MATH 211 - Sample Test 2 Answer Key Spring 1999, Dr. Bogacki

1.
$$y = x \cos y$$

 $y' = \cos y - x (\sin y) y'$
 $y'(1 + x \sin y) = \cos y$
 $y' = \frac{\cos y}{1 + x \sin y}$
 $y'' = \frac{-\sin y y'(1 + x \sin y) - \cos y(\sin y + x \cos y y')}{(1 + x \sin y)^2} = \frac{-\sin y \left(\frac{\cos y}{1 + x \sin y}\right)(1 + x \sin y) - \cos y(\sin y + x \cos y \left(\frac{\cos y}{1 + x \sin y}\right))}{(1 + x \sin y)^2}$

2.
$$\frac{dx}{dt} = 3t^2 - 12t + 9 = 3(t^2 - 4t + 3) = 3(t - 1)(t - 3)$$

$$\frac{dx}{dt} = 0 \text{ at } t = 1 \text{ and } t = 3.$$

$$\frac{dx}{dt}\Big|_{t=0} = 9 > 0 \text{ therefore for } t < 1, x \text{ is moving to the right;}$$

$$\frac{dx}{dt}\Big|_{t=2} = -3 < 0 \text{ therefore for } 1 < t < 3, x \text{ is moving to the left;}$$

$$\frac{dx}{dt}\Big|_{t=4} = 9 > 0 \text{ therefore for } t > 3, x \text{ is moving to the right;}$$

$$\frac{d^2x}{dt^2}\Big|_{t=4} = 6t - 12 = 6(t - 2)$$

$$\frac{d^2x}{dt^2}\Big|_{t=0} = -12 < 0 \text{ therefore for } t < 2, x \text{ is accelerating to the left;}$$

$$\frac{d^2x}{dt^2}\Big|_{t=3} = 6 > 0 \text{ therefore for } t > 2, x \text{ is accelerating to the right;}$$

- (a) the point is moving to the right for t < 1 and for t > 3;
- (b) the point is accelerating to the right for t > 2;
- (c) the point is speeding up whenever the signs of $\frac{dx}{dt}$ and $\frac{d^2x}{dt^2}$ match, i.e. for 1 < t < 2 and for t > 3.

3.
$$V = \frac{4}{3}\pi r^3$$
; $\frac{dV}{dt} = \frac{4}{3}\pi (3r^2)\frac{dr}{dt} = 4\pi r^2\frac{dr}{dt}$.
Since $\frac{dV}{dt} = -20$ ft³/min; $r = 2$ ft, we have $-20 = 4\pi (2)^2 \frac{dr}{dt}$ therefore $\frac{dr}{dt} = \frac{-20}{16\pi} = \frac{-5}{4\pi}$.

Answer: the radius is decreasing at the rate of $1.25/\pi$ feet per minute.

4.
$$f(x) = 2x^3 - 9x^2 - 3$$
; $f'(x) = 6x^2 - 18x = 6x(x - 3)$

- Critical points: Set f'(x) = 0; thus $\underline{x = 0}$, $\underline{f(0) = -3}$ and $\underline{x = 3}$, $\underline{f(3) = -30}$ are the two critical points. However only the first point is inside the interval [-1,1].
- Singular points (f' is undefined while f is defined)
 Since f' is a polynomial, it is defined for all real x, therefore there are no simgular points.
- Endpoints: f(-1) = -14; f(1) = -10.

The absolute maximum is f(0) = -3. The absolute minimum is f(-1) = -14.

5. \times X X Length of the fence: 2000 = 6x + 4y.

Maximize the area: A = 3xy.

Solve the fence length equation for $y: y = 500 - \frac{3}{2}x$ and substitute into the area formula: $A(x) = 3x(500 - \frac{3}{2}x) = 1500x - \frac{9}{2}x^2$ defined on $[0, \frac{2000}{6}]$.

- Critical points: $A'(x) = 1500 9x = 0 \Rightarrow x = \frac{1500}{9} = \frac{500}{3}$ is inside the interval; $A(\frac{500}{3}) = 500(500 250) = (500)(250) = 125,000$.
- No singular points (derivative defined for all x)
- Endpoints A(0) = 0; $A(\frac{2000}{6}) = 0$.

Absolute maximum at $x = \frac{500}{3}$.

Answer: the largest rectangular area that can be enclosed is 125,000 sq ft.

- 6. X Volume of the box: $V(x) = (12 2x)^2(x)$ for x in [0, 6].
 - Critical points: $V'(x) = 2(12-2x)(-2)(x) + (12-2x)^2 = (12-2x)(-4x+12-2x)$ = (12-2x)(-6x+12) = 0 $x = 6 \Rightarrow V(6) = 0$ $x = 2 \Rightarrow V(2) = 64(2) = 128$
 - Singular points: none
 - Endpoints: V(0) = 0, V(6) = 0 (already listed as a critical point)

Absolute maximum at x = 2.

Answer: The dimensions of the box with maximum volume are $8 \text{ in} \times 8 \text{ in} \times 2 \text{ in}$.

7. (a)
$$\frac{dy}{dx} = e^{2x}(2) + \frac{1}{x^2}(2x) = 2e^{2x} + \frac{2}{x}$$

(b)
$$\frac{dy}{dx} = e^{\sin^2 x} (2\sin x)(\cos x)$$

(c)
$$\frac{dy}{dx} = (\sec^2(\ln x)) \frac{1}{x}$$

(d)
$$\frac{dy}{dx} = \left(\frac{x^2 - x + 1}{5x^2 + 2x + 1}\right) \left(\frac{(10x + 2)(x^2 - x + 1) - (5x^2 + 2x + 1)(2x - 1)}{(x^2 - x + 1)^2}\right)$$

(e)
$$y = \frac{\ln(3x+1)}{\ln 2}$$
; $\frac{dy}{dx} = \left(\frac{1}{\ln 2}\right) \left(\frac{3}{3x+1}\right)$

(f)
$$y = e^{(\ln 4)(x - \cos x)}$$
; $\frac{dy}{dx} = e^{(\ln 4)(x - \cos x)}(\ln 4)(1 + \sin x) = 4^{x - \cos x}(\ln 4)(1 + \sin x)$

(g)
$$y = e^{(\ln x)x}$$
; $\frac{dy}{dx} = e^{(\ln x)x}(\frac{1}{x}x + \ln x) = x^x(1 + \ln x)$

(h)
$$y = e^{(\ln(\sin x))\cos x}$$
; $\frac{dy}{dx} = e^{(\ln(\sin x))\cos x} (\frac{\cos x}{\sin x}\cos x + \ln(\sin x)(-\sin x))$
= $(\sin x)^{\cos x} (\frac{\cos^2 x}{\sin x} - \sin x(\ln(\sin x)))$

8. (a)
$$\frac{dy}{dx} = \frac{1}{\cos x}(-\sin x) = -\tan x$$

8. (a)
$$\frac{dy}{dx} = \frac{1}{\cos x}(-\sin x) = -\tan x$$
(b)
$$\frac{dy}{dx} = \frac{1}{\csc x + \cot x}(-\csc x \cot x - \csc^2 x) = \frac{-\csc x(\cot x + \csc x)}{\csc x + \cot x} = -\csc x$$