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Chapter 1
Preliminary Concepts

The prerequisite mathematical background for the material presented in this text are ba-

sic concepts from the subject areas of calculus, advanced calculus, differential equations and

partial differential equations. The material selected for presentation in this first chapter is a

combination of background preliminaries for review purposes together with an introduction

of new concepts associated with the background material. We begin by examining selected

fundamentals from the subject area of calculus.

Functions and derivatives

A real function f of a single real variable x is a rule which defines a one-to-one corre-

spondence between elements x in a set A and image elements y in a set B. A real function f

of a single variable x can be represented using the notation y = f(x). The set A is called the

domain of the function f and elements x ∈ A are real numbers for which the image element

y = f(x) ∈ B is also a real quantity.

The set of image elements y ∈ B, as x varies over

all elements in the domain, constitutes the range of the

function f. An element x belonging to the domain of the

function is called an independent variable and the corre-

sponding image element y, in the range of f, is called a

dependent variable. Functions can be represented graph-

ically by plotting a set of points (x, y) on a Cartesian

set of axes. A function f(x) is continuous‡ at a point

x0 if (i) f(x0) is defined, and (ii) limx→x0 f(x) exists and

(iii) limx→x0 f(x) = f(x0). A function is called discontinu-

ous at a point if it is not continuous at the point.

Let y = f(x) represent a function of a single real variable x. The derivative of this function,

evaluated at a point x0 is denoted using the notation dy
dx

x=x0

= f ′(x0) and is defined by the

limiting process
dy

dx x=x0

= f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

(1.1)

if this limit exists. The derivative at a point x0 can also be written as the limiting process

dy

dx x=x0

= f ′(x0) = lim
x→x0

f(x) − f(x0)
x − x0

(1.2)

by making the substitution h = x − x0 in the equation (1.1). The derivative dy
dx evaluated at

a point x0 denotes the slope of the tangent line to the curve at the point (x0, f(x0)) on the

‡ A more formal definition of continuity is that f(x) is continuous for x = x0 if for every small ε > 0 there exists
a δ > 0 such that |f(x) − f(x0)| < ε, whenever |x − x0| < δ. A function is called continuous over an interval if it is

continuous at all points within the interval.
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curve y = f(x). The equation of this tangent line is y − y0 = f ′(x0)(x − x0). Higher ordered

derivatives are defined as derivatives of lower ordered derivatives. For example, the second

derivative d2y
dx2 is defined as the derivative of a first derivative or d2y

dx2 = d
dx

(
dy
dx

)
.

Note that primes ′ are used to denote differentiation with respect to the argument of

the function. When the number of primes becomes too large we switch to an index in

parenthesizes. For example, if y = y(x) denotes a function which has derivatives through the

nth order, then these derivatives are denoted

dy

dx
= y′,

d2y

dx2
= y′′,

d3y

dx3
= y′′′,

d4y

dx4
= y(4), . . . ,

dny

dxn
= y(n) (1.3)

A δ-neighborhood of a point x0 on the x-axis is defined as the set of points x satisfying

{x |x − x0| < δ }. This δ-neighborhood can also be written as the set of points x satisfying

the inequality x0 − δ < x < x0 + δ.

Rolle’s theorem

Let y = f(x) denote a function of a single real variable x, which is continuous and differ-

entiable at all points within an interval a ≤ x ≤ b. The Rolle’s theorem, which is associated

with continuous functions with continuous derivatives, states that if the height of the curve

is the same at the points x = a and x = b, then there exists at least one point ξ ∈ (a, b) where

the derivative satisfies the condition f ′(ξ) = 0. This can be interpreted geometrically that the

tangent line to the curve represented by y = f(x), at the point (ξ, f(ξ)), is horizontal with zero

slope. A representative situation illustrating the Rolle’s theorem is given in the figure 1-1.

Figure 1-1. A situation illustrating the Rolle’s theorem.

