1.1. Linear Systems

Linear Equations $(\rightarrow p. 1)$ Examples:

$$5x = 6$$

or

$$x_1 + 3x_2 - x_3 = 7$$

or

0x = 1

Generally,

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

Typically,

- a_1, \ldots, a_n, b known constants,
- x_1, \ldots, x_n unknowns.

A solution - a sequence $s_1, ..., s_n$ such that when $x_1 = s_1, ..., x_n = s_n$, the equation is satisfied.

In our examples:

$$5x = 6$$

has

$$x = \frac{6}{5}$$

as the **only solution**.

$$x_1 + 3x_2 - x_3 = 7$$

has

$$x_1 = 1, x_2 = 2, x_3 = 0$$

and

$$x_1 = 8, x_2 = 0, x_3 = 1$$

and **infinitely many** other **solutions**.

$$0x = 1$$

has **no solutions**.

System of *m* linear equations in *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

where a_{ij} is the coefficient (known number) associated with the *j*-th unknown (x_j) in the *i*-th equation.

A solution - a sequence $s_1, ..., s_n$ such that when $x_1 = s_1, ..., x_n = s_n$, each of the *m* equations is satisfied.

EXAMPLE 1 Solve the system

2x - y = -4-3x - 2y = -1

using the method of elimination.

Divide eq_1 by 2:

$$x - \frac{1}{2}y = -2$$
$$-3x - 2y = -1$$

Add $3 \cdot eq_1$ to eq_2 :

$$x - \frac{1}{2}y = -2$$
$$-\frac{7}{2}y = -7$$
Divide eq₂ by $-\frac{7}{2}$:
$$x - \frac{1}{2}y = -2$$
$$y = 2$$
Add $\frac{1}{2}$ • eq₂ to eq₁:
$$x = -1$$
$$y = 2$$

One solution.

- \rightarrow Read Section 1.1. In particular, see:
 - Example 2 p. 3 (no solutions)
 - Example 4 p. 4 (infinitely many solutions).