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This paper presents a statistical technique based on a graph theory
to identify test and quiz questions with less utility. Thus providing
educators tools to improve assignments. These techniques are applied
in a case study using a prequisite knowledge quiz for precalculus stu-
dents. The quiz evaluates students’ mastery of skills taught in prior
math classes. During the first week of classes, the quiz helped faculty
identify which students are at risk of not passing the course. Cycle
intersection matrices identify which questions to consider removing.

1 The Problem

The bipartisan bill, No Child Left Behind, ushered an era of high stakes testing
into United States education (Juana Summers, NPR, April 14, 2015). Groups of
educators, parents, and politicians question the value, efficacy, and unintended
consequences of such tests [6]. Using the same techniques to evaluate the value of
medical tests, data scientists concluded that lengthy and frequent tests are waste-
ful, and unethical [8]. Educators and administrators can mitigate the negative
effects of high impact tests by reducing tests to only the most informative ques-
tions. This paper presents a method that can identify test questions that are less
informative. The method uses cycle intersection matrices from graph theory to
identify questions that should be considered for removal. It is an unsupervised sta-
tistical learning technique that does not require historical data from past testing.
The cycle intersection method requires only the test data. The cycle intersection
approach is demonstrated in a case study using a prerequisite knowledge quiz for
incoming precalculus students at the University of Central Florida (UCF). The
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principle of reproducible research is adhered to and R source code for the compu-
tations are included [5, 11, 10, 12].

2 Introduction

During the first week of fall 2014 and spring 2015 semesters at the University of
Central Florida’s Mathematics Department, 1000 level mathematics students took
quizzes on concepts taught in lower level math courses. The quizzes helped the
faculty identify students who needed extra help, and students who should consider
dropping down to a lower class. Four faculty constructed these quizzes that were
given via the online homework system MyLabsPlus. The quizzes were proctored in
a mathematics education computer lab. This paper will use parametric and non-
parametric statistical results, and cycle intersection matrices to identify questions
on the precalculus quiz that faculty should consider replacing or removing.
To identify questions to remove, cycle intersection matrices from graph theory

identified correlated variables. Phifer’s technique uses complete subgraphs to de-
termine which questions are informatively redundant. Questions in a complete
subgraph from a cycle intersection matrix can be reduced to a smaller set of ques-
tions [4].
First week prerequisite quiz results and test 1 scores will provided the data. The

independent variables are the individual question scores, the dependent variable is
the test 1 score. Initially, the intention was to use the final exam as the response
variable. Preliminary data exploration showed that the relationship between quiz
results and final exam scores was not strong enough for the task.

3 The Dataset

The quiz contained twenty questions. Questions 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17,
18, 19, and 20 each had one part and were scored as binary zero-one observations.
Questions 1, 5, 7, 10, 12, and 14 had multiple parts and were scored from zero to
one without partial credit.
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question learning objective
1 Find intercepts from a graph and analyze symmetry.
2 Know how to graph key equations.
3 Determine which points are on the graph of an equation.
4 Solve applications and extensions.
5 Calculate and interpret the slope of a line.
6 Graph lines given a point and the slope.
7 Identify the slope and y-intercept of a line from its equation.
8 Given the equations of two lines,

determine if they are parallel, perpendicular, or neither.
9 Write the equation of a circle with given characteristics.
10 Determine whether a relation represents a function.
11 Find the domain of a function defined by an equation.
12 Determine if a graph represents a function,

and find the domain, range, intercepts, and symmetry.
13 Use a graph to determine where a function is increasing,

decreasing, or constant.
14 Use a graph to locate maxima and minima.
15 Identify even and odd functions from an equation.
16 Graph functions using vertical and horizontal shifts.
17 Graph functions using compressions and stretches.
18 Graph functions using reflections

about the x-axis and the y-axis.
19 Graph functions using a series of transformations.
20 Build and analyze functions using geometric formulas.

