4.2 n-Vectors

• Definition of an *n*-vector (\rightarrow p. 10): an *n* × 1 or 1 × *n* matrix, e.g.,

$$\vec{u} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \vec{v} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

- $a_1, \ldots a_n$: components of \overrightarrow{u}
- Set of all *n*-vectors is denoted by \mathbb{R}^n .
- \overrightarrow{u} and \overrightarrow{v} are **equal** if $u_i = v_i$ for all i = 1, ..., n.

• Sum $(\rightarrow p. 185)$

$$\overrightarrow{u} + \overrightarrow{v} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

• Scalar multiple (\rightarrow p. 186)

$$\overrightarrow{c u} = \begin{pmatrix} ca_1 \\ ca_2 \\ \vdots \\ ca_n \end{pmatrix}$$

TH 4.2 (
$$\rightarrow$$
 p. 186) Let \overrightarrow{u} , \overrightarrow{v} , and \overrightarrow{w} are
vectors in \mathbb{R}^n . Also, let c and d be scalars (real
numbers). Then
(α) $\overrightarrow{u} + \overrightarrow{v}$ is in \mathbb{R}^n .
(a) $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$.
(b) $\overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w}) = (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w}$.
(c) There exists $\overrightarrow{0}$ in \mathbb{R}^n such that
 $\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u}$.
(d) For every \overrightarrow{u} in \mathbb{R}^n there exists $-\overrightarrow{u}$ in \mathbb{R}^n
such that $\overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{0}$.
(β) $c \overrightarrow{u}$ is in \mathbb{R}^n .
(e) $c(\overrightarrow{u} + \overrightarrow{v}) = (c \overrightarrow{u}) + (c \overrightarrow{v})$.
(f) $(c + d) \overrightarrow{u} = (c d) \overrightarrow{u}$.
(h) $1 \overrightarrow{u} = \overrightarrow{u}$.

• Length (
$$\rightarrow$$
 p. 190)
 $\left\| \overrightarrow{u} \right\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$

• **Dot product**
$$(\rightarrow p. 17)$$

 $\overrightarrow{u} \cdot \overrightarrow{v} = a_1b_1 + a_2b_2 + \dots + a_nb_n$

TH 3.4 (
$$\rightarrow$$
 p. 192) Properties of Dot Product
• $\overrightarrow{u} \cdot \overrightarrow{u} \ge 0$; $\overrightarrow{u} \cdot \overrightarrow{u} = 0 \Leftrightarrow \overrightarrow{u} = \overrightarrow{0}$
• $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$
• $(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w}$
• $(c\overrightarrow{u}) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot (c\overrightarrow{v}) = c(\overrightarrow{u} \cdot \overrightarrow{v})$

TH 4.4 (
$$\rightarrow$$
 p. 192) **Cauchy-Schwarz**
Inequality
If \overrightarrow{u} and \overrightarrow{v} are vectors in \mathbb{R}^n then
 $|\overrightarrow{u} \cdot \overrightarrow{v}| \leq ||\overrightarrow{u}|| ||\overrightarrow{v}||$

Outline of the Proof If $\overrightarrow{u} = \overrightarrow{0}$ then $\|\overrightarrow{u}\| = 0$ therefore $\overrightarrow{u} \cdot \overrightarrow{v} = 0$. The inequality is satisfied. Assume $\overrightarrow{u} \neq \overrightarrow{0}$, and let *r* be a scalar. Then $0 \le (r\overrightarrow{u} + \overrightarrow{v}) \cdot (r\overrightarrow{u} + \overrightarrow{v})$ $= (r\overrightarrow{u}) \cdot (r\overrightarrow{u}) + (r\overrightarrow{u}) \cdot \overrightarrow{v} + \overrightarrow{v} \cdot (r\overrightarrow{u}) + \overrightarrow{v} \cdot \overrightarrow{v}$ $= r^2 (\overrightarrow{u} \cdot \overrightarrow{u}) + r (2(\overrightarrow{u} \cdot \overrightarrow{v})) + \overrightarrow{v} \cdot \overrightarrow{v}$

 $p(r) = ar^2 + br + c$ is nonnegative for all r, therefore $b^2 - 4ac \le 0$.

• Angle
$$\theta$$
 between \overrightarrow{u} and \overrightarrow{v} (\rightarrow p. 193)
 $\cos \theta = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}$

DEF (
$$\rightarrow$$
 p. 194)
• \overrightarrow{u} and \overrightarrow{v} are **orthogonal** if
 $\overrightarrow{u} \cdot \overrightarrow{v} = 0$,
• \overrightarrow{u} and \overrightarrow{v} are **parallel** if
 $|\overrightarrow{u} \cdot \overrightarrow{v}| = ||\overrightarrow{u}|| ||\overrightarrow{v}||$,
• \overrightarrow{u} and \overrightarrow{v} are **in the same direction** if
 $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| ||\overrightarrow{v}||$.

TH 4.5 (
$$\rightarrow$$
 p. 194) **Triangle Inequality**
If \overrightarrow{u} and \overrightarrow{v} are vectors in \mathbb{R}^n then
 $\|\overrightarrow{u} + \overrightarrow{v}\| \leq \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$

Outline of the proof:

$$\left\|\overrightarrow{u} + \overrightarrow{v}\right\|^{2} = (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v})$$
$$= \left\|\overrightarrow{u}\right\|^{2} + 2(\overrightarrow{u} \cdot \overrightarrow{v}) + \left\|\overrightarrow{v}\right\|^{2}$$

Apply Cauchy-Schwarz Inequality (Th 4.4) to conclude the proof.

DEF (\rightarrow p. 195) **Unit vector** in the direction of \overrightarrow{u}

$$\frac{1}{\left\|\overrightarrow{u}\right\|}\overrightarrow{u}$$