
8.1 Eigenvalues and
Eigenvectors

DEF (→ p. 343)

Let A be an n × n matrix. The scalar λ is called an
eigenvalue of A if there exists a nonzero vector v
such that

A v = λ v

v is called an eigenvector associated with the
eigenvalue λ.

EXAMPLE 1 Consider the linear transformation

L(
x

y
) =

1 0

0 0

x

y

- projection onto the x-axis L(x,y) = (x, 0) (→
EXAMPLE 1 of the Section 4.3 lecture)
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Eigenvalue: 1, eigenvector: (2,0).
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Eigenvalue: 0, eigenvector: (0,3).
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Notice that if v is an eigenvector associated with
the eigenvalue λ, then for any nonzero number c,
c v is also an eigenvector associated with the
same eigenvalue λ:

A(c v ) = c(A v ) = c(λ v ) = λ(c v )

Specifically, in last example, we have
• an eigenvalue λ = 1 and an associated

eigenvector (x, 0) (for any nonzero x), and
• an eigenvalue λ = 0 and an associated

eigenvector (0,y) (for any nonzero y).
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We want to develop a general procedure for
finding eigenvalues and eigenvectors.

If we had a scalar equation

ax = λx

then we could solve for x as follows:

λx − ax = 0

(λ − a)x = 0

The matrix equation

A v = λ v

can be rewritten as

λ v − A v = 0

but not as

(

evaluate
cannot

λ − A) v = 0
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Instead, write

λI v − A v = 0

which yields

(λI − A) v = 0     (*)

If v is an eigenvector of A, it cannot be a zero
vector.

Therefore, such a v is a nontrivial solution of
the homogeneous system (*).

For the system to have such solutions, its
coefficient matrix, λI − A, must be singular.

This is equivalent to

det(λI − A) = 0     (**)

→ Th. 8.2 p. 348
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Procedure for finding eigenvalues and
eigenvectors of a matrix.
(1) Find all values λ = λ1,λ2,… such that

det(λI − A) = 0.
(2) For each eigenvalue λi found in (1), solve the

system (λiI − A) v = 0 for the
corresponding v .
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Use the procedure for the matrix of EXAMPLE
1.

A =
1 0

0 0
.

(1)

λI − A = λ
1 0

0 1
−

1 0

0 0

=
λ − 1 0

0 λ

det(λI − A) = (λ − 1)λ
det(λI − A) is called the characteristic
polynomial. The equation (**) is called the
characteristic equation:

det(λI − A) = 0

(λ − 1)λ = 0

The eigenvalues are: λ1 = 1 and λ2 = 0.

MATH 316U (003) - 8.1 (Eigenvalues and Eigenvectors) / 7



(2) For λ1 = 1, the homogeneous system (*)
becomes

0 0

0 1

x1

x2

=
0

0

The coefficient matrix has the reduced row
echelon form

0 1

0 0

x1 = s (arbitrary) and x2 = 0. Therefore, the
solution is

x1

x2

= s
1

0

Eigenvectors associated with λ1 = 1 are all
scalar multiples of (1,0) (except for the zero
vector).
Solution space: span{(1,0)} - eigenspace
associated with the eigenvalue 1.
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For λ2 = 0, the homogeneous system (*)
becomes

−1 0

0 0

x1

x2

=
0

0

The coefficient matrix has the reduced row
echelon form

1 0

0 0

x2 = s (arbitrary) and x1 = 0. Therefore, the
solution is

x1

x2

= s
0

1

Eigenvectors associated with λ2 = 0 are all
scalar multiples of (0,1) (except for the zero
vector).
Eigenspace: span{(0,1)}.
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EXAMPLE 2 Find all eigenvalues and a basis for

each associated eigenspace for the matrix

A =

1 0 0 0

0 1 5 −10

1 0 2 0

1 0 0 3

.

(1) The characteristic polynomial: det(λI − A)

= det

λ − 1 0 0 0

0 λ − 1 −5 10

−1 0 λ − 2 0

−1 0 0 λ − 3

= (λ − 1)(−1)2 det

λ − 1 −5 10

0 λ − 2 0

0 0 λ − 3

= (λ − 1)2(λ − 2)(λ − 3)
Eigenvalues: λ1 = 1 (multiplicity
2), λ2 = 2,λ3 = 3.
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(2) For the eigenvalue λ1 = 1, the system (*)
becomes

0 0 0 0

0 0 −5 10

−1 0 −1 0

−1 0 0 −2

x1

x2

x3

x4

=

0

0

0

0

The coefficient matrix has the reduced row
echelon form:

1 0 0 2

0 0 1 2

0 0 0 0

0 0 0 0

x2 = s and x4 = t are arbitrary, while
x1 = −2t and x3 = −2t:

x1

x2

x3

x4

= s

0

1

0

0

+ t

−2

0

−2

1
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Basis for the eigenspace:
{(0,1,0,0), (−2,0,−2,1)}.

