3.2 Cofactor Expansion

$\mathrm{DEF}(\rightarrow \mathrm{p} .152)$ Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix.

- $M_{i j}$ denotes the $(n-1) \times(n-1)$ matrix of A obtained by deleting its i-th row and j-th column.
- $\operatorname{det}\left(M_{i j}\right)$ is called the minor of $a_{i j}$.
- $A_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$ is called the cofactor of $a_{i j}$.

EXAMPLE 1 For $A=\left(\begin{array}{rrr}1 & 1 & 4 \\ 0 & -1 & 2 \\ 2 & 3 & 0\end{array}\right)$ we have:

$$
\begin{aligned}
& A_{12}=(-1)^{1+2}\left|\begin{array}{rr}
0 & 2 \\
2 & 0
\end{array}\right|=(-1)(0-4)=4 \\
& A_{31}=(-1)^{3+1}\left|\begin{array}{rr}
1 & 4 \\
-1 & 2
\end{array}\right|=(1)(2+4)=6
\end{aligned}
$$

TH $3.9(\rightarrow \mathrm{p} .153)$ Let $A=\left[a_{i j}\right]$ be an $n \times n$
matrix. For each $i=1, \ldots, n$,

- $\operatorname{det}(A)=a_{i 1} A_{i 1}+\cdots+a_{i n} A_{\text {in }}$
(expansion of $\operatorname{det}(A)$ along the i-th row)
- $\operatorname{det}(A)=a_{1 i} A_{1 i}+\cdots+a_{n i} A_{n i}$
(expansion of $\operatorname{det}(A)$ along the i-th column)

EXAMPLE 2 In Example $2(\rightarrow$ p. 154), the
determinant of $A=\left(\begin{array}{rrrr}1 & 2 & -3 & 4 \\ -4 & 2 & 1 & 3 \\ 3 & 0 & 0 & -3 \\ 2 & 0 & -2 & 3\end{array}\right)$ was
found by

- expansion along the third row, and
- expansion along the first column.

We shall illustrate the expansion along the second column:

$$
\begin{aligned}
= & 2(-1)^{3}\left|\begin{array}{rrr}
-4 & 1 & 3 \\
3 & 0 & -3 \\
2 & -2 & 3
\end{array}\right| \\
& +2(-1)^{4}\left|\begin{array}{rrr}
1 & -3 & 4 \\
3 & 0 & -3 \\
2 & -2 & 3
\end{array}\right|+0+0 \\
= & -2(0-6-18-0+24-9) \\
& +2(0+18-24-0-6+27) \\
= & -2(-9)+2(15) \\
= & 48
\end{aligned}
$$

TH $3.10(\rightarrow \mathrm{p} .155)$ Let $A=\left[a_{i j}\right]$ be an $n \times n$

matrix. For each $i \neq k$,

- $a_{i 1} A_{k 1}+\cdots+a_{i n} A_{k n}=0$
- $a_{1 i} A_{1 k}+\cdots+a_{n i} A_{n k}=0$

Outline of the proof:

- Let B be the matrix obtained from A by replacing the k th row with the i th row.
- Expand $\operatorname{det}(B)$ along its k th row. Since $B_{k j}=A_{k j}$ and $b_{k j}=a_{i j}$, this expansion is identical to the LHS of the first formula.
- By Th. 3.3, $\operatorname{det}(B)=0$. This proves the first formula (the proof of the 2 nd formula is identical).

DEF $\left(\rightarrow \mathrm{p}\right.$. 156) Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix.
The adjoint of A is the $n \times n$ matrix

$$
\operatorname{adj} A=\left(\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \\
A_{12} & A_{22} & \cdots & A_{n 2} \\
\vdots & \vdots & & \vdots \\
A_{1 n} & A_{2 n} & \cdots & A_{n n}
\end{array}\right)
$$

TH $3.11\left(\rightarrow\right.$ p. 157) Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Then

$$
A(\operatorname{adj} A)=(\operatorname{adj} A) A=\operatorname{det}(A) I_{n}
$$

Outline of the proof of $A(\operatorname{adj} A)=\operatorname{det}(A) I_{n}$: The (i, j)-element of $A(\operatorname{adj} A)$ is

$$
\operatorname{row}_{i}(A) \cdot \operatorname{col}_{j}(\operatorname{adj} A)=a_{i 1} A_{j 1}+\cdots a_{i n} A_{j n}
$$

$$
= \begin{cases}\operatorname{det}(A) & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

COROLLARY $3.3(\rightarrow$ p. 158) If $\operatorname{det}(A) \neq 0$ then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}(\operatorname{adj} A)
$$

Equivalent conditions (\rightarrow p.160)

For any $n \times n$ matrix A, the following conditions are equivalent:

1. A is nonsingular.
2. $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
3. A is row equivalent to I_{n}.
4. For every $n \times 1$ matrix \vec{b}, the system
$A \vec{x}=\vec{b}$ has a unique solution.
5. $\operatorname{det}(A) \neq 0$.
