8.2 Diagonalization

 $\mathbf{DEF} (\to p. 356)$

We say a matrix *B* is **similar** to a matrix *A* if there exists a nonsingular matrix *P* such that $B = P^{-1}AP$.

Properties of similarity (\rightarrow p. 356)

- **1.** A is similar to A.
- **2.** If *B* is similar to *A* then *A* is similar to *B*.
- **3.** If *A* is similar to *B* and *B* is similar to *C* then *A* is similar to *C*.

Proof of the third property:

We assume *A* is similar to *B*, i.e. there exists *P* s.t. $B = P^{-1}AP$.

Likewise, *B* is similar to *C*, i.e. there exists *Q* s.t. $C = Q^{-1}BQ$.

We can write

$$C = Q^{-1}BQ$$
$$= Q^{-1}(P^{-1}AP)Q$$
$$= (Q^{-1}P^{-1})A(PQ)$$
$$= (PQ)^{-1}A(PQ)$$

Since there exists a matrix S = PQ such that $C = S^{-1}AS$, we conclude that *C* is similar to *A*.

Note: According to property 2., instead of saying "*A* is similar to *B*" or "*B* is similar to *A*" we can say: "*A* and *B* are similar".

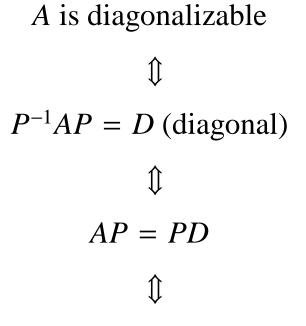
$$\mathbf{DEF} (\to p. 356)$$

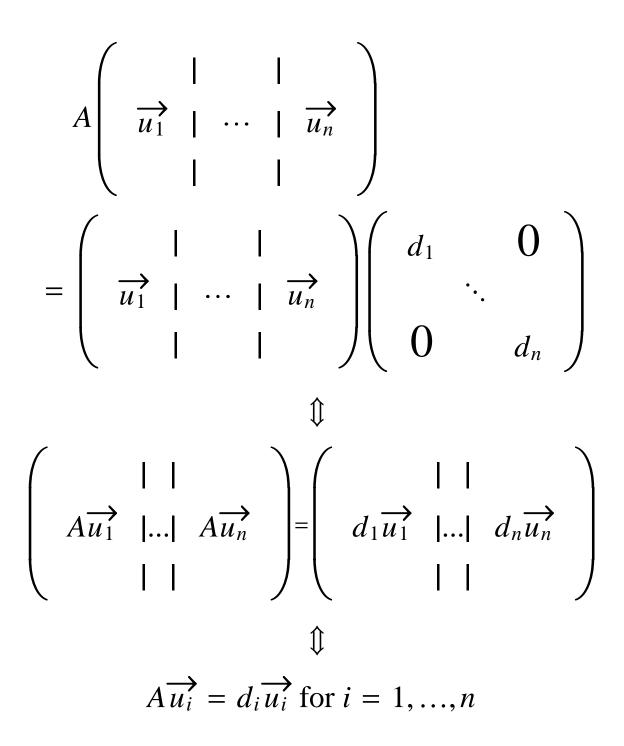
If a matrix A is similar to a diagonal matrix then A is said to be **diagonalizable** (i.e. A can be **diagonalized**.)

TH 8.3 $(\rightarrow p.357)$

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Proof





THEOREM If $\lambda_1, \ldots, \lambda_k$ are distinct real

eigenvalues of the matrix A, then the corresponding eigenvectors $\overrightarrow{u_1}, \ldots, \overrightarrow{u_k}$ are linearly independent.

