6.4 Basis and Dimension

def $(\rightarrow p. 263)$

A set $S = {\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_k}}$ of vectors in a vector space V is a **basis** for V if (1) S spans V and (2) S is linearly independent.

EXAMPLE 1 (
$$\rightarrow$$
 EXAMPLE 1 from the previous
lecture)
Let $S = \{ \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \} = \{(1,0,0), (0,1,0), (0,0,1)\}$
(1) we've shown that *S* spans R^3
(2) $c_1 \overrightarrow{i} + c_2 \overrightarrow{j} + c_3 \overrightarrow{k} = \overrightarrow{0}$ corresponds to the
homogeneous system with the augmented
matrix
 $\begin{pmatrix} 1 & 0 & 0 & | & 0 \end{pmatrix}$

 $\left[\begin{array}{ccccc} 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{array}\right]$

The solution is unique: $c_1 = c_2 = c_3 = 0$ (the trivial solution).

Answer: *S* is a basis for R^3 .

 \rightarrow Example 1 p. 263 (n = 2, general n)

EXAMPLE 2

Is the set $S = \{(1, 1), (1, -1)\}$ a basis for R^2 ?

(1) Does S span R^2 ?

Solve
$$c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

 $1c_1 + 1c_2 = x$ $1c_1 - 1c_2 = y$

$$\left(\begin{array}{ccccc}1&1&\mid x\\1&-1&\mid y\end{array}\right)\stackrel{r_2-r_1\to r_2}{\to}\left(\begin{array}{ccccccc}1&1&\mid &x\\0&-2&\mid &y-x\end{array}\right)$$

This system is consistent for every x and y, therefore S spans R^2 .

(2) Is S linearly independent?
Solve
$$c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 $1c_1 + 1c_2 = 0$
 $1c_1 - 1c_2 = 0$
 $\begin{pmatrix} 1 & 1 & | & 0 \\ 1 & -1 & | & 0 \end{pmatrix} \xrightarrow{r_2 - r_1 \to r_2} \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & -2 & | & 0 \end{pmatrix}$

The system has a unique solution $c_1 = c_2 = 0$ (trivial solution).

Therefore S is linearly independent.

Consequently, S is a basis for R^2 .

EXAMPLE 3 Is $S = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$ a basis for R^3 ?

It was already shown (\rightarrow **EXAMPLE** 3 from the previous lecture) that *S* does not span R^3 .

Therefore S is not a basis for R^3 .

EXAMPLE 4 Is $S = \{(1,0), (0,1), (-2,5)\}$ a basis for R^2 ?

It was already shown (\rightarrow **EXAMPLE** 4 from the previous lecture) that *S* is linearly dependent.

Therefore S is not a basis for R^2 .

 \rightarrow Example 2 p.263.

EXAMPLE 5

$$S = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$$

$$\overrightarrow{v_{1}} \qquad \overrightarrow{v_{2}} \qquad \overrightarrow{v_{2}} \qquad \overrightarrow{v_{3}} \qquad \overrightarrow{v_{4}}$$
is a basis for the vector space M_{22} .

(1)
$$c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + c_3 \overrightarrow{v_3} + c_4 \overrightarrow{v_4} = \overrightarrow{v} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is equivalent to:

$$\left(\begin{array}{cc}c_1 & c_2\\ c_3 & c_4\end{array}\right) = \left(\begin{array}{cc}a & b\\ c & d\end{array}\right)$$

which is consistent for every a, b, c, and d. Therefore S spans M_{22} . (2) $c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + c_3 \overrightarrow{v_3} + c_4 \overrightarrow{v_4} = \overrightarrow{0}$ is equivalent to:

$$\left(\begin{array}{cc} c_1 & c_2 \\ c_3 & c_4 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

The system has only the trivial solution \Rightarrow *S* is linearly independent.

Consequently, S is a basis for M_{22} .

EXAMPLE 6 Is $S = \{1, t, t^2, t^3\}$ a basis for P_3 ?

(1)
$$c_1(1) + c_2(t) + c_3(t^2) + c_4(t^3)$$

= $a + bt + ct^2 + dt^3$
has a solution for every a, b, c , and d :
 $c_1 = a, c_2 = b, c_3 = c, c_4 = d$.
Therefore *S* spans P_3 .

(2)
$$c_1(1) + c_2(t) + c_3(t^2) + c_4(t^3) = 0$$

can only be solved by
 $c_1 = c_2 = c_3 = c_4 = 0$.
Therefore *S* is linearly independent

Consequently, S is a basis for P_3 .

 \rightarrow Example 3 p.264.

THEOREM (\rightarrow Th. 6.5 p. 265)

Let $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ be a set of nonzero vectors in a vector space V. The following statements are equivalent:

- (A) S is a basis for V,
- (B) every vector in V can be expressed as a linear combination of the vectors in S in a unique way.

 $Proof (A) \Rightarrow (B)$

- Every vector in V can be expressed as a linear combination of vectors in S because S spans V.
- Suppose \overrightarrow{v} can be represented as a linear combination of vectors in *S* in **two ways**:

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k}$$
$$\overrightarrow{v} = d_1 \overrightarrow{v_1} + \dots + d_k \overrightarrow{v_k}$$

Subtract:

$$\overrightarrow{0} = (c_1 - d_1)\overrightarrow{v_1} + \dots + (c_k - d_k)\overrightarrow{v_k}$$

Since *S* is linearly independent, then

$$c_1-d_1=\cdots=c_k-d_k=0$$

so that

$$c_1 = d_1$$
$$\vdots$$
$$c_k = d_k$$

The representation is **unique**.

