3.1 Determinants -Definition and Properties

(→ p. 140, 141)

- A sequence j₁, j₂, ..., j_n made up of (rearranged) integers from the set
 S_n = {1, 2, ..., n} is called a **permutation** of S_n.
- There are n! permutations of S_n .
- **Inversion**: $j_r > j_s$ when r < s.
- A permutation is called **odd** (**even**) if it has an odd (even) number of inversions.

EXAMPLES
$$n = 2$$

<i>j</i> 1 <i>j</i> 2	# of inversions	
12	0	even
21	1	odd

n = 3

<i>j</i> 1 <i>j</i> 2 <i>j</i> 3	# of inversions	
123	0	even
132	1	odd
213	1	odd
231	2	even
312	2	even
321	3	odd

DEF (
$$\rightarrow$$
 p. 141)
The determinant of an *n* × *n* matrix *A* is

$$\det(A) = |A| = \sum (\pm)a_{1j_1}a_{2j_2}\cdots a_{nj_n}$$

for all permutations

of S_n

where the sign of each term is determined as follows:

- for an even permutation, the sign is +, and
- for an odd permutation, the sign is –.

EXAMPLE
$$n = 2 : A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

 $|A| = +a_{11}a_{22} - a_{12}a_{21}$
e.g., $\begin{vmatrix} -3 & -1 \\ 3 & 2 \end{vmatrix} = (-3)(2) - (-1)(3) = -3$

EXAMPLE
$$n = 3 : A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

 $|A| = +a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$ $+ a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$ $= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$ $- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$

e.g.,

$$A = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
$$|A| = (-1)(2)(1) + (1)(1)(1) + (0)(1)(-1) \\ - (0)(2)(1) - (-1)(1)(-1) - (1)(1)(1) \\ = -3$$

Property (\rightarrow p.143)

If we interchange two numbers in the permutation $j_1, j_2, ..., j_n$ then the number of inversions is either increased or decreased by an *odd* number.

TH 3.1
$$(\rightarrow p.143) |A^T| = |A|$$

If *B* is obtained from *A* by interchanging two rows (or columns) then

$$|B| = -|A|$$

TH 3.3 (
$$\rightarrow$$
p.145)
If two rows (or columns) of *A* are equal then
 $|A| = 0$

If A contains a zero row (or zero column) then

|A| = 0

TH 3.5 $(\rightarrow p.145)$

If *B* is obtained from *A* by multiplying a row (or column) by a number *c* then

|B| = c|A|

If *B* is obtained from *A* by adding a multiple of one row (or column) to another then

|B| = |A|

If *A* is an $n \times n$ upper triangular (or lower triangular) matrix then

 $|A| = a_{11}a_{22}\cdots a_{nn}$

EXAMPLE Find the determinant of

$$A = \left(\begin{array}{rrr} 0 & 1 & 2 \\ 2 & 3 & -2 \\ 3 & -1 & 1 \end{array} \right)$$

Transform A to B by $r_1 \leftrightarrow r_2$. **TH** $\mathbf{3.2} \Rightarrow \underline{\det(B)} = -\underline{\det(A)}$. $B = \begin{pmatrix} 2 & 3 & -2 \\ 0 & 1 & 2 \\ 3 & -1 & 1 \end{pmatrix}$

Transform *B* to *C* by $\frac{1}{2}r_1 \rightarrow r_1$. **TH 3.5** $\Rightarrow \det(C) = \frac{1}{2}\det(B)$.

$$C = \left(\begin{array}{rrrr} 1 & \frac{3}{2} & -1 \\ 0 & 1 & 2 \\ 3 & -1 & 1 \end{array}\right)$$

Transform C to D by $r_3 - 3r_1 \rightarrow r_3$. **TH 3**. **6** \Rightarrow det(D) = det(C).

$$D = \left(\begin{array}{rrrr} 1 & \frac{3}{2} & -1 \\ 0 & 1 & 2 \\ 0 & -\frac{11}{2} & 4 \end{array}\right)$$

Transform *D* to *E* by $r_3 + \frac{11}{2}r_2 \to r_3$. **TH 3.6** \Rightarrow $\underline{\det(E)} = \underline{\det(D)}$. $E = \begin{pmatrix} 1 & \frac{3}{2} & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 15 \end{pmatrix}$

Matrix E is upper triangular
TH 3.7
$$\Rightarrow \det(E) = (1)(1)(15) = 15$$
.
 $15 = \det(E) = \det(D) = \det(C)$
 $= \frac{1}{2} \det(B) = \frac{1}{2}(-\det(A))$

Therefore

$$\det(A) = -30.$$

 \rightarrow Example 17 p. 148

Г

TH 3.8 (
$$\rightarrow$$
p.148) If *A* and *B* are *n* × *n* matrices then

$$\det(AB) = \det(A)\det(B)$$

COROLLARY 3.2
$$(\rightarrow p.149)$$

 $det(A^{-1}) = \frac{1}{det(A)}.$