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In 1696 Johann Bernoulli challenged the mathematicians of his day to find the curve of quickest 
descent for a body to fall through a frictionless homogeneous Earth between two given points in 
a vertical plane [Calinger, 1995]. The problem languished for months until Newton chanced 
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upon the problem, quickly solved it, and published the solution anonymously. But Bernoulli 
recognized the “lion by its claw” – the path is a cycloid. We have shown the solution of this 
problem by various authors in previous communcications. We will instead consider an extension 
of the problem, that is, to fall through the rotating Earth with a variable gravity. A complete 
solution was first presented by Simoson in 2010, and the path is a trochoid [Simoson, 2010, 
2007]. 

We will trace the development of the solution to this problem, including a historical background, 
and displaying the equations of motion. Our free falling pebble may be realized by a black hole 
with the mass of a mountain and an event horizon of an atomic nucleus, from a recent 
suggestion from Hawking [1998]. 

We will briefly review the properties of the cycloid and the trochoid as they relate to the free 
fall through a rotating Earth. Examples will be provided for the case of motions in an equatorial 
plane,  and those initiating in the northern hemisphere. The path for the former is a 
hypocycloid.  For the latter, it turns out that the  motion is not planar, but rather is three-
dimensional whose projection on the xy-plane is either a hypotrochoid or an epitrochoid 
depending on the  rate of rotation. 

The cycloid is the curve traced out by a point on the circumference of a circle rolling without 
slipping on a straight line. Its parametric equations are: 

  𝑥𝑥 = 𝑟𝑟(𝜃𝜃 − 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃), 𝑦𝑦 = 𝑟𝑟(1 − 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃),  

where r = the radius of the circle, and 𝜃𝜃 is the rotation angle (𝜃𝜃 = 0 when the tracing point P is 
at the origin) (Figure 1). 

 

        Figure 1.  The cycloidal path 

Two noteworthy points about the cycloidal track are that: (1) Of all curves joining the two points 
A and B in a vertical plane, the cycloid gives the shortest time of descent, a brachistochrone; and 
(2) The cycloid is also a tautochrone, that is, no matter where the particle P is placed on an 
inverted cycloid, it takes the same time to slide to the bottom. 
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            Figure 2.  Shortest descent time 

         I. Cycloid, 𝑎𝑎 = 15.0 𝑓𝑓𝑓𝑓; 𝑇𝑇0 = 𝜋𝜋√𝑎𝑎
𝑔𝑔 = 2.144 𝑠𝑠 

  II. Straight line; 𝑇𝑇 = 1.185𝑇𝑇0 = 2.541 𝑠𝑠 
 III. Parabola;      𝑇𝑇 = 1.160𝑇𝑇0 = 2.487 𝑠𝑠 
       IV. Circle;            𝑇𝑇 = 1.149𝑇𝑇0 = 2.463 𝑠𝑠   

 

         Figure 3.  Same time from A, B, or C to finish. 
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An extension of the problem is to consider falling through the whole Earth, first, when the Earth 
is taken stationary, and, next, to allow it to rotate. We have always been fascinated by a fall 
through a hole in the Earth. 

 In 700 BC, the Greek poet Hesiod claimed that an anvil would fall from the heavens to 
the Earth in 9 days, and through the Earth again in 9 days before reaching hell. 

 Alice, in 1865 (through Lewis Carroll), fell down a rabbit hole for ever so long that she 
grew sleepy and thought she must have fallen through the Earth’s center. 

 Henrik van Etten, in 1864, argued that a millstone dropped from a hole would reach the 
Earth’s center in 2.5 days and “hang” in the air. 

 Plutarch, around 100 AD, pointed out that in a spherical Earth boulders would pass 
through the Earth’s center and beyond and again oscillating in a perpetual motion. 

 Galileo, in 1632, analyzed the simple harmonic motion of a cannonball dropped from a 
hole in the Earth. 

 Hawking, in 1988, drops a black hole, with mass of a mountain and radius that of a 
nucleus of an atom, from the Earth’s surface. (This entry is important to us because it is 
the closest thing we have for now of a particle falling through the Earth by gravity alone, 
unimpeded by friction.) 

Through a stationary homogeneous Earth, the motion is shown to be simple harmonic, with a 
known period of oscillation (Figure 4).  

      𝐹𝐹 = 𝑚𝑚𝑚𝑚 

   𝑚𝑚�̈�𝑟 = −𝐺𝐺 𝑚𝑚𝑚𝑚′
𝑟𝑟2  

           = − 𝐺𝐺𝑚𝑚
𝑟𝑟2 ∙ 4

3 𝜋𝜋𝑟𝑟3𝜌𝜌 

           = −𝑘𝑘𝑟𝑟,   𝑘𝑘 = 4
3 𝜋𝜋𝐺𝐺𝑚𝑚𝜌𝜌 

i.e.,        �̈�𝑟 = − 𝑘𝑘
𝑚𝑚 𝑟𝑟 ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆  with period  𝑇𝑇 = 2𝜋𝜋√𝑚𝑚

𝑘𝑘 = 84.4 𝑚𝑚𝑚𝑚𝑚𝑚. 