 $Proof(B) \Rightarrow (A)$

- (B) \Rightarrow Every vector in V is in span S.
- Zero vector in V can be represented in a unique way as a linear combination of vectors in S:

$$\overrightarrow{0} = c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k}$$

This unique way must be: $c_1 = \cdots = c_k = 0$. Therefore *S* is linearly independent.

Consequently, S is a basis for V.

Back to **EXAMPLE 2**: $S = \{(1, 1), (1, -1)\}$

Instead of showing that

- $c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} = \overrightarrow{v}$ has a solution, and
- $c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} = \overrightarrow{0}$ has a unique solution,

we can show

•
$$c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} = \overrightarrow{v}$$
 has a unique solution.

Unique solution for every *x* and $y \Rightarrow S$ is a basis for R^2 .

TH 6.6 $(\rightarrow p. 266)$ Let $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots \overrightarrow{v_k}\}$ be a set of nonzero vectors in a vector space V. Some subset of S is a basis for W = span S.

 \rightarrow Procedure p. 268

EXAMPLE 7 Find a basis for
span{
$$(1,2,3), (-1,-2,-3), (0,1,1), (1,1,2)$$
}.
 $\overrightarrow{v_1}$ $\overrightarrow{v_2}$ $\overrightarrow{v_3}$ $\overrightarrow{v_4}$
Set $c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + c_3\overrightarrow{v_3} + c_4\overrightarrow{v_4} = \overrightarrow{0}$.

The corresponding system has augmented matrix:

$$\left(\begin{array}{cccccccc} 1 & -1 & 0 & 1 & | & 0 \\ 2 & -2 & 1 & 1 & | & 0 \\ 3 & -3 & 1 & 2 & | & 0 \end{array}\right)$$

which is equivalent

$$(r_2 - 2r_1 \rightarrow r_2; r_3 - 3r_1 \rightarrow r_3; r_3 - r_2 \rightarrow r_3) \text{ to}$$

$$\begin{pmatrix} 1 & -1 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Can set c_2 and c_4 arbitrary. For example

- If $c_2 = 1, c_4 = 0$ then $\overrightarrow{v_2}$ can be expressed as a linear combination of $\overrightarrow{v_1}$ and $\overrightarrow{v_3}$.
- If $c_2 = 0, c_4 = 1$ then $\overrightarrow{v_4}$ can be expressed as a linear combination of $\overrightarrow{v_1}$ and $\overrightarrow{v_3}$.

Therefore, every vector in span *S* can be expressed as a linear combination of $\overrightarrow{v_1}$ and $\overrightarrow{v_3}$. Also note that $\overrightarrow{v_1}$ and $\overrightarrow{v_3}$ are linearly independent. Consequently, they form a basis for span *S*.

Summarizing: The vectors corresponding to the columns with leading entries form a basis for *W*.

Different initial ordering of vectors, e.g., $\{\overrightarrow{v_2}, \overrightarrow{v_1}, \overrightarrow{v_3}, \overrightarrow{v_4}\}$ may change the basis obtained by the procedure above (in this case: $\overrightarrow{v_2}, \overrightarrow{v_3}$). **TH** 6.7 (\rightarrow p. 269) Let $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ span *V* and let $T = \{\overrightarrow{w_1}, \overrightarrow{w_2}, \dots, \overrightarrow{w_n}\}$ be a linearly independent set of vectors in *V*. Then $n \leq k$.

COROLLARY 6.1 (
$$\rightarrow$$
 p. 270)
Let $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ and $T = \{\overrightarrow{w_1}, \overrightarrow{w_2}, \dots, \overrightarrow{w_n}\}$ both be bases for V. Then $n = k$.

def $(\rightarrow p. 270)$

The dimension of a vector space V, denoted dim V, is the number of vectors in a basis for V. dim $(\{\overrightarrow{0}\}) = 0.$

- $\dim(\mathbb{R}^n) = n (\rightarrow \text{Example 6 p. 270})$
- $\dim(P_n) = n + 1 (\rightarrow \text{Example 7 p. 270})$
- $\dim(M_{mn}) = mn$

TH 6.8 $(\rightarrow p.271)$

If S is a linearly independent set of vectors in a finite-dimensional vector space V, then there exists a basis T for V, which contains S.

EXAMPLE 8 (
$$\rightarrow$$
 Example 9 p. 271)
Find a basis for R^4 that contains the vectors
 $\overrightarrow{v_1} = (1, 0, 1, 0)$ and $\overrightarrow{v_2} = (-1, 1, -1, 0)$.
Solution:
The natural basis for R^4 :
 $\{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$
 $\overrightarrow{e_1}$ $\overrightarrow{e_2}$ $\overrightarrow{e_3}$ $\overrightarrow{e_4}$
Follow the procedure of **EXAMPLE 7** to
determine a basis of span $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_4}\}$.
 $\begin{pmatrix} 1 & -1 & 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & | & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & | & 0 \end{pmatrix}$

has the reduced row echelon form:

Answer: $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{e_1}, \overrightarrow{e_4}\}.$

TH 6.9
$$(\rightarrow p. 272)$$

Let *V* be an *n*-dimensional vector space, and let $S = {\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}}$ be a set of *n* vectors in *V*.

- (a) If *S* is linearly independent then it is a basis for *V*.
- (b) If S spans V then it is a basis for V.