6.2 Subspaces

DEF Subspace (\rightarrow p. 244)

If

- *W* is a nonempty subset of a vector space *V* and
- *W* is a vector space with respect to the operations in *V*,

then W is called a **subspace** of V.

EXAMPLE 1 (\rightarrow Example 1 p. 245)

- Every vector space V contains a zero vector $\overrightarrow{0}$. The set $\{\overrightarrow{0}\}$ forms a subspace of V.
- *V* is a subspace of itself.

EXAMPLE 2 (\rightarrow **EXAMPLE 2** from the lecture on Section 6.1)

V - set of all ordered pairs of numbers of the form (x, -x)

 \oplus and \odot - the usual operations in \mathbb{R}^2 .

V is a nonempty (e.g. (1,-1)) subset of \mathbb{R}^2 .

V satisfies all ten properties of a vector space (α), (β), (a)-(h).

Therefore, V is a subspace of R^2 .

EXAMPLE 3 (\rightarrow Problem 1 p.243)

 $V = \{(x, y) | x > 0, y > 0\}.$ \oplus and \odot - the usual operations in R^2

V is not closed under \odot , therefore it is not a vector space.

Consequently, V is not a subspace of R^2 .

THEOREM 6.2 \rightarrow p. 245

If *W* is a nonempty subset of a vector space *V* with operations \oplus and \odot ,

then *W* is a subspace of *V* if and only if *W* is closed under both \oplus and \odot .

EXAMPLE 4 Let V be the set of pairs of numbers (x, y) such that x = 2y with the usual operations in R^2 . Determine whether V is a subspace of R^2 .

- V is <u>nonempty</u> (e.g., (2,1))
- *V* is a subset of R^2 .
- Let *u* = (x, y) and *v* = (x', y') be in V. Therefore, x = 2y and x' = 2y' so that we can write: *u* = (2y, y) and *v* = (2y', y'). *u* + *v* = (2y + 2y', y + y') satisfies the condition 2y + 2y' = 2(y + y') therefore *u* + *v* is in V. Consequently, V is closed under the operation of vector addition.
- Let \$\vec{u}\$ = (x, y) = (2y, y) and c be a real number.
 \$\vec{u}\$ = ((c)(2y), cy) satisfies the condition
 (c)(2y) = 2(cy) therefore \$\vec{c}u\$ is in V.
 Consequently, V is closed under the operation of scalar multiplication.

Based on Theorem 6.2, we can conclude that *V* is a subspace of R^2 .

EXAMPLE 5 Let V be the set of pairs of numbers (x, y) such that x = 2 + y with the usual operations in R^2 . Determine whether V is a subspace of R^2 .

- V is <u>nonempty</u> (e.g., (3,1))
- *V* is a subset of R^2 .
- Let $\overrightarrow{u} = (x, y)$ and $\overrightarrow{v} = (x', y')$ be in *V*. Therefore, x = 2 + y and x' = 2 + y' so that we can write: $\overrightarrow{u} = (2 + y, y)$ and $\overrightarrow{v} = (2 + y', y')$. $\overrightarrow{u} + \overrightarrow{v} = (2 + y + 2 + y', y + y')$ does not satisfy the condition 2 + y + 2 + y' = 2 + (y + y') therefore $\overrightarrow{u} + \overrightarrow{v}$ is <u>not</u> in *V*. Consequently, *V* is <u>not closed</u> under the operation of vector addition.

We can conclude that V is not a subspace of R^2 .

 \rightarrow HW Problems 1-4 p. 250

EXAMPLE 6 (\rightarrow Example 8 p. 246)

Let *A* be an $m \times n$ matrix. Define $W = \{ \overrightarrow{x} \mid A \overrightarrow{x} = \overrightarrow{0}_{R^m} \}$ (solution set of the homogeneous system $A \overrightarrow{x} = \overrightarrow{0}_{R^m}$.)

- *W* is nonempty: The trivial solution, $\overrightarrow{0}_{R^n} \in W$.
- W is a subset of \mathbb{R}^n .

(
$$\alpha$$
) Let \overrightarrow{u} and \overrightarrow{v} be two elements of W , i.e.,
 $A \overrightarrow{u} = A \overrightarrow{v} = \overrightarrow{0}_{R^m}$.
Their sum, $\overrightarrow{u} + \overrightarrow{v}$, satisfies:
 $A(\overrightarrow{u} + \overrightarrow{v}) = A \overrightarrow{u} + A \overrightarrow{v} = \overrightarrow{0}_{R^m} + \overrightarrow{0}_{R^m} = \overrightarrow{0}_{R^m}$
therefore $\overrightarrow{u} + \overrightarrow{v} \in W$.

