10.2 The Kernel and Range

DEF $(\to p. 441, 443)$

Let $L: V \to W$ be a linear transformation. Then

(a) the **kernel** of *L* is the subset of *V* comprised of all vectors whose image is the zero vector:

$$\ker L = \{ \overrightarrow{v} \mid L(\overrightarrow{v}) = \overrightarrow{0} \}$$

(b) the range of L is the subset of W comprised of all images of vectors in V:

range
$$L = \{ \overrightarrow{w} \mid L(\overrightarrow{v}) = \overrightarrow{w} \}$$

DEF $(\to p. 440, 443)$

Let $L: V \to W$ be a linear transformation. Then (a) L is one-to-one if $\overrightarrow{v_1} \neq \overrightarrow{v_2} \Rightarrow L(\overrightarrow{v_1}) \neq L(\overrightarrow{v_2})$

(b) L is onto W if range L = W.

EXAMPLE 1

Let L : R³ → R³ be defined by
L(x, y, z) = (x, y, 0). (Projection onto the xy-plane.)
ker L = {(x, y, z) | (x, y, 0) = (0, 0, 0)} ker L consists of (x, y, z) that are solutions of the system

$$x = 0$$

$$y = 0$$

z is arbitrary, and $x = y = 0$.

 $\ker L = \operatorname{span} \{(0, 0, 1)\}.$

- range $L = \text{span} \{(1,0,0), (0,1,0)\}.$
- *L* is not one-to-one (e.g., L(1,2,3) = L(1,2,5) = (1,2,0).)
- *L* is not onto (range $L \neq R^3$).

TH (→ Th. 10.4 p. 442, Th. 10.6 p. 443)

Let $L: V \to W$ be a linear transformation. Then

- ker*L* is a subspace of *V* and
- range *L* is a subspace of *W*.

TH 10.5 \rightarrow p. 443

A linear transformation *L* is one-to-one if and only if ker $L = \{ \overrightarrow{0} \}$.

EXAMPLE 2
Let
$$L : R^2 \to R^3$$
 be defined by
 $L\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_1 + x_2 \\ x_1 + 2x_2 \end{pmatrix}$.

• $\ker L =$

$$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \middle| \begin{pmatrix} x_1 \\ x_1 + x_2 \\ x_1 + 2x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

Solve the system of equations:

$$\begin{array}{rcl} x_1 & = & 0 \\ x_1 & + & x_2 & = & 0 \\ x_1 & + & 2x_2 & = & 0 \end{array}$$

Coefficient matrix:

$$\left(\begin{array}{rrr} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{array}\right)$$
 has r.r.e.f.
$$\left(\begin{array}{rrr} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right)$$

ker $L = \{(0,0)\}$. By Theorem 10.5, *L* is one-to-one.

EXAMPLE 3 Let
$$L : R^3 \to R^2$$
 be defined by $L\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \end{pmatrix}.$

• ker
$$L =$$

$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \middle| \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

The homogeneous system coefficient matrix:

$$\left(\begin{array}{rrr}1 & 1 & 0\\ 0 & 1 & 1\end{array}\right)$$
 has r.r.e.f.
$$\left(\begin{array}{rrr}1 & 0 & -1\\ 0 & 1 & 1\end{array}\right)$$

 x_3 is arbitrary, $x_1 = x_3, x_2 = -x_3$. ker L = span { (1, -1, 1) }

basis for ker L

$$\ker L \neq \{(0,0,0)\} \xrightarrow{\text{Th. 10.5}} L \text{ is not one-to-one.}$$

• range
$$L = \left\{ \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \end{pmatrix} | \text{ for all } x_1, x_2, x_3 \right\}$$

$$= \left\{ x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} | \text{ for all } x_1, x_2, x_3 \right\}$$
Find a basis for range $L = \text{span} \left\{ (1, 0), (1, 1), (0, 1) \right\}$:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \text{ has r.r.e.f. } \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\Rightarrow \text{ range } L = \text{span} \left\{ (1, 0), (1, 1) \right\}.$$

$$\text{ basis for range } L$$

range $L = R^2 \implies L$ is onto.

Note that in **EXAMPLE 3** we used r.r.e.f. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$ of the homogeneous system coefficient matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ to

determine both the kernel and the range of *L*. In this case, we had:

- ker L = null space of A
- range L = column space of A

Recall Th. 6.12 p. 288: If A is an $m \times n$ matrix then rank A + nullity A = n.

TH 10.7 \rightarrow p. 446

Let $L : V \to W$ be a linear transformation. Then dim(ker L) + dim(range L) = dim V **EXAMPLE 4** (\rightarrow **EXAMPLE 1** from the previous lecture)

 $L: P_2 \to P_3 \text{ is defined by}$ $L(at^2 + bt + c) = ct^3 + (a + b)t.$ • ker $L = \{at^2 + bt + c | ct^3 + (a + b)t = 0\}$ Set up the homogeneous equation:

$$c = 0$$

$$0 = 0$$

$$a + b = 0$$

$$0 = 0$$

The coefficient matrix

$$\left(\begin{array}{cccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$
 has r.r.e.f.
$$\left(\begin{array}{cccc} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

b is arbitrary; c = 0; a = -b. ker $L = \text{span} \{-t^2 + t\}$. ker $L \neq \{0\} \Rightarrow L$ is not one-to-one.

• range
$$L = \{ct^3 + (a+b)t | \text{ for all } a, b, c\}$$

= $\{a(t) + b(t) + c(t^3) | \text{ for all } a, b, c\}$
= span $\{ \underbrace{t, t^3}_{} \}$

basis for range Lrange $L \neq P_3 \implies L$ is not onto.

Verify Th. 10.7 for the four examples:

EX	$L: V \to W$	dim(kerL)	dim(rangeL)	dim V
1	$L: R^3 \to R^3$	1	2	3
2	$L: R^2 \to R^3$	0	2	2
3	$L: R^3 \to R^2$	1	2	3
4	$L: P_2 \to P_3$	1	2	3

- $\dim(\ker L) = \operatorname{nullity} \operatorname{of} L$
- $\dim(\operatorname{range} L) = \operatorname{rank} \operatorname{of} L$.

COROLLARY 10.2 \rightarrow p. 443

Let $L : V \rightarrow W$ be a linear transformation and dim $V = \dim W$. L is one-to-one if and only if L is onto.