Mean value theorem

The mean value theorem is associated with functions y = f(x) which are continuous and

differentiable at all points within an interval a ≤ x ≤ b. Recall that a line passing through

two different points (a, f(a)) and (b, f(b)) on a given curve is called a secant line. The mean

value theorem states that if a function is continuous, then there exists at least one point

c ∈ (a, b) where the slope of the curve y = f(x) at x = c is the same as the slope of the secant

line through the end points (a, f(a)) and (b, f(b)). The mean value theorem can be written

f ′(c) =
f(b) − f(a)

b − a
for some value c satisfying a < c < b. A representative situation illustrating

the mean value theorem is given in the figure 1-2.
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f ′(c1) =
f(b) − f(a)

b − a

f ′(c2) =
f(b) − f(a)

b − a

Figure 1-2. A situation illustrating the mean value theorem.

A function f of two real variables x and y is a rule which assigns a one-to-one correspon-

dence between an ordered pair of real numbers (x, y) from a set A and an image element z in a

set B. The image element is denoted by the notation z = f(x, y) where (x, y) represents a point

in a domain A and z represents a point in the range B. Here x and y are real quantities and

f represents a rule for producing a real image point z. The quantities x and y are called the

independent variables of the function and z is called the dependent variable of the function.

A δ-neighborhood of a point (x0, y0), lying in the x, y-plane, is defined as the set of

points (x, y) inside a small circle with center (x0, y0) and radius δ. All points (x, y) lying in a

δ-neighborhood of the point (x0, y0) must satisfy the inequality

(x − x0)2 + (y − y0)2 < δ2. (1.4)

A function f(x, y) is continuous‡ at a point (x0, y0) if (i) f(x0, y0) exists, (ii) limx→x0
y→y0

f(x, y)

exists, and (iii) limx→x0
y→y0

f(x, y) = f(x0, y0) and this limit must exist and be independent of the

method that x → x0 and y → y0. If f(x, y) is continuous for all points in a region R, then f(x, y)

is said to be continuous over the region R. A set of points R is called an open set, if every

point (x, y) ∈ R has some δ-neighborhood which lies entirely within the set R. If, in addition,

the set R has the property that any two arbitrary distinct points (x0, y0) ∈ R and (x1, y1) ∈ R

can be joined by connected line segments, which lie within the region R, then the set R is

called a connected open set or a domain. The boundary of the region R is denoted ∂R and

represents a set of points with the following property. A point (x, y) ∈ ∂R is called a boundary

point of the region R if every δ-neighborhood of the point (x, y) contains at least one point

within the region R and at least one point not in the region R. A closed region R is one that

contains its boundary points.

The partial derivatives of a function z = z(x, y) with respect to x and y are defined

∂z

∂x
= lim

∆x→0

z(x + ∆x, y) − z(x, y)
∆x

and
∂z

∂y
= lim

∆y→0

z(x, y + ∆y) − z(x, y)
∆y

(1.5)

if these limits exist.
‡ A more formal definition of continuity is that f(x, y) is continuous at a point (x0, y0) if (i) it is defined at this point

and (ii) if for every ε > 0 there exists a δ > 0 such that for all points (x, y) in a δ-neighborhood of (x0, y0) the relation

|f(x, y) − f(x0, y0)| < ε is satisfied.
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The function z = z(x, y) represents a surface and points on this surface can be described

by the position vector ~r = ~r(x, y) = x ê1 + y ê2 + z(x, y) ê3. The curves ~r = ~r(x0, y) and ~r = ~r(x, y0)

represent curves on this surface called coordinate curves. These curves can be viewed as the

intersection of the planes y = y0 and x = x0 with the surface z = z(x, y). At the point (x0, y0, z0)

of the surface, where z0 = z(x0, y0), the vectors ∂~r
∂x

(x0,y0,z0)

and ∂~r
∂y

(x0,y0,z0)

represent tangent

vectors to the surface curves ~r = ~r(x, y0) and ~r = ~r(x0, y) respectively. A normal vector ~N to the

surface z = z(x, y), at the point (x0, y0), can be calculated from the cross product ~N = ∂~r
∂x × ∂~r

∂y

evaluated at the point (x0, y0, z0). Note that the vector − ~N is also normal to the surface.