Proof Assume $\overrightarrow{u_1}, ..., \overrightarrow{u_k}$ are linearly **dependent**. Then let $\overrightarrow{u_j}$ be the first vector that can be expressed as a linear combination of preceding vectors:

$$\overrightarrow{u_j} = c_1 \overrightarrow{u_1} + \dots + c_{j-1} \overrightarrow{u_{j-1}} \qquad (\star)$$

Premultiplying both sides by A we get

$$\overrightarrow{Au_{j}} = c_{1}A\overrightarrow{u_{1}} + \dots + c_{j-1}A\overrightarrow{u_{j-1}}$$
$$\overrightarrow{\lambda_{j}u_{j}} = c_{1}\lambda_{1}\overrightarrow{u_{1}} + \dots + c_{j-1}\lambda_{j-1}\overrightarrow{u_{j-1}}$$

Multiplying both sides of (\star) by λ_j yields

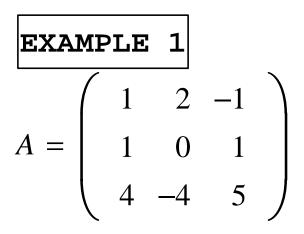
$$\lambda_j \overrightarrow{u_j} = c_1 \lambda_j \overrightarrow{u_1} + \dots + c_{j-1} \lambda_j \overrightarrow{u_{j-1}}$$

Subtract the last two equations:

 $\overrightarrow{0} = c_1(\lambda_1 - \lambda_j)\overrightarrow{u_1} + \dots + c_{j-1}(\lambda_{j-1} - \lambda_j)\overrightarrow{u_{j-1}}$ Since $\overrightarrow{u_1}, \dots, \overrightarrow{u_{j-1}}$ are linearly independent and λ' s are distinct, this implies $c_1 = \dots = c_{j-1} = 0$. However, in this case (*) would mean $\overrightarrow{u_j} = \overrightarrow{0}$. This is impossible since $\overrightarrow{u_j}$ is an eigenvector.

TH 8.4
$$(\rightarrow p. 357)$$

If all the roots of det($\lambda I - A$) are real and distinct then *A* is diagonalizable.



In **EXAMPLE** 3 we found:

eigenvalue	eigenspace
1	$span\{(-1, 1, 2)\}$
2	$span\{(-2, 1, 4)\}$
3	$span\{(-1, 1, 4)\}$

Let
$$P = \begin{pmatrix} -1 & -2 & -1 \\ 1 & 1 & 1 \\ 2 & 4 & 4 \end{pmatrix}$$
.
Then $P^{-1} = \begin{pmatrix} 0 & 2 & -\frac{1}{2} \\ -1 & -1 & 0 \\ 1 & 0 & \frac{1}{2} \end{pmatrix}$ (verify!)
 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

EXAMPLE 2
$$\rightarrow$$
 Example 5 p.360
 $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.
 $det(\lambda I - A) = \begin{vmatrix} \lambda & 0 & -1 \\ 0 & \lambda - 1 & -2 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 1)^2.$

For the eigenvalue $\underline{\lambda_1} = 1$, the coefficient matrix of (*):

$$\left(\begin{array}{rrrr}1 & 0 & -1\\0 & 0 & -2\\0 & 0 & 0\end{array}\right)$$
 has r.r.e.f.
$$\left(\begin{array}{rrrr}1 & 0 & 0\\0 & 0 & 1\\0 & 0 & 0\end{array}\right)$$

Solution: $x_2 = s, x_1 = x_3 = 0$; Eigenspace: span{(0, 1, 0)}. Dimension of the eigenspace = 1 < 2 (multiplicity). *A* is **not diagonalizable**.

EXAMPLE 3
$$\rightarrow$$
 Example 6 p.360
 $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.
 $det(\lambda I - A) = \begin{vmatrix} \lambda & 0 & 0 \\ 0 & \lambda - 1 & 0 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 1)^2$.

For the eigenvalue $\underline{\lambda_1} = 1$, the coefficient matrix of (*):

$$\left(\begin{array}{rrrr}1 & 0 & 0\\ 0 & 0 & 0\\ -1 & 0 & 0\end{array}\right)$$
 has r.r.e.f.
$$\left(\begin{array}{rrrr}1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{array}\right)$$

Solution: $x_1 = 0, x_2 = s, x_3 = t$. Eigenspace = span {(0, 1, 0), (0, 0, 1)}. Dimension = multiplicity.

A is diagonalizable.

To find *P* such that $P^{-1}AP = A$, consider $\underline{\lambda_2} = 0$:

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix} \text{has r.r.e.f.} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Eigenspace = span{(-1,0,1)}.
If $P = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ then
 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

If
$$Q = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 then
$$Q^{-1}AQ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

 \rightarrow Procedure for diagonalizing A (p.361)