For the eigenvalue λ2 = 2, the system (*)
becomes

1 0 0 0

0 1 −5 10

−1 0 0 0

−1 0 0 −1

x1

x2

x3

x4

=

0

0

0

0

The coefficient matrix has the reduced row
echelon form:

1 0 0 0

0 1 −5 0

0 0 0 1

0 0 0 0

x3 = s is arbitrary, while x1 = x4 = 0 and
x2 = 5s:
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x1

x2

x3

x4

= s

0

5

1

0

Basis for the eigenspace: {(0,5,1,0)}.

For the eigenvalue λ3 = 3, the basis for the
eigenspace is {(0,−5,0,1)}. (Check!)
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Equivalent conditions (→ p. 348)

For any n × n matrix A, the following conditions
are equivalent:
1. A is nonsingular.

2. A x = 0 has only the trivial solution.
3. A is row equivalent to In.

4. For every n × 1 matrix b , the system

A x = b has a unique solution.
5. det(A) ≠ 0.
6. rank A = n.
7. nullity A = 0.
8. The rows of A are linearly independent.
9. The columns of A are linearly independent.

10. Zero is not an eigenvalue of A.

→ Th. 8.1 p.348
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→ Read the discussion on p.349 above Example
6:

The only rational roots of the characteristic
polynomial

f(λ) = λn + a1λn−1 +` + an−1λ + an

with integer coefficients a1, …, an are integers
that are among factors of an.

EXAMPLE 3 → Examples 5 p. 347 and 6 p.349

A =
1 2 −1

1 0 1

4 −4 5

.

Characteristic polynomial:

det(λI3 − A) =
λ − 1 −2 1

−1 λ −1

−4 4 λ − 5

= λ3 − 6λ2 + 11λ − 6

Rational eigenvalues must be among the numbers:
±1,±2,±3, and ±6.
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Test λ = −1:

− 1 − 6 − 11 − 6 ≠ 0

λ = −1 is not an eigenvalue.
Test λ = 1:

1 − 6 + 11 − 6 = 0

λ = 1 is an eigenvalue.
Divide:

λ2 − 5λ + 6

λ − 1 | λ3 − 6λ2 + 11λ − 6

−λ3 + λ2

− 5λ2 + 11λ − 6

5λ2 − 5λ

6λ − 6

−6λ + 6

0
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Therefore

λ3 − 6λ2 + 11λ − 6 = (λ − 1)(λ2 − 5λ + 6)
= (λ − 1)(λ − 2)(λ − 3)

The eigenvalues: λ1 = 1,λ2 = 2,λ3 = 3.

For the eigenvalue λ1 = 1, the coefficient matrix
of (*):

0 −2 1

−1 1 −1

−4 4 −4

has r.r.e.f.

1 0 1
2

0 1 −1
2

0 0 0

Eigenspace = span {( −1
2

, 1
2

, 1)} (or
span{(−1,1,2)})
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For the eigenvalue λ2 = 2, the coefficient matrix
of (*):

1 −2 1

−1 2 −1

−4 4 −3

has r.r.e.f.

1 0 1
2

0 1 −1
4

0 0 0

Eigenspace = span {( −1
2

, 1
4

, 1)} (or
span{(−2,1,4)})

For the eigenvalue λ3 = 3, the coefficient matrix
of (*):

2 −2 1

−1 3 −1

−4 4 −2

has r.r.e.f.

1 0 1
4

0 1 −1
4

0 0 0

Eigenspace = span {( −1
4

, 1
4

, 1)} (or
span{(−1,1,4)})
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EXAMPLE 4 → Example 7 p. 350

Let A =
0 1

−1 0
.

det(λI2 − A) =
λ −1

1 λ
= λ2 + 1

A has no real eigenvalues.

Geometric interpretation:
Example 10, p.208, introduced a linear
transformation L : R2 → R2 defined as

L(
x

y
) =

cosφ − sin φ
sin φ cosφ

x

y

This is a rotation around the origin by the angle
φ.

Taking φ = −π
2

we obtain

L(
x

y
) =

0 1

−1 0

x

y
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For example,
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No real eigenvalues can be ”seen” for this matrix.
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