1. Solve the differential equation
$$xy\frac{dy}{dx} = \sec y$$

Separate the variables: $y \cos y dy = \frac{1}{x} dx$ Integrate: $\int y \cos y dy = \int \frac{1}{x} dx$

The left hand side can be integrated by parts with u = y, $dv = \cos y dy$; du = dy, $v = \sin y$

This leads to: $y \sin y - \int \sin y \, dy = y \sin y + \cos y + c_1$

Therefore

$$y\sin y + \cos y = \ln|x| + C$$

2. Solve the differential equation $\frac{dy}{dx} = e^x - y$

Rewrite in the standard form of a linear equation: $\frac{dy}{dx} + y = e^x$

Integrating factor: $I(x) = e^{\int dx} = e^x$

Multiply both sides of the differential equation by I(x):

$$e^{x}(\frac{dy}{dx}+y) = e^{x}e^{x}$$
 yields
 $(e^{x}y)' = e^{2x}$

Integrate both sides

$$e^{x}y = \int e^{2x}dx = \frac{1}{2}e^{2x} + C$$

The general solution: $y = \frac{1}{2}e^x + Ce^{-x}$