A surface is called a smooth surface if ∂z
∂x and ∂z

∂y are well

defined continuous functions over the surface. This im-

plies that a smooth surface has a well defined normal

at each point on the surface. A sketch of the planes

x = x0 and y = y0 intersecting the surface z = z(x, y) shows

the coordinate surface curves. The partial derivatives ∂z
∂x

and ∂z
∂y , evaluated at the point of intersection of the co-

ordinate curves, represent the slopes of these coordinate

curves at the point of intersection.

The locus of points (x, y) which satisfy z(x, y) = constant produces a curve on the surface

where z has a constant level and so such curves are called level curves. By selecting various

constants c1, c2, c3, . . . one can construct level curves z(x, y) = ci for i = 1, 2, . . ., n. These level

curves represent an intersection of the surface z = z(x, y) with the planes z = ci = constant, for

i = 1, 2, . . .. There exists many graphical packages for computer usage which will graph these

level curves. Some of the more advanced graphical packages make it possible to sketch both

the given surface and the level curves associated with the surface. These packages can be

extremely helpful in illustrating the surface represented by a given function. A representative

sketch of a set of level curves or contour plot associated with a specific surface is illustrated

in the figure 1-3.

Figure 1-3. Contour plot and sketch of the function

z = z(z, y) = 5 exp
[
−x2 − y2

]
− 3 exp

[
−(x − 2)2 − (y − 2)2

]
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Higher ordered derivatives

Higher ordered partial derivatives are defined as derivatives of derivatives. For example,

if the first ordered partial derivatives ∂z
∂x

and ∂z
∂y

are differentiated with respect to x and y

there results four possible second ordered derivatives. These four possibilities are

∂

∂x

(
∂z

∂x

)
=

∂ 2z

∂x 2
,

∂

∂x

(
∂z

∂y

)
=

∂ 2z

∂x∂y
,

∂

∂y

(
∂z

∂x

)
=

∂ 2z

∂y∂x
,

∂

∂y

(
∂z

∂y

)
=

∂ 2z

∂y 2

Here the notation ∂ 2z
∂x∂y

denotes first a differentiation with respect to x which is to be followed

by a differentiation with respect to y. In the case that all the derivatives are continuous over

a common domain of definition, then the mixed partial derivatives are equal so that

∂ 2z

∂x∂y
=

∂ 2z

∂y∂x
. (1.6)

This result is known as Clairaut’s theorem. Higher ordered mixed derivatives have a similar

property. For example, the third partial derivatives of the function z can be denoted

∂ 3z

∂x 3
=

∂

∂x

(
∂ 2z

∂x 2

)
,

∂3z

∂y2∂x
=

∂

∂y

(
∂ 2z

∂y∂x

)
, etc. (1.7)

Using Clairaut’s theorem one can say that if all the mixed third partial derivatives are defined

and continuous over a common domain of definition then it can be shown that

∂3z

∂x∂y2
=

∂3z

∂y∂x∂y
=

∂3z

∂y2∂x
and

∂3z

∂y∂x2
=

∂3z

∂x∂y∂x
=

∂3z

∂x2∂y

with similar results applying to mixed higher derivatives. The above concepts can be gener-

alized to functions of n-real variables.

