1.3. Dot Product and Matrix Multiplication

$$
\begin{gathered}
\text { DEF }(\rightarrow \text { p. 17 }) \text { The dot product of } n \text {-vectors: } \\
\vec{u}=\left(a_{1}, \ldots, a_{n}\right) \text { and } \vec{v}=\left(b_{1}, \ldots, b_{n}\right) \text { is } \\
\vec{u} \cdot \vec{v}=a_{1} b_{1}+\cdots+a_{n} b_{n}
\end{gathered}
$$

(regardless of whether the vectors are written as rows or columns).

DEF (\rightarrow p. 18)
If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and $B=\left[b_{i j}\right]$ is an $n \times p$ matrix then the product of A and B is the $m \times p$ matrix $C=\left[c_{i j}\right]$ such that

$$
\begin{aligned}
c_{i j} & =\operatorname{row}_{i}(A) \cdot \operatorname{col}_{j}(B) \\
& =a_{i 1} b_{1 j}+\cdots+a_{i n} b_{n j}
\end{aligned}
$$

EXAMPLE 1

$\left(\begin{array}{rr}4 & -1 \\ 0 & 5\end{array}\right)\left(\begin{array}{rrr}1 & 8 & 0 \\ 6 & -2 & 3\end{array}\right)=\left(\begin{array}{rrr}-2 & 34 & -3 \\ 30 & -10 & 15\end{array}\right)$
$\left(\begin{array}{rrr}1 & 8 & 0 \\ 6 & -2 & 3\end{array}\right)\left(\begin{array}{rr}4 & -1 \\ 0 & 5\end{array}\right)$ cannot be
multiplied.

As demonstrated above, in general $A B \neq B A$.
For some matrices A and B, we have $A B=B A$ e.g.

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
\end{aligned}
$$

Such matrices A and B are said to commute.
\rightarrow Read pp.21-22: The Matrix-Vector Product Written in Terms of Columns
\rightarrow Read pp.27-28: The Summation Notation

Recall a linear system of m equations in n unknowns:

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}
$$

This system can be written in the matrix form

$$
A \vec{x}=\vec{b}
$$

where

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), \\
& \vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \vec{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
\end{aligned}
$$

- The $m \times n$ matrix A is called the coefficient matrix of the system.
- The $m \times(n+1)$ matrix $[A \mid \vec{b}]$ is called the augmented matrix of the system.

EXAMPLE 2

The system

$$
\begin{aligned}
2 x-y & =-4 \\
-3 x-2 y & =-1
\end{aligned}
$$

of from EXAMPLE 1 the Section 1.1 lecture notes has

- the coefficient matrix $A=\left(\begin{array}{rr}2 & -1 \\ -3 & -2\end{array}\right)$,
- the unknown vector $\vec{x}=\binom{x}{y}$
- and the augmented matrix

$$
[A \mid \vec{b}]=\left(\begin{array}{rrr}
2 & -1 & -4 \\
-3 & -2 & -1
\end{array}\right)
$$

