6.3 Linear Independence $DEF (\rightarrow p. 253)$

Let $S = {\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}}$ be a set of vectors in a vector space V. We say that S spans V (or V is spanned by S) if every vector in V is a linear combination of vectors in S.

To check if S spans V

- choose an arbitrary vector \overrightarrow{v} in V,
- check if \overrightarrow{v} is in span S. If so, S spans V. Otherwise it does not.

EXAMPLE 1 (\rightarrow Example 4 p. 255) Does the set $S = \{(\underbrace{1,0,0}_{i}, \underbrace{0,1,0}_{j}, \underbrace{0,0,1}_{k})\}$ span $\overrightarrow{i} \qquad \overrightarrow{j} \qquad \overrightarrow{k}$ R^{3} ?

Let $\overrightarrow{v} = (x, y, z)$ - arbitrary vector in \mathbb{R}^3 .

Can we find c_1, c_2, c_3 such that $\overrightarrow{c_1 i} + \overrightarrow{c_2 j} + \overrightarrow{c_3 k} = \overrightarrow{v}$?

$$c_{1}\begin{pmatrix}1\\0\\0\end{pmatrix}+c_{2}\begin{pmatrix}0\\1\\0\end{pmatrix}+c_{3}\begin{pmatrix}0\\0\\1\end{pmatrix}$$
$$=\begin{pmatrix}x\\y\\z\end{pmatrix}$$

Solution: $c_1 = x, c_2 = y, c_3 = z$. Answer: *S* spans R^3 .

EXAMPLE 2

Does the set $S = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$ span R^3 ?

Solve $c_{1}\begin{pmatrix}1\\2\\3\end{pmatrix}+c_{2}\begin{pmatrix}0\\1\\2\end{pmatrix}+c_{3}\begin{pmatrix}-2\\0\\1\end{pmatrix}\\ =\begin{pmatrix}x\\y\\z\end{pmatrix}$

> $1c_1 + 0c_2 - 2c_3 = x$ $2c_1 + 1c_2 + 0c_3 = y$ $3c_1 + 2c_2 + 1c_3 = z$

$$\begin{pmatrix} 1 & 0 & -2 & | & x \\ 2 & 1 & 0 & | & y \\ 3 & 2 & 1 & | & z \end{pmatrix}$$

$$\stackrel{r_2 - 2r_1 \to r_2}{\xrightarrow{r_3 - 3r_1 \to r_3}} \begin{pmatrix} 1 & 0 & -2 & | & x \\ 0 & 1 & 4 & | & y - 2x \\ 0 & 2 & 7 & | & z - 3x \end{pmatrix}$$

$$\stackrel{r_3 - 2r_2 \to r_3}{\xrightarrow{r_3 - 2r_2 \to r_3}} \begin{pmatrix} 1 & 0 & -2 & | & x \\ 0 & 1 & 4 & | & y - 2x \\ 0 & 1 & 4 & | & y - 2x \\ 0 & 0 & -1 & | & z - 2y + x \end{pmatrix}$$

This system is consistent for every x, y, and z, therefore *S* spans R^3 .

EXAMPLE 3 Does the set

 $S = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$ span R^3 ? Setting up a system, we get the augmented matrix:

with the reduced row echelon form:

$$\left(\begin{array}{cccccc} 1 & 0 & -1 & | & 2y - z \\ 0 & 1 & 2 & | & -3y + 2z \\ 0 & 0 & 0 & | & x - 2y + z \end{array}\right)$$

There exist values of *x*, *y*, and *z* for which the system has no solution (e.g., x = 1, y = z = 0). Consequently, *S* does not span R^3 .

Also, recall that **EXAMPLE 8** from the lecture on the previous section showed that (1, 2, -1) is not in span{(1, 2, 3), (0, 1, 2), (-1, 0, 1)}.

DEF Linear Independence $(\rightarrow p. 256)$

 $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ is **linearly dependent** if there exist constants c_1, c_2, \dots, c_k , not all of which are zero, such that

$$c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \dots + c_k\overrightarrow{v_k} = \overrightarrow{0}$$
 (*)

Otherwise (i.e., if the only way for (*) to hold is if $c_1 = c_2 = \cdots = c_k = 0$) we say *S* is **linearly** independent.

To check if $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots \overrightarrow{v_k}\}$ is linearly independent, begin by setting up the homogeneous system corresponding to (*)

- if the system has the **trivial solution only** then *S* is **linearly independent**,
- if the system has **many solutions** then *S* is **linearly dependent**.

EXAMPLE 4 Determine whether the set $S = \{(1,0), (0,1), (-2,5)\}$ is linearly dependent or linearly independent.

$$c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

can be rewritten as the homogeneous system

$$1c_1 + 0c_2 - 2c_3 = 0$$

$$0c_1 + 1c_2 + 5c_3 = 0$$

wih the augmented matrix

The system has many solutions \Rightarrow *S* is **linearly dependent**.

EXAMPLE 5 Determine whether the set

 $S = \{(1,0,-1,0), (1,1,0,2), (0,3,1,-2), (0,1,-1,2)\}$ is linearly dependent or linearly independent.

The homogeneous system has the augmented matrix

with a row echelon form:

1	1	0	0	0	
0	1	3	1	0	
0	0	1	1	0	
0	0	0	1	0	

The system has only the trivial solution \Rightarrow *S* is **linearly independent**.

→ Examples 7, 8, 9, 10, 11 p. 256-258

 \rightarrow Example 12 p. 258: Every set of vectors containing the zero vector is linearly dependent.

(e.g., $c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + \dots + c_{k-1} \overrightarrow{v_{k-1}} + c_k \overrightarrow{0} = \overrightarrow{0}$ can be solved by $c_1 = \dots = c_{k-1} = 0$ and c_k being any **nonzero** number)

 \rightarrow Discussion under Example 12 p.258: Let S_1 and S_2 be sets of vectors in a vector space V such that $S_1 \subseteq S_2$ (S_1 is a subset of S_2). Then

- S_1 is linearly dependent $\Rightarrow S_2$ is linearly dependent,
- S_2 is linearly independent $\Rightarrow S_1$ is linearly independent.

TH 6.4 $(\rightarrow p.259)$

Nonzero vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots \overrightarrow{v_k}$ in a vector space V are linearly dependent if and only if at least one of the vectors, $\overrightarrow{v_j}$ can be expressed as a linear combination of the preceding vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots \overrightarrow{v_{j-1}}$.