6.1 Vector Spaces
DEF Vector Space (
$$\rightarrow$$
 p. 238)
A set V with operations \oplus and \odot such that:
(α) $\overrightarrow{u} \oplus \overrightarrow{v}$ is in V for all \overrightarrow{u} and \overrightarrow{v} in V.
(a) $\overrightarrow{u} \oplus \overrightarrow{v} = \overrightarrow{v} \oplus \overrightarrow{u}$ for all \overrightarrow{u} and \overrightarrow{v} in V
(b) $\overrightarrow{u} \oplus (\overrightarrow{v} \oplus \overrightarrow{w}) = (\overrightarrow{u} \oplus \overrightarrow{v}) \oplus \overrightarrow{w}$ for all $\overrightarrow{u}, \overrightarrow{v}$, and \overrightarrow{w} in V
(c) There exists $\overrightarrow{0}$ in V such that
 $\overrightarrow{u} \oplus \overrightarrow{0} = \overrightarrow{0} \oplus \overrightarrow{u} = \overrightarrow{u}$ for all \overrightarrow{u} in V
(d) For every \overrightarrow{u} in V there exists $-\overrightarrow{u}$ in V
such that $\overrightarrow{u} \oplus -\overrightarrow{u} = \overrightarrow{0}$
(β) $c \odot \overrightarrow{u}$ is in V for all \overrightarrow{u} in V and numbers c.
(e) $c \odot (\overrightarrow{u} \oplus \overrightarrow{v}) = (c \odot \overrightarrow{u}) \oplus (c \odot \overrightarrow{v})$
for all c in R and \overrightarrow{u} and \overrightarrow{v} in V.
(f) $(c+d) \odot \overrightarrow{u} = (c \odot \overrightarrow{u}) \oplus (d \odot \overrightarrow{u})$
for all c and d in R and \overrightarrow{u} in V.
(g) $c \odot (d \odot \overrightarrow{u}) = (cd) \odot \overrightarrow{u}$
for all c and d in R and \overrightarrow{u} in V.
(h) $1 \odot \overrightarrow{u} = \overrightarrow{u}$ for all \overrightarrow{u} in V.

We say that *V* is **closed under the operation** \oplus if it satisfies property (α).

Likewise, *V* is **closed under** \odot if it satisfies (β).

EXAMPLE 1 (\rightarrow Example 1 p.239)

 $V = R^n$ with

 \oplus - the usual operation of vector addition

 \odot - the usual operation of scalar multiplication satisfies properties (α), (a)-(d), (β), (e)-(h).

 $(\rightarrow$ Theorem 4.2 p.186)

Therefore it is a vector space.

EXAMPLE 2 Let V be a set of all ordered pairs of

numbers of the form (x, -x), and let \oplus and \odot be the usual operations in \mathbb{R}^2 .

Verify (α): taking arbitrary vectors in *V*:

$$\overrightarrow{u} = (x, -x)$$
 and $\overrightarrow{v} = (x', -x')$, we have

 $\overrightarrow{u} \oplus \overrightarrow{v} = (x, -x) \oplus (x', -x') = (x + x', -x - x')$

Since the second element is the negative of the first, the vector is in V.

Property <u>holds</u> (*V* is closed under \oplus .) Verify (a):

$$\overrightarrow{LHS} = \overrightarrow{u} \oplus \overrightarrow{v} = (x, -x) \oplus (x', -x')$$
$$= (x + x', -x - x')$$
$$RHS = \overrightarrow{v} \oplus \overrightarrow{u} = (x', -x') \oplus (x, -x)$$
$$= (x' + x, -x' - x)$$
$$LHS = RHS \text{ for all } \overrightarrow{u} \text{ and } \overrightarrow{v} \text{ in } V.$$

Property holds.

The other properties can be shown to hold, too. V with \oplus and \odot is a vector space.

EXAMPLE 3 Let *V* be a set of all ordered pairs of numbers of the form (x, y), and let \oplus and \odot be defined as follows $(x, y) \oplus (x', y') = (x + x', y')$ and $c \odot (x, y) = (cx, cy)$. Obviously (α) holds. Verify (a): *LHS* = $\overrightarrow{u} \oplus \overrightarrow{v} = (x, y) \oplus (x', y')$ = (x + x', y')*RHS* = $\overrightarrow{v} \oplus \overrightarrow{u} = (x', y') \oplus (x, y)$ = (x' + x, y)Generally, *LHS* \neq *RHS*. Property does not hold.

Consequently, V with \oplus and \odot is not a vector space.

Examples of vector spaces from the Text:

→ Example 4 p. 240 $V = M_{23}$ - set of all 2×3 matrices \oplus, \odot - the usual operations of matrix addition and scalar multiplication

→ Example 5 p. 240 *V* - set of all real-valued functions defined on [*a*, *b*] with \oplus and \odot defined as follows: ($f \oplus g$)(x) = $f(x) \oplus g(x)$

$$(c \odot f)(x) = cf(x)$$

 \rightarrow Example 8 p. 241

 $V = P_n$ - set of all polynomials of degree *n* or less with \oplus and \odot defined as above.

Note that a set of all polynomials of degree exactly n is not a vector space.

THEOREM 6.1
$$\rightarrow$$
 p. 242

Let *V* be a vector space.

(a)
$$\overrightarrow{0 u} = \overrightarrow{0}$$
 for every \overrightarrow{u} in V.

(**b**)
$$\overrightarrow{c 0} = \overrightarrow{0}$$
 for every c in R .

(c) If
$$\overrightarrow{c u} = \overrightarrow{0}$$
 then $c = 0$ or $\overrightarrow{u} = \overrightarrow{0}$.

(d)
$$(-1)\overrightarrow{u} = -\overrightarrow{u}$$
 for every \overrightarrow{u} in V.