SAMPLE FINAL

- 1. Find $\frac{dy}{dx}$ if (a) $y = \int_{x}^{2} e^{t^{2}} dt$ (b) $y = \int_{0}^{x^{2}} \sin(t^{4}) dt$
- 2. Evaluate: (a) $\int \sec^4 x \tan^4 x \, dx$ (b) $\int e^x \sin x \, dx$ (c) $\int \frac{x^3}{x^2 - 3x + 2} dx$
- 3. Evaluate (a) $\int \frac{5x^3 + 5x^2 - 5x}{3x^4 + 4x^3 - 6x^2} dx$ (b) $\int x^2 \cos x dx$ (c) $\int \frac{dx}{x\sqrt{3 - x^2}}$
- 4. Evaluate

(a)
$$\int \frac{x^2 + 2x}{\sqrt{x+2}} dx$$
 (b) $\int \frac{dx}{x^4 \sqrt{x^2 - 9}}$ (c) $\int \frac{x^2 + 3x + 2}{x^3 + x} dx$

- 5. Evaluate: (a) $\int_{1}^{2} \ln x \, dx$
 - (b) $\int_{1}^{4} \frac{1}{(x-2)^2} dx$ (c) $\int_{0}^{\infty} \frac{5x}{(x^2+1)^2} dx$
- 6. Consider the region bounded by the graphs of $y = \sqrt{x}$ and $y = x^3$. (a) Find the area of the region.
 - (b) Set up the integral corresponding to the the volume of the solid generated by revolving the region about the *x*-axis.
 - (b) Set up the integral corresponding to the the volume of the solid generated by revolving the region about the *y*-axis.
 - (b) Set up the integral corresponding to the the volume of the solid generated by revolving the region about the line y = 2.
- 7. Given the curve $y = \cot x$, $\frac{\pi}{4} \le x \le \frac{\pi}{2}$, set up the integrals (without evaluating) corresponding to
 - (a) the arc length of the curve,
 - (b) area of the surface obtained by rotating the curve about the *x*-axis,
 - (c) area of the surface obtained by rotating the curve about the y-axis,
 - (d) area of the surface obtained by rotating the curve about the line $x = \pi$,
 - (e) area of the surface obtained by rotating the curve about the line y = 1.
- 8. Consider $f(x, y, z) = \frac{xe^y}{z}$ (a) find all first partial derivatives of *f*, (b) verify that $f_{xz} = f_{zx}$
- 9. Solve:
 - (a) $y^3y' = (y^4 + 1)\cos x$
 - (b) xy' y = x, x > 0
 - (c) y' + 2xy = x, y(0) = -2
- **10.** Solve:
 - (a) y'' + 2y' 8y = 0, y(0) = 5, y'(0) = -2
 - (b) y'' 2y' + y = 0, y(0) = -1, y(1) = 2e
 - (c) y'' 4y' + 5y = 0, y(0) = 2, $y(\pi/2) = e^{\pi}$