Following the principle of reproducible research, the source code for the compu-
tations will appear.
First we clear old functions and datasets from the R session, display loaded

packages, and load the dataset.

rm(list = ls())

search()

## [1] ".GlobalEnv" "package:psych" "package:ellipse"

## [4] "package:corrplot" "package:randtests" "package:MASS"

## [7] "package:knitr" "package:stats" "package:graphics"

## [10] "package:grDevices" "package:utils" "package:datasets"

## [13] "package:methods" "Autoloads" "package:base"

colnames(data) <- c('test','quiz',1:20,'semester')

Not all students took both the quiz and test 1; some took one of the two, some
took neither. During the data preparation phase of the project, students were
sorted by their performance on the test and the quiz. We used these vectors in R
to indentify which rows correspond to which type of results. These groups of rows
are sorted by performance, better to worse.
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Figure 1: Boxplots of each questions scores

both <- 1:1044

quiz.only <- 1045:1128

test.only <- 1129:1146

neither <- 1147:1167

par(mfrow = c(1,1))

boxplot(data[,-23],main = 'Boxplots of data',col = 'red')

The box plots show that both semesters had approximately the same average
performance, and same sample variance. Standard statistical tests verify that the
semester averages are statistically equal and that semester variances are statisti-
cally equal. Thus, the data from both semesters combine for the analysis.

par(mfrow = 1:2)

boxplot(data[,1]~data[,23],main = 'Boxplots of Test',col = 'orange')
boxplot(data[,2]~data[,23],main = 'Boxplots of Quiz',col = 'orange')

test.fall <- data[data[,23] == 'fall2014',1]
test.fall <- test.fall[!is.na(test.fall)]

test.spring <- data[data[,23] == 'spring2015',1]
test.spring <- test.fall[!is.na(test.spring)]

var.test(test.fall,test.spring)

##

## F test to compare two variances

##
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Figure 2: Boxplots of each semester’s quiz and test scores

## data: test.fall and test.spring

## F = 1.0291, num df = 587, denom df = 549, p-value = 0.7337

## alternative hypothesis:

## true ratio of variances is not equal to 1

## 95 percent confidence interval:

## 0.8725745 1.2130784

## sample estimates:

## ratio of variances

## 1.029072

ansari.test(test.fall,test.spring,

alternative = "two.sided",

exact = NULL,

conf.int = FALSE,

conf.level = 0.95)

##

## Ansari-Bradley test

##

## data: test.fall and test.spring

## AB = 165360, p-value = 0.4215

## alternative hypothesis: true ratio of scales is not equal to 1

t.test(test.fall,test.spring,var.equal = TRUE)

##

## Two Sample t-test
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##

## data: test.fall and test.spring

## t = -1.3314, df = 1136, p-value = 0.1833

## alternative hypothesis:

## true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.045563595 0.008725376

## sample estimates:

## mean of x mean of y

## 0.7429082 0.7613273

wilcox.test(test.fall,test.spring)

##

## Wilcoxon rank sum test with continuity correction

##

## data: test.fall and test.spring

## W = 154062, p-value = 0.1677

## alternative hypothesis: true location shift is not equal to 0

quiz.fall <- data[data[,23] == 'fall2014',2]
quiz.fall <- quiz.fall[!is.na(quiz.fall)]

quiz.spring <- data[data[,23] == 'spring2015',2]
quiz.spring <- quiz.fall[!is.na(quiz.spring)]

var.test(quiz.fall,quiz.spring)

##

## F test to compare two variances

##

## data: quiz.fall and quiz.spring

## F = 0.9984, num df = 630, denom df = 615, p-value = 0.9842

## alternative hypothesis:

## true ratio of variances is not equal to 1

## 95 percent confidence interval:

## 0.8530777 1.1683933

## sample estimates:

## ratio of variances

## 0.9984392

ansari.test(quiz.fall,quiz.spring,

alternative = "two.sided",

exact = NULL,

conf.int = FALSE,

conf.level = 0.95)

