
Solutions Final Exam

No.1 Method 1: From finite Fourier Cosine Transform table we find

x ∼ L

2
+

2
L

∞∑
n=1

(
L

nπ

)2

[(−1)n − 1] cos
nπx

L

so that with L = π we have

x ∼ π

2
+

2
π

∞∑
n=1

[(−1)n − 1]
n2

cos nx (1)

Method 2: Use the definition of Fourier Cosine series

f(x) ∼ A0 +
∞∑

n=1

An cos
nπx

L

where for f(x) even

A0 =
1
L

∫ L

0

x dx =
1
L

x2

2

]L

0

=
L

2

and

An =
2
L

∫ L

0

x cos
nπx

L
dx

Integrate by parts twice to obtain

An =
2
L

(
L

nπ

)2

[(−1)n − 1]

For L = π we obtain the same answer as equation (1).
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No.2 Solve d2y
dx2 + λy = 0 over interval 0 < x < 1 subject to the boundary conditions

y(0) = 0 and y′(1) = 0 There are no solutions for λ = 0 and λ = −ω2. For λ = ω2 we
obtain the solution

y = A cosωx + B sin ωx

The first condition y(0) = 0 requires that A = 0. The second condition y′(1) = 0 requires
that Bω cos ω = 0 This gives the values

ω = ωn = (2n− 1)π/2 for n = 1, 2, 3, . . .

(Many of you don’t know where cosθ = 0) Therefore,

Eigenvalues: ω2
n = (2n− 1)2π2/4, n = 1, 2, 3, . . .

Eigenfunctions: yn = yn(x) = sin ωnx = sin
(2n− 1)πx

2

Orthogonality: (yn, ym) =
∫ 1

0

sin
(2n− 1)πx

2
sin

(2m− 1)πx

2
dx =

{
0, m 6= n

||yn||2, m = n

where

||yn||2 =
∫ 1

0

sin2 (2n− 1)πx

2
dx =

1
2

No.3 Solve ∂u
∂t = K ∂2u

∂x2 subject to the boundary conditions u(0, t) = T0 and ∂u(L,t)
∂x = 0

and initial condition u(x, 0) = f(x). Assume a solution u(x, t) = w(x, t) + h(x, t) and
substitute into the PDE to obtain

∂w

∂t
+

∂h

∂t
=K

(
∂2w

∂x2
+

∂2h

∂x2

)

w(0, t) + h(0, t) =T0

∂w(L, t)
∂x

+
∂h(L, t)

∂x
=0

w(x, 0) + h(x, 0) =f(x)

The equilibrium temperature is given by ∂2h
∂x2 = 0 so that we can shift the non-homogeneous

terms over to the equilibrium solution this gives the system of equations

∂w

∂t
=K

∂2w

∂x2
− ∂h

∂t
w(0, t) =0

∂w(L, t)
∂x

=0

w(x, 0) =f(x)− h(x, 0)

∂2h

∂x2
=0

h(0, t) =T0

∂h(L, t)
∂x

=0
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The solution of the h(x, t) equation is given by h(x, t) = T0 Assume a solution to the
w(x, t) equation of the form w(x, t) = F (x)G(t). By separation of variables one obtains
the differential equations

F ′′(x) + ω2F (x) = 0 and G′(t) + ω2KG(t) = 0

where F (x) is subject to the boundary conditions F (0) = 0 and F ′(L) = 0.

(a) This gives the eigenvalues λn = ω2
n where ωn = (2n−1)π

2L . The eigenfunctions are
given by Fn(x) = sin ωnx. The solution of the G(t) equation is Gn(t) = e−Kω2

nt. By
superposition of solutions of the form un(x, t) = Fn(x)Gn(t) we obtain the general
solution

w(x, t) =
∞∑

n=1

Bn sin ωnxe−Kω2
nt

(b) The Fn(x) solutions are orthogonal functions satisfying the conditions

(Fn, Fm) =
∫ L

0

Fn(x)Fm(x) dx =
{

0, m 6= n

||Fn||2, m = n

where

||Fn||2 =
∫ L

0

sin2 ωnx dx =
L

2

(c) Combining the solutions for h(x, t) and w(x, t) gives the answer to part (c)

u(x, t) = T0 +
∞∑

n=1

Bn sin ωnxe−Kω2
nt

where from the intial condition w(x, 0) = f(x) − T0 =
∞∑

n=1

Bn sin ωnx This gives the

Fourier coefficients Bn =
2
L

∫ L

0

(f(x)− T0) sinωnx dx =
inner product
Norm squared

(d) In the special case f(x) = T1 the above becomes

Bn =
2(T1 − T0)

L

∫ L

0

sin ωnx dx =
4(T1 − T0)
(2n− 1)π

with solution

u(x, t) = T0 +
4(T1 − T0)

