QUIZ 9 SOLUTION KEY

Dr. Bogacki

- 1. In the following problems, use $f(x) = x^4 + 4x^3 2$, $f'(x) = 4x^3 + 12x^2 = 4x^2(x + 3)$ $f''(x) = 12x^2 + 24x = 12x(x + 2)$
- 2. Find all critical numbers of f(x)

f' is never undefined. Therefore, the only way to get critical numbers is by setting f' = 0. Critical numbers are: x = 0, x = -3

3. Find the absolute maximum and the absolute minimum values of f on [-1, 1]

Using the Closed Interval Method (p.282)

Since -3 is not in (-1,1), the only critical number to consider is 0. f(0) = -2Evaluate f at each endpoint: f(-1) = 1 - 4 - 2 = -5 f(1) = 1 + 4 - 2 = 3The largest of the three values, f(1) = 3 is the absolute maximum value.

The smallest of the three values, f(-1) = -5 is the absolute minimum value.

4. (a) Find the intervals on which f is increasing or decreasing.

Test the signs of f ' between the critical points. On the interval (-infinity,-3), we can test f ' (-4) = 4 (-4)² · (-4 + 3) < 0 On the interval (-3,0), we can test f ' (-1) = 4 (-1)² · (-1 + 3) > 0 On the interval (0, infinity), we can test f ' (1) = 4 (1)² · (1 + 3) > 0

x	 	 -3 		 0 	
f'	 - 	 0 	+	 0 	 +
f	 decr. 	 	 incr.	 	 incr.

Answer: f is increasing on the intervals (-3,0) and $(0,\infty)$ f is decreasing on the interval $(-\infty, -3)$ (b) Find the local maximum and minimum values of f.

Using the first derivative test, we conclude:

$$f(-3) = (-3)^4 + 4 \cdot (-3)^3 - 2 = 81 - 108 - 2 = -29$$
 is a local minimum since f' changes from negative to positive

f(0) = -2 is not a local extremum since f' does not change its sign there

f does not have a local maximum

5. (a) Find the intervals of concavity of f.

Since f''(x) = 12x(x+2) is continuous for all x, the only way for it to change sign is when f''(x) = 0

The possible inflection points are at x = 0 and x = -2.

Test the signs of f ' between these points.

On the interval (-infinity,-2), we can test $f'(-3) = 12(-3) \cdot (-3 + 2) > 0$ On the interval (-2,0), we can test $f'(-1) = 12(-1) \cdot (-1 + 2) < 0$ On the interval (0, infinity), we can test $f''(1) = 4(1) \cdot (1 + 2) > 0$

x		-2		 0 	
f''	 + 	0	 	 0 	 +
f	 conc. up	 	 conc. down	 	 conc. up

The graph of f is concave upward on the intervals $\left(-\infty,-2\right)$ and $\left(0,\infty\right)$.

The graph of f is concave downward on the interval (-2, 0).

(b) Find the inflection points of f.

f has two inflection points: at x = -2 and at x = 0.