10.2 The Kernel and Range

 DEF (\rightarrow p. 441, 443)Let $L: V \rightarrow W$ be a linear transformation. Then
(a) the kernel of L is the subset of V comprised of all vectors whose image is the zero vector:

$$
\operatorname{ker} L=\{\vec{v} \mid L(\vec{v})=\overrightarrow{0}\}
$$

(b) the range of L is the subset of W comprised of all images of vectors in V :

$$
\operatorname{range} L=\{\vec{w} \mid L(\vec{v})=\vec{w}\}
$$

DEF (\rightarrow p. 440, 443)
Let $L: V \rightarrow W$ be a linear transformation. Then (a) L is one-to-one if $\overrightarrow{v_{1}} \neq \overrightarrow{v_{2}} \Rightarrow L\left(\overrightarrow{v_{1}}\right) \neq L\left(\overrightarrow{v_{2}}\right)$
(b) L is onto W if range $L=W$.

EXAMPLE 1

Let $L: R^{3} \rightarrow R^{3}$ be defined by
$L(x, y, z)=(x, y, 0)$. (Projection onto the $x y$-plane.)

- $\operatorname{ker} L=\{(x, y, z) \mid(x, y, 0)=(0,0,0)\}$
$\operatorname{ker} L$ consists of (x, y, z) that are solutions of the system

$$
\begin{aligned}
x & =0 \\
y & =0
\end{aligned}
$$

z is arbitrary, and $x=y=0$. $\operatorname{ker} L=\operatorname{span}\{(0,0,1)\}$.

- range $L=\operatorname{span}\{(1,0,0),(0,1,0)\}$.
- L is not one-to-one (e.g., $L(1,2,3)=L(1,2,5)=(1,2,0)$.)
- L is not onto (range $L \neq R^{3}$).
$\mathrm{TH}(\rightarrow$ Th. 10.4 p. 442 , Th. 10.6 p. 443)
Let $L: V \rightarrow W$ be a linear transformation. Then
- $\operatorname{ker} L$ is a subspace of V and
- range L is a subspace of W.

TH $10.5 \rightarrow$ p. 443
A linear transformation L is one-to-one if and only if $\operatorname{ker} L=\{\overrightarrow{0}\}$.

EXAMPLE 2

Let $L: R^{2} \rightarrow R^{3}$ be defined by
$L\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}x_{1} \\ x_{1}+x_{2} \\ x_{1}+2 x_{2}\end{array}\right)$.

- $\operatorname{ker} L=$
$\left\{\binom{x_{1}}{x_{2}} \left\lvert\,\left(\begin{array}{l}x_{1} \\ x_{1}+x_{2} \\ x_{1}+2 x_{2}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\right.\right\}$
Solve the system of equations:

$$
\begin{aligned}
x_{1} & =0 \\
x_{1}+x_{2} & =0 \\
x_{1}+2 x_{2} & =0
\end{aligned}
$$

Coefficient matrix:

$$
\left(\begin{array}{cc}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right) \text { has r.r.e.f. }\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

$\operatorname{ker} L=\{(0,0)\}$. By Theorem 10.5, L is one-to-one.

EXAMPLE 3 Let $L: R^{3} \rightarrow R^{2}$ be defined by
$L\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}+x_{2}}{x_{2}+x_{3}}$.

- $\operatorname{ker} L=$
$\left\{\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\left|\left\lvert\,\binom{ x_{1}+x_{2}}{x_{2}+x_{3}}=\binom{0}{0}\right.\right\}\right.$
The homogeneous system coefficient matrix:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \text { has r.r.e.f. }\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

x_{3} is arbitrary, $x_{1}=x_{3}, x_{2}=-x_{3}$. $\operatorname{ker} L=\operatorname{span}\{\underbrace{(1,-1,1)}\}$
basis for er L
Th. 10.5
$\operatorname{ker} L \neq\{(0,0,0)\} \quad \Rightarrow \quad L$ is not one-to-one.

- range $L=\left\{\left.\binom{x_{1}+x_{2}}{x_{2}+x_{3}} \right\rvert\,\right.$ for all $\left.x_{1}, x_{2}, x_{3}\right\}$
$=\left\{\left.x_{1}\binom{1}{0}+x_{2}\binom{1}{1}+x_{3}\binom{0}{1} \right\rvert\,\right.$ for
all $\left.x_{1}, x_{2}, x_{3}\right\}$

Find a basis for range $L=$ span $\{(1,0),(1,1),(0,1)\}$:
$\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ has r.r.e.f. $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right)$
\Rightarrow range $L=\operatorname{span}\{\underbrace{(1,0),(1,1)}\}$. basis for range L
range $L=R^{2} \Rightarrow L$ is onto.

Note that in EXAMPLE 3 we used r.r.e.f.
$\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right)$ of the homogeneous system
coefficient matrix $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ to
determine both the kernel and the range of L. In this case, we had:

- $\operatorname{ker} L=$ null space of A
- range $L=$ column space of A

Recall Th. 6.12 p. 288:
If A is an $m \times n$ matrix then
rank $A+$ nullity $A=n$.

TH $10.7 \rightarrow$ p. 446
Let $L: V \rightarrow W$ be a linear transformation. Then $\operatorname{dim}(\operatorname{ker} L)+\operatorname{dim}($ range $L)=\operatorname{dim} V$

EXAMPLE 4 (\rightarrow EXAMPLE 1 from the previous

lecture)
$L: P_{2} \rightarrow P_{3}$ is defined by
$L\left(a t^{2}+b t+c\right)=c t^{3}+(a+b) t$.

- $\operatorname{ker} L=\left\{a t^{2}+b t+c \mid c t^{3}+(a+b) t=0\right\}$

Set up the homogeneous equation:

$$
\begin{aligned}
c & =0 \\
0 & =0 \\
a+b & =0 \\
0 & =0
\end{aligned}
$$

The coefficient matrix

$$
\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { has r.r.e.f. }\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

b is arbitrary; $c=0 ; a=-b$.
jer $L=\operatorname{span}\left\{-t^{2}+t\right\}$.
$\operatorname{ker} L \neq\{0\} \Rightarrow L$ is not one-to-one.

- \quad range $L=\left\{c t^{3}+(a+b) t \mid\right.$ for all $\left.a, b, c\right\}$
$=\left\{a(t)+b(t)+c\left(t^{3}\right) \mid\right.$ for all $\left.a, b, c\right\}$
$=\operatorname{span}\{\underbrace{t, t^{3}}\}$
basis for range L
range $L \neq P_{3} \Rightarrow L$ is not onto.
Verify Th. 10.7 for the four examples:

$\mathbf{E X}$	$L: V \rightarrow W$	$\operatorname{dim}(\operatorname{ker} L)$	$\operatorname{dim}(\operatorname{range} L)$	$\operatorname{dim} V$
$\mathbf{1}$	$L: R^{3} \rightarrow R^{3}$	1	2	3
$\mathbf{2}$	$L: R^{2} \rightarrow R^{3}$	0	2	2
$\mathbf{3}$	$L: R^{3} \rightarrow R^{2}$	1	2	3
$\mathbf{4}$	$L: P_{2} \rightarrow P_{3}$	1	2	3

- $\operatorname{dim}(\operatorname{ker} L)=$ nullity of L
- $\operatorname{dim}($ range $L)=$ rank of L.

COROLLARY $10.2 \rightarrow$ p. 443

Let $L: V \rightarrow W$ be a linear transformation and $\operatorname{dim} V=\operatorname{dim} W$. L is one-to-one if and only if L is onto.