We note that this transit time of 42.2 minutes, one-way, is the same value between any two 
antipodes on the Earth. It turns out that the hole through the Earth need not pass through the 
center; any chordal tunnel in the Earth gives rise to a simple harmonic motion, with the same 
period as the diametrical path (Figure 5). 

   𝑚𝑚�̈�𝑥 = −𝐺𝐺 𝑚𝑚𝑚𝑚′

𝑟𝑟2 𝑠𝑠𝑚𝑚𝑚𝑚𝜃𝜃,   𝑠𝑠𝑚𝑚𝑚𝑚𝜃𝜃 = 𝑥𝑥
𝑟𝑟 

           = − 𝐺𝐺𝑚𝑚
𝑟𝑟2 ∙ 4

3 𝜋𝜋𝑟𝑟3𝜌𝜌 ∙ 𝑥𝑥
𝑟𝑟 
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           = −𝑘𝑘𝑘𝑘,   𝑘𝑘 = 4
3 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 

i.e.,        �̈�𝑘 = − 𝑘𝑘
𝑚𝑚 𝑘𝑘 ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆  with period  𝑇𝑇 = 2𝜋𝜋√𝑚𝑚

𝑘𝑘 = 84.4 𝜋𝜋𝑚𝑚𝑚𝑚. 

 

           Figure 4. Hole along a diameter               Figurer 5. Hole along a chord 

Allowing for a rotating Earth, the motion now adds a new dimension. This was first completely 
described by Simoson in 2010. From a frame of reference on a fixed star, the simple harmonic 
motion through a tunnel in the Earth appears as an ellipse that is precessing in a clockwise 
sense. From the point of view of an observer on the Earth, the to-and-fro motion along the 
tunnel appears as a trochoidal motion. This is reminiscent of the motion of a Foucault 
pendulum, first demonstrated by Foucault in 1851. Hanging a 62-lb bob by a string of length 220 
ft at the Pantheon in Paris, latitude 48051′, the pendulum appeared to precess around 110 
every hour clockwise, for a total period of 32.7 hours. 

                  

 Figure 6. Foucault pendulum (Pantheon)   Figure 7.  Foucault pendulum, model 
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The equations of motion for motion on a plane (the equatorial plane) is given by Newton’s laws: 

  𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2 + 𝑘𝑘𝑘𝑘 = ℎ2

𝑟𝑟3,  𝑑𝑑2𝑧𝑧
𝑑𝑑𝑡𝑡2 + 𝑧𝑧 = 𝑘𝑘

ℎ2𝑧𝑧3 

with  r as the radial distance from the Earth’s center to the particle, 𝜃𝜃 the radial angle of the 
position vector, 𝑧𝑧 = 1 𝑘𝑘,⁄  h = the angular momentum, and k is a proportionality constant to the 
gravitation force 𝐹𝐹 = −𝑘𝑘𝑘𝑘𝑘𝑘. The solutions are (details from [Simoson, 2010]): 

  𝑘𝑘(𝑡𝑡) = 𝑅𝑅 [𝑐𝑐𝑐𝑐𝑐𝑐2(√𝑘𝑘𝑡𝑡) + 𝜔𝜔2

𝑘𝑘 𝑐𝑐𝑠𝑠𝑠𝑠2(√𝑘𝑘𝑡𝑡)]
1/2

     and 

  𝑘𝑘(𝜃𝜃) = 𝑅𝑅 [𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑘𝑘
𝜔𝜔2 𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃]

−1/2
,     with  𝜔𝜔 = 2𝜋𝜋

𝑄𝑄 ,  

Q = Earth’s period, and 𝜔𝜔 = Earth’s angular frequency. The solution can be written as a matrix: 

  𝑃𝑃(𝑡𝑡) = [𝑥𝑥(𝑡𝑡)
𝑦𝑦(𝑡𝑡)] = 𝑅𝑅 [

𝑐𝑐𝑐𝑐𝑐𝑐(√𝑘𝑘𝑡𝑡)
𝜔𝜔

√𝑘𝑘 sin (√𝑘𝑘𝑡𝑡)], 

which is an elliptical path, for an observer fixed on the stars. For an Earth observer, this path is 
made to precess by introducing a dynamic rotation matrix:  

  𝑄𝑄(𝛼𝛼, 𝑡𝑡) = [cos (𝛼𝛼𝑡𝑡) −sin (𝛼𝛼𝑡𝑡)
sin (𝛼𝛼𝑡𝑡) cos (𝛼𝛼𝑡𝑡) ]. 

The resulting path,  𝑄𝑄(−𝜔𝜔, 𝑡𝑡)𝑃𝑃(𝑡𝑡),  is a hypocycloid along the equatorial plane of a rotating 
homogeneous spherical Earth. 