##

## Ansari-Bradley test
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##

## data: quiz.fall and quiz.spring

## AB = 197222, p-value = 0.9518

## alternative hypothesis: true ratio of scales is not equal to 1

t.test(quiz.fall,quiz.spring,var.equal = TRUE)

##

## Two Sample t-test

##

## data: quiz.fall and quiz.spring

## t = -0.0962, df = 1245, p-value = 0.9234

## alternative hypothesis:

## true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.02141533 0.01941313

## sample estimates:

## mean of x mean of y

## 0.5895119 0.5905130

wilcox.test(quiz.fall,quiz.spring)

##

## Wilcoxon rank sum test with continuity correction

##

## data: quiz.fall and quiz.spring

## W = 193646, p-value = 0.9121

## alternative hypothesis: true location shift is not equal to 0

There appears to be a difference between the performance of students that took
both assignments and students that only took one. We conjecture that students
who miss an assignment perform worse on the other than students who took both.

4 An Initial Look at Correlation

Standard statistical techniques relating total quiz scores to test scores show that
it is reasonable to look into the relationship between quiz questions and test
scores. The scatter plot of the quiz and test scores and their simple linear model
shows weak correlation that is statistically significant. This simple linear regres-
sion model shows that it is reasonable to continue looking into the relationships
between questions [7].

plot(data[,2:1],

main = 'Scatter plot of test scores versus quiz scores')
lm(data[,1:2])
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##

## Call:

## lm(formula = data[, 1:2])

##

## Coefficients:

## (Intercept) quiz

## 0.4875 0.4641

summary(lm(data[,1:2]))

##

## Call:

## lm(formula = data[, 1:2])

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.63487 -0.09374 0.04349 0.12933 0.38203

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.48753 0.02032 24.0 <2e-16 ***

## quiz 0.46406 0.03244 14.3 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1896 on 1042 degrees of freedom

## (123 observations deleted due to missingness)

## Multiple R-squared: 0.1641,Adjusted R-squared: 0.1633

## F-statistic: 204.6 on 1 and 1042 DF, p-value: < 2.2e-16

anova(lm(data[,1:2]))

## Analysis of Variance Table

##

## Response: test

## Df Sum Sq Mean Sq F value Pr(>F)

## quiz 1 7.356 7.3556 204.62 < 2.2e-16 ***

## Residuals 1042 37.458 0.0359

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

abline(lm(data[,1:2]),col = 'blue')

dev.off()

## null device

## 1
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Figure 3: Plot of the observed quiz, test pairs

require(MASS)

Furthermore, the Cox-Stuart test shows that the relationship between quizzes
and test is statistically significant. Hence, it is reasonable to construct a general-
ized linear model [2].

require(randtests)

cox.stuart.test(

data[order(data[both,2]),1],

alternative = 'right.sided')

##

## Cox Stuart test

##

## data: data[order(data[both, 2]), 1]

## statistic = 360, n = 513, p-value < 2.2e-16

## alternative hypothesis: increasing trend

Since the goal is to identify which questions are the least useful, let’s look at how
the question predictor vectors are correlated. We will use Pearson’s, Kendall’s and
Spearman’s measures of correlation. Then we compare the correlation matrices
using a matrix norm [9, 3].

correlation.matrix.pearson <- cor(

data[,-23],

use = "pairwise.complete.obs",

method = 'pearson')
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Figure 4: Ellipse plot of Pearson correlation between question responses

colnames(correlation.matrix.pearson) <- c('test','quiz',1:20)
rownames(correlation.matrix.pearson) <- c('test','quiz',1:20)
round(correlation.matrix.pearson,1)

require(corrplot)

require(ellipse)

corrplot(correlation.matrix.pearson,title = '',method = 'ellipse')
title('Pearson correlations',outer = TRUE)

dev.off()