π

∞∑
n=1

sin (2n−1)πx
L

(2n− 1)
e−Kω2

nt
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No. 4 Solve ∂u
∂t

= K ∂2u
∂x2 + c∂u

∂x
where u(x, 0) = f(x) Let ū(ω, t) = ū = F {u(x, t); x→ ω}

. Now take the Fourier transform of the given PDE to obtain

F
{

∂u

∂t

}
=F

{
K

∂2u

∂x2

}
+ F

{
c
∂u

∂x

}

dū

dt
=−Kω2ū− iωcū

The transform of the initial condition gives F {u(x, 0)} = F {f(x)} or ū(ω, 0) = F (ω) The
transformed equation has the solution

ū = ū(ω, t) = F (ω)e−Kω2te−iωct = F (ω)G(ω)

which suggests a convolution integral for representation of the solution. We find by the
shift theorem that

g(x) = F−1
{
e−Kω2te−iωct

}
=

√
π

Kt
e−(x+ct)2/4Kt

The convolution integral reduces to

u(x, t) =
1√

4πKt

∫ ∞

−∞
f(x̄)e−(x−x̄+ct)2/4Kt dx̄

In the special case f(x) = δ(x) the above reduces to

u(x, t) =
1√

4πKt
e−(x+ct)2/4Kt

A plot of u(x, t) for various values of c shows that the temperature drops at a fixed time
with increasing c values. This means more heat is being conducted away by the convection
term.

No. 5 Solve ∂u
∂t = K ∂2u

∂x2 for ∂u(0,t)
∂x = 0 and u(x, 0) = f(x).

(a) Using separation of variables we assume a solution u(x, t) = F (x)G(t) and obtain the
differential equations

G′(t) + ω2KG(t) = 0 and F ′′(x) + ω2F (x) = 0

These equations have the solutions

G(t) = e−ω2Kt and F (x) = A cos ωx + B sin ωx
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This gives solutions of the form

u(x, t; ω) = F (x)G(t) = [A(ω) cosωx + B(ω) sinωx]e−ω2Kt

By superposition

u(x, t) =
∫ ∞

0

[A(ω) cosωx + B(ω) sinωx]e−ω2Kt dω

The condition ∂u(0,t)
∂x

= 0 requires that B(ω) = 0. The condition u(x, 0) = f(x)
requires

u(x, 0) = f(x) =
∫ ∞

0

A(ω) cosωx dω

This is a Fourier integral representation of f(x) with Fourier coefficient

A(ω) =
2
π

∫ ∞

0

f(x) cosωx dx

This gives the solution u(x, t) =
∫ ∞

0

A(ω) cosωx e−ω2Kt dω

(b) Using Fourier Cosine Transforms we let C[u(x, t)] = ū =
2
π

∫ ∞

0

u(x, t) cosωx dx Now

take Cosine transform of given equation to obtain

C[
∂u

∂t
] =KC[

∂2u

∂x2
]

dū

dt
=K

[
− 2

π

∂u(0, t)
∂x

− ω2ū

]

dū

dt
+ Kω2ū =0

subject to the intial condition C[u(x, 0)] = ū(ω, 0) = C[f(x)] = F (ω) This differential
equation has the solution

ū(ω, t) = F (ω)e−Kω2t

The inverse Fourier Cosine transform gives the solution

u(x, t) = C−1[ū(ω, t)] =
∫ ∞

0

F (ω) cosωx e−Kω2t dω

where
F (ω) =

2
π

∫ ∞

0

f(x) cosωx dx

which is the same form of the solution as in part (a)
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No. 6

S[1] =
2
π

∫ ∞

0

sin ωx dx

doesn’t exit because the sine function continues to oscillate forever and the integral does
not converge. Sine transform does exist in the limiting sense though.

S[e−εx] =
2
π

∫ ∞

0

e−εx sin ωx dx

=
2
π

[
e−εx

ε2 + ω2
(−ε sin ωx− ω cos ωx)

]∞
0

=
2
π

ω

ε2 + ω2

and lim
ε→0

S[e−εx] =
2

πω
= S[1]

The inverse transform is given by

S−1[
2/π

ω
] = f(x) =

∫ ∞

0

2/π

ω
sin ωx dω = 1

from the given hint. i.e. The Fourier integral representation of f(x) =
{

1, |x| < 1
0, |x| > 1

is

given by

f(x) =
∫ ∞

0

(A(ω) cosωx + B(ω) sinωx) dω

where
A(ω) =

1
π

∫ ∞

−∞
f(x) cosωx dx

B(ω) =
1
π

∫ ∞

−∞
f(x) sinωx dx

The given f(x) is only defined between -1 and 1 so that the above coefficients reduce to

A(ω) =
1
π

∫ 1

−1

(1) cosωx dx =
2
π

sin ω

ω

B(ω) =
1
π

∫ 1

−1

(1) sinωx dx = 0

This gives the Fourier integral representation

f(x) =
2
π

∫ ∞

0

sin ω

ω
cos ωx dω

Note that when x = 0, we have f(0) = 1 so that

1 =
2
π

∫ ∞

0

sin ω

ω
dω

6