             

   Figure 8.  Pebble motion relative to the stars and the Earth. 
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A trochoid is generated by a point on a circle rolling, without slipping, on another circle. If the 
rolling circle is outside the other circle, the curve generated is called an epitrochoid, inside the 
curve is a hypotrochoid. When the cusps of the curves are on the stationary circle, the curves 
are called epicycloids and hypocycloids (Figure 9). Generating a trochoid is shown in Figure 10. 
The exact shape of the curve depends on the ratio of the radii of the two circles, 𝑟𝑟′ 𝑟𝑟,   𝑟𝑟′ =⁄  the 
ring, r = the wheel. If this ratio is a fraction 𝑚𝑚 𝑛𝑛⁄  in lowest terms, the curve will have m cusps, 
and it will be completely traced after moving the wheel n times around the inner rim. If this 
ratio is irrational, the curve will not close, although going many times around the rim will nearly 
close it. 

  

                              Figure 9.  Trochoid curves 

 

      Figure 10. Generating a trochoid 
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As an application of the equations of motion, we can calculate the transit times between any 
two cities along the equator. One further feature of the equations of the path is that it allows 
for the variation of the rate of rotation of the Earth. The solutions, for the equatorial plane, may 
be written: 

  𝑟𝑟(𝑡𝑡)[𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃(𝑡𝑡) − 𝜔𝜔𝑡𝑡), 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃(𝑡𝑡) − 𝜔𝜔𝑡𝑡)], 

with 𝜔𝜔 = the Earth’s angular frequency, and 

  𝜃𝜃(𝑡𝑡) = √𝑘𝑘𝑡𝑡 + 𝑡𝑡𝑡𝑡𝑠𝑠−1 [
( 𝜔𝜔

√𝑘𝑘−1)𝑠𝑠𝑠𝑠𝑠𝑠√𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠√𝑘𝑘𝑡𝑡

1+( 𝜔𝜔
√𝑘𝑘−1)𝑠𝑠𝑠𝑠𝑠𝑠2√𝑘𝑘𝑡𝑡

] , 𝑡𝑡 > 0. 

This last equation allows us to calculate the transit time between launch point A and resurface 
point B for various hypothetical rates of rotation of the Earth (Figure 11), with t = the number, in 
hours, as argument in the parentheses of B. For example, 𝐵𝐵(∞) corresponds to a stationary 
Earth; 𝐵𝐵(24) is for normal rotating Earth at 24 hours/day; and for 𝐵𝐵(1.5),  the pebble 
immediately veers off into space because the centripetal acceleration exceeds gravitational 
acceleration. The hypocycloid between A and B(24) is the same hypocycloid shown in Figure 8b. 
In particular, for the hypocycloid between launch point A: Quito, Ecuador (780𝑊𝑊), resurface 
point B: Entebbe, Uganda (32.50𝐸𝐸), the transit time is 42.31 minutes. Compared to the transit 
time for a stationary Earth, 42.24 minutes, this is slower by 4.2 seconds. 

 

  Figure 11. Hypocycloid arches with respect to Earth period 

For release points A in higher latitudes, say the Northern Hemisphere (Figure 12), the paths 
through the tunnel get a new shape. From an observer in the stars, the path is still elliptical, but 
for an Earth observer, a new factor comes in. Since the pebble’s initial tangential speed at 
latitude 𝜓𝜓 is less by a factor of 𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 compared to that of a particle at the equator, the semi-
minor axial length for the ellipse originating at 𝜓𝜓 will be smaller by the same factor to that of the 
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ellipse originating at the equator. Besides, the tunnel curve between A and B will no longer be 
planar, but a 3-D curve between ±𝜓𝜓, resembling the curves on a wicker basket, Figure 13. Their 
projection onto the equatorial plane is still a hypocycloid. Simoson [2010] gives an example of a 
drop at Torino, Italy (450𝑁𝑁, 7.50𝐸𝐸) and a resurface point at (450𝑆𝑆, 1770𝐸𝐸), which is 300 miles 
southeast off the coast from Wellington, New Zealand. (No transit time was given, however.)     

         

 Figure 12.  Ellipse of motion for latitude 𝜓𝜓 

 

       Figure 13.  Path of fall for a pebble dropped at latitude 𝜓𝜓 

Such paths as shown for a free fall at higher latitudes are not unfamiliar. They are reminiscent of 
the orbits of low-altitude polar satellites around the Earth, as shown in Figure 14a, b. 
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  Figure 14a. Polar low-altitude satellite orbits     14b. 

 

Summary of Results: 

 The path of quickest descent in a free fall through a constant gravity field is a cycloid. 
 An extended fall through a stationary Earth is a simple harmonic motion, with the same 

period between any two points on the Earth. 
 Even when the tunnel is a chord not through the center, the motion is still simple 

harmonic, with the same period as before (an isochrone). 
 When rotation is allowed, the path of the fall becomes a trochoid along the equator, 

which is still the least time path. Along the equator, the trochoidal motion is planar. 
 In the North (or South) Hemisphere, the motion is nonplanar, but its projection on the 

equator is still trochoidal. The motion between release point and resurface point is 
accomplished in the least time. 
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