the above coefficients reduce to

1! 2 i
A(w) :—/ (1) coswz dz = aithed
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B(w) :l/ (1)sinwzxdxr =0

This gives the Fourier integral representation
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f(x) = —/ Y coswr dw
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Note that when 2 = 0, we have f(0) =1 so that
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