(β) Let *c* be a real number, and let \overrightarrow{u} be an element of *W*, i.e., $A\overrightarrow{u} = \overrightarrow{0}_{R^m}$. The scalar multiple $c\overrightarrow{u}$ satisfies

$$A(c \overrightarrow{u}) = c(A \overrightarrow{u}) = c(\overrightarrow{0}_{R^m}) = \overrightarrow{0}_{R^m}.$$

W is a subspace of R^n . W is called the **solution**
space of $A \overrightarrow{x} = \overrightarrow{0}_{R^m}$, or the **null space** of A.

DEF Linear Combination (\rightarrow p. 247) If $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}$ are vectors in a vector space *V* and c_1, c_2, \dots, c_k are real numbers then

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + \dots + c_k \overrightarrow{v_k}$$

is a vector in *V* called a **linear combination** of $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}$.

EXAMPLE 7 Is (1,3,1) a linear combination of (0,1,2) and (1,0,-5)?

Are there real numbers c_1 and c_2 such that

$$c_1 \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}?$$

This equation can be rewritten as a linear system:

$$0c_1 + 1c_2 = 1$$

$$1c_1 + 0c_2 = 3$$

$$2c_1 - 5c_2 = 1$$

which can be solved by Gauss-Jordan reduction

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 3 \\ 2 & -5 & 1 \end{pmatrix}^{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 2 & -5 & 1 \end{pmatrix}^{r_3 \rightarrow r_3} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -5 \end{pmatrix}^{r_3 + 5r_2 \rightarrow r_3} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}^{r_3 + 5r_2 \rightarrow r_3} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Solution: $c_1 = 3, c_2 = 1$.

Answer: (1,3,1) is a linear combination of (0,1,2) and (1,0,-5).

Check:
$$3 \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \checkmark$$

EXAMPLE 8 Is (1, 2, -1) a linear combination of (1, 2, 3), (0, 1, 2), and (-1, 0, 1)?

Are there real numbers c_1, c_2 , and c_3 such that

$$c_{1}\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} + c_{2}\begin{pmatrix} 0\\ 1\\ 2 \end{pmatrix} + c_{3}\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}?$$

This equation can be rewritten as a linear system:

$$1c_1 + 0c_2 - 1c_1 = 1$$

$$2c_1 + 1c_2 + 0c_3 = 2$$

$$3c_1 + 2c_2 + 1c_3 = -1$$

which can be solved by Gauss-Jordan reduction

$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & 2 \\ 3 & 2 & 1 & -2 \end{pmatrix}^{r_2 - 2r_1 \to r_2} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 2 & 1 & -2 \end{pmatrix}^{r_3 - 3r_1 \to r_3} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 3 & -5 \end{pmatrix}^{r_3 - 2r_2 \to r_3} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix}$$

The system has no solution.

Answer: (1, 2, -1) is not a linear combination of (1, 2, 3), (0, 1, 2), and (-1, 0, 1).

DEF Span (\rightarrow p. 248)

If $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_k}\}$ is a set of vectors in a vector space *V*, then the **set of all linear combinations** of the vectors in *S* is denoted by

span
$$S = \text{span} \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$$

Instead of asking:

is *v* a linear combination of $\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_k}$? we can ask:

is v in the span{
$$\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_k}$$
}?

In the two recent examples:

- **EXAMPLE 7**: (1,3,1) is in the span{(0,1,2), (1,0,-5)}
- **EXAMPLE 8**: (1,2,-1) is not in the span{(1,2,3), (0,1,2), (-1,0,1)}

TH 6.3
$$(\rightarrow p. 249)$$

If *S* is a set of vectors in a vector space *V* then span *S* is a subspace of *V*.

Read the following Examples in the text:

$$\Rightarrow \text{Example 11 p. 248} \\ \text{span} \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} \\ = \left\{ \begin{pmatrix} a & b & 0 \\ 0 & c & d \end{pmatrix} | a, b, c, d \in R \right\}$$

is a subspace of M_{23}

→Example 12 p. 249 span{ $2t^2 + t + 2, t^2 - 2t, 5t^2 - 5t + 2, -t^2 - 3t - 2$ } is a subspace of P_2 .