1.2. Matrices

DEF (\rightarrow p. 10) An $m \times n$ matrix A - rectangular array of numbers:

$$\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}$$

**rows*

 a_{ij} - i,jth **element** (or **entry**) of A.

An $n \times 1$ matrix or a $1 \times n$ matrix are called n-vectors.

EXAMPLE 1

$$B = \left(\begin{array}{rrrr} 1 & 0 & -2 & 1 \\ 3 & 1 & 2 & 4 \\ 1 & 2 & 0 & 5 \end{array}\right)$$

is a 3×4 matrix with

- $b_{11} = 1, b_{12} = 0, b_{21} = 3, \text{etc.},$
- second row: (3 1 2 4),
- fourth column: $\begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$.

More examples \rightarrow Example 1 p. 10.

A matrix can be represented by:

- an uppercase letter: A, B, etc.
- a representative element enclosed in brackets: $[a_{ij}]$, $[b_{ij}]$, etc.,
- a rectangular array of numbers enclosed in brackets or parentheses.

EXAMPLE 2

$$C = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 2 & 1 & 0 \end{array}\right)$$

is an example of a **square** matrix (generally, $n \times n$ - here: 3×3).

In such a matrix, $a_{11}, a_{22}, ..., a_{nn}$ forms the **main** diagonal (here: (1,0,0)).

Special kinds of square matrices:

	Definition	Example
diagonal m. → p. 11	square matrix with $a_{ij} = 0$ for $i \neq j$	$ \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{array}\right) $
scalar matrix → p. 11	diagonal matrix with $a_{ii} = c$ for all i	$\left(\begin{array}{cc} 4 & 0 \\ 0 & 4 \end{array}\right)$
identity matrix	scalar matrix with $a_{ii} = 1$ for all i	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$
upper triangular m.	square matrix with $a_{ij} = 0$ for $i > j$	$\left(\begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array}\right)$
lower triangular m.	square matrix with $a_{ij} = 0$ for $i < j$	$ \left(\begin{array}{cccc} 1 & 0 & 0 \\ 6 & 2 & 0 \\ 3 & 4 & 0 \end{array}\right) $

$$|\mathbf{DEF}| \rightarrow p. 12$$

Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are **equal** if

- they have the same size, $m \times n$, and
- $a_{ij} = b_{ij}$ for all i and j $(1 \le i \le m, 1 \le j \le n)$.

$$\left| \mathbf{DEF} \right| \rightarrow p. 12$$

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are $m \times n$ matrices then their **sum** is $A + B = [a_{ij} + b_{ij}]$.

The sum of two matrices of *different* sizes is *undefined*.

$$\begin{pmatrix}
1 & 5 \\
-1 & 0 \\
2 & 1
\end{pmatrix} + \begin{pmatrix}
2 & 1 \\
0 & 0 \\
0 & -1
\end{pmatrix} = \begin{pmatrix}
3 & 6 \\
-1 & 0 \\
2 & 0
\end{pmatrix}$$

$$|\mathbf{DEF}| \rightarrow p. 13$$

If $A = [a_{ij}]$ is a matrix and c is a scalar, then the scalar multiple of A by c is $cA = [ca_{ij}]$.

$$|\mathbf{DEF}| \rightarrow p. 13$$

If $A_1, A_2, ..., A_k$ are $m \times n$ matrices and $c_1, c_2, ..., c_k$ are scalars then

$$c_1A_1 + c_2A_2 + \cdots + c_nA_n$$

is called a **linear combination** of $A_1, A_2, ..., A_k$.

$$|$$
 DEF $| \rightarrow p. 14$

If $A = [a_{ij}]$ is an $m \times n$ matrix then the **transpose** of A is the $n \times m$ matrix $A^T = [a_{ii}]$.

EXAMPLE 5

If
$$A = \begin{pmatrix} 2 & 1 \\ -3 & 0 \\ 1 & -1 \end{pmatrix}$$
 then
$$A^{T} = \begin{pmatrix} 2 & -3 & 1 \\ 1 & 0 & -1 \end{pmatrix}.$$