Partial derivatives are often times represented using a subscript notation. For example,

if z = z(x, y), then the first and second partial derivatives can be represented by the following

subscript notation

zx =
∂z

∂x
, zy =

∂z

∂y
, zxx =

∂ 2z

∂x 2
, zxy =

∂ 2z

∂x∂y
, zyy =

∂ 2z

∂y 2
(1.8)

As another example, if F = F (x, y, w, ∂w
∂x , ∂w

∂y ) = F (x, y, w, wx, wy), and we treat each variable as

being independent, then the first partial derivatives of F can be represented

Fx =
∂F

∂x
, Fy =

∂F

∂y
, Fw =

∂F

∂w
, Fwx =

∂F

∂wx
, Fwy =

∂F

∂wy
(1.9)

Curves in space

A set of parametric equations of the form

x = x(t), y = y(t), z = z(t) with parameter t (1.10)

defines a space curve C. The position vector to a general point on the curve C is written as

~r = ~r(t) = x(t) ê1 + y(t) ê2 + z(t) ê3. (1.11)
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where ê1, ê2, ê3 are unit basis vectors in the directions of the x, y and z axes respectively.

These basis vectors are sometimes written as the î, ĵ, k̂ unit vectors in the directions of the

x, y and z axes. Consider a point P1 on the curve C which is defined by the parametric value

t = t1 and having the position vector defined by ~r1 = ~r(t1). The tangent vector to the curve C

at the point P1 is given by

d~r

dt
=

dx

dt
ê1 +

dy

dt
ê2 +

dz

dt
ê3

t=t1

= x′(t1) ê1 + y′(t1) ê2 + z′(t1) ê3 (1.12)

Let ds denote an element of arc length along the curve C. An element of arc length squared

is written

ds2 = d~r · d~r, or | d~r

dt
|= ds

dt
=

√
d~r

dt
· d~r

dt
(1.13)

Hence, one can write a unit tangent vector to a point on the curve C from the relation

~T =
d~r
dt

| d~r
dt |

=
d~r
dt
ds
dt

=
d~r

ds
(1.14)

where s denotes arc length along the curve. When equation (1.14) is evaluated at the

parametric value t = t1 one obtains the unit tangent vector ~T to the point P1.

Figure 1-4. A space curve C with moving trihedral.

The rate of change of the unit tangent vector ~T with respect to arc length s along the

curve C gives a vector which is normal to the unit tangent vector. The reason for this is that

at any point on the curve C the unit tangent vector ~T satisfies ~T · ~T = 1 and, consequently, if

one differentiates this relation with respect to arc length s, there results

d

ds

(
~T · ~T

)
=

d

ds
(1) ⇒ ~T ·

d~T

dt
+

d~T

ds
· ~T = 2~T ·

d~T

ds
= 0, or ~T ·

d~T

ds
= 0

This last equation tells us that d~T
ds is perpendicular to ~T since their dot product is zero. From

the infinite number of vectors perpendicular to ~T , the unit vector in the direction d~T
ds is given
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the special name of principal unit normal to the curve C at the point P1, and this principal

unit normal is denoted by the symbol ~N . At a point on the curve C, where the unit tangent

is constructed, one can write

d~T

ds
= κ ~N, ~N · ~N = 1,

d~T

ds
· d~T

ds
= κ2 (1.15)

where κ is a scalar called the curvature of the curve C at a specific point where ~T is con-

structed. The quantity ρ = 1/κ is called the radius of curvature of the curve C at this point.

The unit vector ~B defined by ~B = ~T × ~N is called the binormal vector to the curve C and is

perpendicular to both ~T and ~N . The three unit vectors ~T , ~N, ~B form a right-handed localized

coordinate system at each point along the curve C and is often called a moving trihedral as

the arc length s changes. A nominal situation is illustrated in the figure 1-4.

The vectors ~T , ~N, ~B satisfy the Frenet-Serret formulas

d~T

ds
= κ ~N,

d ~N

ds
= τ ~B − κ~T ,

d ~B

ds
= −τ ~N (1.16)

where τ is a scalar called the torsion and the quantity σ = 1/τ is called the radius of torsion.

