3.2 Cofactor Expansion

DEF (\rightarrow p. 152) Let $A = [a_{ij}]$ be an $n \times n$ matrix.

- M_{ij} denotes the $(n-1) \times (n-1)$ matrix of *A* obtained by deleting its *i*-th row and *j*-th column.
- det (M_{ij}) is called the **minor** of a_{ij} .
- $A_{ij} = (-1)^{i+j} \det(M_{ij})$ is called the **cofactor** of a_{ij} .

EXAMPLE 1 For
$$A = \begin{pmatrix} 1 & 1 & 4 \\ 0 & -1 & 2 \\ 2 & 3 & 0 \end{pmatrix}$$
 we have:
 $A_{12} = (-1)^{1+2} \begin{vmatrix} 0 & 2 \\ 2 & 0 \end{vmatrix} = (-1)(0-4) = 4$
 $A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 4 \\ -1 & 2 \end{vmatrix} = (1)(2+4) = 6$

TH 3.9
$$(\rightarrow p. 153)$$
 Let $A = [a_{ij}]$ be an $n \times n$ matrix. For each $i = 1, ..., n$,

- $det(A) = a_{i1}A_{i1} + \dots + a_{in}A_{in}$ (expansion of det(A) along the *i*-th row)
- $det(A) = a_{1i}A_{1i} + \dots + a_{ni}A_{ni}$ (expansion of det(*A*) along the *i*-th column)

EXAMPLE 2 In E	Exan	nple	2 (-	\rightarrow p.	154)), t]	he
determinant of $A =$		1	2	-3	4		was
		-4	2	1	3		
	-	3	0	0	-3		
		2	0	-2	3		
C 1 1.						-	

found by

- expansion along the third row, and
- expansion along the first column.

We shall illustrate the expansion along the second column:

 $\det(A) = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32} + a_{42}A_{42}$

$$= 2(-1)^{3} \begin{vmatrix} -4 & 1 & 3 \\ 3 & 0 & -3 \\ 2 & -2 & 3 \end{vmatrix}$$
$$+ 2(-1)^{4} \begin{vmatrix} 1 & -3 & 4 \\ 3 & 0 & -3 \\ 2 & -2 & 3 \end{vmatrix} + 0 + 0$$
$$= -2(0 - 6 - 18 - 0 + 24 - 9)$$
$$+ 2(0 + 18 - 24 - 0 - 6 + 27)$$
$$= -2(-9) + 2(15)$$

= 48

TH 3.10 (\rightarrow p. 155) Let $A = [a_{ij}]$ be an $n \times n$ matrix. For each $i \neq k$,

$$\bullet \quad a_{i1}A_{k1} + \dots + a_{in}A_{kn} = 0$$

 $\bullet \quad a_{1i}A_{1k} + \dots + a_{ni}A_{nk} = 0$

Outline of the proof:

- Let *B* be the matrix obtained from *A* by replacing the *k*th row with the *i*th row.
- Expand det(*B*) along its *k*th row. Since $B_{kj} = A_{kj}$ and $b_{kj} = a_{ij}$, this expansion is identical to the LHS of the first formula.
- By Th. 3.3, det(*B*) = 0. This proves the first formula (the proof of the 2nd formula is identical).

DEF (\rightarrow p. 156) Let $A = [a_{ij}]$ be an $n \times n$ matrix. The adjoint of A is the $n \times n$ matrix

$$adjA = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

TH 3.11 (\rightarrow p. 157) Let $A = [a_{ij}]$ be an $n \times n$ matrix. Then

$$A(\operatorname{adj} A) = (\operatorname{adj} A)A = \operatorname{det}(A)I_n$$

Outline of the proof of $A(adjA) = det(A)I_n$: The (i,j)-element of A(adjA) is $row_i(A) \bullet col_j(adjA) = a_{i1}A_{j1} + \cdots + a_{in}A_{jn}$ $= \begin{cases} det(A) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

COROLLARY 3.3 (
$$\rightarrow$$
 p. 158) If det(A) \neq 0 then

$$A^{-1} = \frac{1}{\det(A)} (\operatorname{adj} A)$$

Equivalent conditions (\rightarrow p.160)

For any $n \times n$ matrix A, the following conditions are equivalent:

- **1.** *A* is nonsingular.
- **2.** $\overrightarrow{Ax} = \overrightarrow{0}$ has only the trivial solution.
- **3.** A is row equivalent to I_n .
- 4. For every $n \times 1$ matrix \overrightarrow{b} , the system $\overrightarrow{Ax} = \overrightarrow{b}$ has a unique solution.
- **5.** $det(A) \neq 0$.