6.5 Homogeneous Systems

 \rightarrow **EXAMPLE 6** from Lecture on 6.2 (Example 8 p. 246)

Let A be an $m \times n$ matrix.

 $W = \{ \overrightarrow{x} \mid A \overrightarrow{x} = \overrightarrow{0}_{R^m} \} \text{ is a subspace of } R^n \text{ called}$

- the solution space of $A \overrightarrow{x} = \overrightarrow{0}_{R^m}$, or
- the **null space** of *A*.

dim(null space of *A*) =nullity *A*

EXAMPLE 1

Find a basis for
$$W = \{\vec{x} \mid A \vec{x} = \vec{0}\}$$
 where

$$\begin{pmatrix}
1 & 2 & 0 & 3 & 1 \\
2 & 3 & 0 & 3 & 1 \\
1 & 1 & 2 & 2 & 1 \\
3 & 5 & 0 & 6 & 2 \\
2 & 3 & 2 & 5 & 2
\end{pmatrix}.$$

The augmented matrix of the homogeneous system has the reduced row echelon form

The solution:

 $x_{4} = s \text{ (arbitrary)}$ $x_{5} = t \text{ (arbitrary)}$ $x_{1} = 3s + t$ $x_{2} = -3s - t$ $x_{3} = -s - \frac{1}{2}t$

can be expressed in a vector form:

The vectors $\overrightarrow{v_1} = (3, -3, -1, 1, 0)$ and $\overrightarrow{v_2} = (1, -1, -\frac{1}{2}, 0, 1)$

- span *W* and
- are linearly independent.

Therefore, $\{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ forms a basis for *W*. The nullity of *A* is 2. \rightarrow p. 277: Procedure for finding a basis for the solution space of a homogeneous system

 $A\overrightarrow{x} = \overrightarrow{0}.$

- Solve the given system using Gauss-Jordan reduction.
- If the solution is unique

$$\vec{x} = \vec{0}$$

then the solution space is $\{ \overrightarrow{0} \}$ and has dimension 0.

• If some of the unknowns have arbitrary values s_1, \ldots, s_p (since the corresponding columns in the reduced row echelon form do not contain leading entries), then express the solution as

$$\overrightarrow{x} = s_1 \overrightarrow{v_1} + s_2 \overrightarrow{v_2} + \dots + s_p \overrightarrow{v_p}$$

In this case, $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_p}\}$ forms a basis for the solution space. The space has dimension p.

 \rightarrow Example 1 p.278