The torsion τ is a measure of the twisting of a space curve out of a plane. If τ = 0, then the

curve C is a plane curve. The curvature κ and radius of curvature ρ measure the turning of

the curve C in relation to a localized circle which just touches the curve C at a point. If the

curvature κ = 0, then the curve C is a straight line.

The plane containing the unit tangent vector ~T and the principal normal vector ~N is

called the osculating plane. The plane containing the unit vectors ~B and ~N is perpendicular

to the unit tangent vector and is called the normal plane to the curve. The plane containing

the unit vectors ~B and ~T which is perpendicular to the unit principal normal vector is called

the rectifying plane.

It is an easy exercise to show that the equation of the tangent line to the space curve C

at the point P1 is given by (~r − ~r1) × ~T = ~0. Another easy exercise is to show the equations of

the osculating, normal and rectifying planes constructed at the point P1 are given by

Osculating plane

(~r − ~r1) · ~B = 0

Normal plane

(~r − ~r1) · ~T = 0

Rectifying plane

(~r − ~r1) · ~N = 0
(1.17)

where ~r = x ê1 + y ê2 + z ê3 is the position vector to a variable point on the line or plane being

constructed.
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Curvilinear coordinates

Parametric equations of the form

x = x(u, v), y = y(u, v), z = z(u, v), (1.18)

which involve two independent parameters u and v, are used to define a surface. If one can

solve for u and v from two of the equations, then the results can be substituted into the third

equation to obtain the surface in the form F (x, y, z) = 0. The special case where equations

(1.18) have the form

x = u, y = v, z = z(u, v) (1.19)

produces the surface in the form z = z(x, y).

The position vector

~r = ~r(u, v) = x(u, v) ê1 + y(u, v) ê2 + z(u, v) ê3 (1.20)

defines a general point on the surface. By setting u = u1 = constant, one obtains a curve on

the surface given by

~r(u1, v) = x(u1, v) ê1 + y(u1, v) ê2 + z(u1, v) ê3, v is parameter (1.21)

Similarly, if one sets the parameter v = v1 = constant one obtains the curves

~r(u, v1) = x(u, v1) ê1 + y(u, v1) ê2 + z(u, v1) ê3, u is parameter (1.22)

These curves are called coordinate curves.

If one selects equally spaced constant values

u1, u2, u3, . . . and v1, v2, v3, . . . for the parametric

values in the above curves, then the surface will

be covered by a two parameter family of coor-

dinate curves. A point on the surface can then

characterized by assigning values to the param-

eters u and v and the set of points (u, v) are re-

ferred to as curvilinear coordinates of points on

the surface. An example is illustrated in the

accompanying figure.

Coordinate curves for unit sphere

x = sin u cos v, y = sin u sin v, z = cos u

The partial derivatives ∂~r
∂u

and ∂~r
∂v

represent tangent vectors to the coordinate curves at

a point (u, v) on the surface and consequently a normal vector ~N to the surface is given by

~N =
∂~r

∂u
× ∂~r

∂v

so that a unit normal vector n̂ to the surface is given by

n̂ = ±
~N

| ~N|
= ±

∂~r
∂u × ∂~r

∂v

| ∂~r
∂u

× ∂~r
∂v

|
(1.23)
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Note that there are always two unit normals at any point on a surface. These unit normals

are given by n̂ and −n̂. If the surface is a closed surface then there is an outward pointing

and inward pointing unit normal at each point on the surface. Therefore, you must select

which unit normal you want.

