- 1. Given the curve $y = \ln x$ $1 \le x \le e$, find the integrals (without evaluating) that correspond to:
 - (a) the arc length of the curve $\int_{1}^{e} \sqrt{1 + (1/x)^2} dx$
 - (b) area of the surface obtained by rotating the curve about the *x*-axis $2\pi \int_{1}^{e} \ln x \sqrt{1 + (1/x)^2} dx$
 - (c) area of the surface obtained by rotating the curve about the y-axis $2\pi \int_{1}^{e} x \sqrt{1 + (1/x)^2} dx$
 - (d) area of the surface obtained by rotating the curve about the line x = e $2\pi \int_{1}^{e} (e-x)\sqrt{1+(1/x)^2} dx$
 - (e) area of the surface obtained by rotating the curve about the line y = -2 $2\pi \int_{1}^{e} (\ln x + 2)\sqrt{1 + (1/x)^2} dx$
- 2. Given the function $z = x^2 + xy^2$, find

(a) $\frac{\partial z}{\partial z} = 2x + y^2$

(a)
$$\frac{\partial z}{\partial x} = 2x + y$$

(b) $\frac{\partial z}{\partial y} = 2xy$
(c) $\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial x} (2x + y^2) = 2$
(d) $\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial}{\partial y} (2xy) = 2x$

(e)
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial}{\partial x} (2xy) = 2y$$