1.4. Properties of Matrix Operations

TH $1.1 (\rightarrow p. 33)$ Properties of Matrix Addition

(a) For all $m \times n$ matrices A and B

$$A + B = B + A$$

(**b**) For all $m \times n$ matrices A, B, and C

$$A + (B + C) = (A + B) + C$$

(c) There exists a unique $m \times n$ matrix O such that for all $m \times n$ matrices A

A + O = A

(*O* is called the $m \times n$ zero matrix)

(d) For each $m \times n$ matrix A, there exists a unique $m \times n$ matrix D such that

A + D = O

(*D* is called the **negative** of *A*)

TH 1.2 $(\rightarrow p. 34)$ Properties of Matrix

Multiplication

(a)
$$A(BC) = (AB)C$$

$$(\mathbf{b}) \ A(B+C) = AB + AC$$

$$(\mathbf{C}) \quad (A+B)C = AC + BC$$

(In each of the equations, *A*, *B*, and *C* are chosen so that both sides are matrices of the same size.)

For any $m \times n$ matrix A, the following property holds:

$$AI_n = I_m A = A$$

where I_m (or I_n) denotes the $m \times m$ (or $n \times n$) identity matrix.

For any $n \times n$ matrix A and a nonnegative integer p, we define the p-th **power** of A as follows:

$$A^p = \underbrace{A \cdots A}; A^0 = I_n$$

p factors

TH 1.3 (
$$\rightarrow$$
 p. 38) Properties of Scalar
Multiplication
For all matrices A and B and scalars c and d,
(a) $c(dA) = (cd)A$
(b) $(c+d)A = cA + dA$
(c) $c(A+B) = cA + cB$
(d) $A(cB) = c(AB) = (cA)B$

TH 1.4 (
$$\rightarrow$$
 p. 38) Properties of Transpose
(**a**) $(A^T)^T = A$
(**b**) $(A + B)^T = A^T + B^T$
(**c**) $(AB)^T = B^T A^T$
(**d**) $(cA)^T = cA^T$

DEF (\rightarrow p. 39) A matrix *A* is called **symmetric** if $A^T = A$