The differential d~r of the position vector ~r = ~r(u, v) is written

d~r =
∂~r

∂u
du +

∂~r

∂v
dv (1.24)

so that the square of an element of arc length on the surface is given by

ds2 = d~r · d~r =
∂~r

∂u
· ∂~r

∂u
du2 + 2

∂~r

∂u
· ∂~r

∂v
du dv +

∂~r

∂v
· ∂~r

∂v
dv2

This is often written in the form

ds2 = E du2 + 2F du dv + G dv2 (1.25)

where

E =
∂~r

∂u
· ∂~r

∂u
, F =

∂~r

∂u
· ∂~r

∂v
, G =

∂~r

∂v
· ∂~r

∂v
(1.26)

The differential d~r defines a vector lying in the tangent

plane to the surface and can be thought of as the diagonal of

an elemental area parallelogram on the surface having sides
∂~r
∂u

du and ∂~r
∂v

dv. The area of this elemental parallelogram is

given by

dσ =| ∂~r

∂u
× ∂~r

∂v
| du dv =

√(
∂~r

∂u
× ∂~r

∂v

)
·
(

∂~r

∂u
× ∂~r

∂v

)
du dv

One can employ the vector identity ( ~A × ~B) · (~C × ~D) = ( ~A · ~C)( ~B · ~D) − ( ~A · ~D)( ~B · ~C)

to represent the element of surface area in the form

dσ =
√

EG − F 2 du dv (1.27)

In the special case the surface is defined by the parametric equations having the form

x = u, y = v, z = z(u, v) = z(x, y), then the element of surface area reduces to

dσ =

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy (1.28)

Using this same idea but changing symbols around, a surface defined by the parametric

equations x = u, y = y(u, v) = y(x, z), z = v, has an element of surface area in the form

dσ =

√
1 +

(
∂y

∂x

)2

+
(

∂y

∂z

)2

dz dx (1.29)
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Similarly, a surface defined by x = x(u, v) = x(y, z), y = u, z = v, has the element of surface

area

dσ =

√
1 +

(
∂x

∂y

)2

+
(

∂x

∂z

)2

dy dz (1.30)

If the surface is given in the implicit form F (x, y, z) = 0, then one can construct a normal

vector to the surface from the equation ~N = gradF = ∇F , with unit normal vector n̂ = ± ∇F
|∇F | ,

because the gradient vector evaluated at a surface point is perpendicular to the surface

defined by F (x, y, z) = 0. To show this, write the differential of F as follows

dF =
∂F

∂x
dx +

∂F

∂y
dy +

∂F

∂z
dz =

(
∂F

∂x
ê1 +

∂F

∂y
ê2 +

∂F

∂z
ê3

)
· (dx ê1 + dy ê2 + dz ê3) = grad F · d~r = 0.

This shows that the vector grad F is perpendicular to the vector d~r which lies in the tangent

plane to the surface, and so, must be perpendicular to the surface at the surface point of

evaluation. In the special case F = z(x, y) − z = 0 defines the surface, then a unit normal

vector to the surface is given by

n̂ =
∂z
∂x

ê1 + ∂z
∂y

ê2 − ê3√
1 +

(
∂z
∂x

)2

+
(

∂z
∂y

)2
(1.31)

and then the surface area given by equation (1.28) can be written in the form

dσ =
dx dy

| n̂ · ê3 |
(1.32)

In a similar manner it can be shown that the surface elements given by equations (1.29) and

(1.30) can be written in the alternative forms

dσ =
dx dz

| n̂ · ê2 |
and dσ =

dy dz

| n̂ · ê1 |
(1.33)

where n̂ is a unit normal to the surface. These equations have the physical interpretation of

representing the projections of the surface element dσ onto the x-y, x-z or y-z planes.

Integration

Integration is sometimes referred to as an anti-derivative. If you know a differentiation

formula, then you can immediately obtain an integration formula. That is, if

dF (x)
dx

= f(x), then
∫

f(x) dx = F (x) + C, (1.34)

where C is a constant of integration. In the use of definite integrals the above relations are

written

if
dF (x)

dx
= f(x), then

∫ b

a

f(x) dx = F (x)
b

a

= F (b) − F (a). (1.35)

If we replace the upper limit of integration by a variable quantity x, then equation (1.35)

can be written as

F (x) = F (a) +
∫ x

a

f(x) dx, with
dF (x)

dx
= f(x).