## null device

## 1

correlation.matrix.kendall <- cor(

data[,-23],

use = "pairwise.complete.obs",

method = 'kendall')
colnames(correlation.matrix.kendall) <- c('test','quiz',1:20)
rownames(correlation.matrix.kendall) <- c('test','quiz',1:20)
round(correlation.matrix.kendall,1)

require(corrplot)

require(ellipse)

corrplot(correlation.matrix.kendall,title = '',method = 'ellipse')
title('Kendall correlations',outer = TRUE)
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Figure 5: Ellipse plot of Kendall correlation between question responses

dev.off()

## null device

## 1

correlation.matrix.spearman <- cor

(data[,-23],

use = "pairwise.complete.obs"

,method = 'spearman')
colnames(correlation.matrix.spearman) <- c('test','quiz',1:20)
rownames(correlation.matrix.spearman) <- c('test','quiz',1:20)
round(correlation.matrix.spearman,1)

require(corrplot)

require(ellipse)

corrplot(correlation.matrix.spearman,title = '',method = 'ellipse')
title('Spearman correlations',outer = TRUE)

dev.off()

## null device

## 1

Let’s use the matrix two-norm to see how similar these three correlation matrices
are to each other.
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Figure 6: Ellipse plot of Spearman correlation between questions responses

correlation.differences <- matrix(0,nrow = 3,ncol = 3)

correlation.differences[1,2] <- norm

(correlation.matrix.pearson

- correlation.matrix.kendall,

type = '2')
correlation.differences[1,3] <- norm

(correlation.matrix.pearson

- correlation.matrix.spearman,

type = '2')
correlation.differences[2,3] <- norm

(correlation.matrix.kendall

- correlation.matrix.spearman,

type = '2')
correlation.differences[2,1] <- correlation.differences[1,2]

correlation.differences[3,1] <- correlation.differences[1,3]

correlation.differences[3,2] <- correlation.differences[2,3]

rownames(correlation.differences) <- c('Pearson','Kendall','Spearman')
colnames(correlation.differences) <- c('Pearson','Kendall','Spearman')
correlation.differences

## Pearson Kendall Spearman

## Pearson 0.0000000 0.5333733 0.1248185

## Kendall 0.5333733 0.0000000 0.4911891

## Spearman 0.1248185 0.4911891 0.0000000

We see that Pearson and Spearman give similar results. Each question score has
discrete values with constant differences between possible values, there would be
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little gained from using nonparametric regression. Since straight line correlation is
close to monotone correlation, little would be gained from using robust methods.

5 A Graph Theory Approach to Correlation

Cycle intersection matrices from graph theory is an established method to identify
concepts that can be combined. Phifer used minimum scores on questions with
binary correct/incorrect responses to identify which precalculus in a calculus pro-
gram questions could be combined [4]. Here we modify the proceedure and take
each student’s minimum score for each pair of questions. Then sum the minimum
scores for each pair of questions. If questions form a complete subgraph (clique),
then those concepts should be considered for combining. Phifer used weighted
graphs with ten nodes to identify cliques. Twenty nodes is difficult to interprete,
thus we used a simple binary adjacency matrix. The matrix is defined as

Mjk =
N∑
s=1

min(xsj, xsk) (1)

where N is the number of students, s is the index of students, xsj is the score
student s earned on question j.
When questions j and k are scored as correct or incorrect, such as multiple choice

questions, Xsj, Xsk and their minimum are binary variables. If these are assumed
to be independent Bernoulli random variables with nonconstant probabilities of
success, then Mjk is a J-binomial random variable [1]. Further, since probabilities
of success are on a continuum of [0, 1], one may assume that each student and
question combination has a distinct probability of resulting in a correct response.
Say that psj is the probability that student s gets question j correct. Under these
assumptions,

E(Mjk) =
N∑
s=1

psjpsk, (2)

V (Mjk) =
N∑
s=1

psjpsk(1− psjpsk), (3)

Gjk(t) =
N∏
s=1

(1− psjpsk + psjpskt). (4)

The probability of specific events can be computed with routine convolutions.
The central limit theorem and the above expected values allows for computation-
ally easier approximations of Mjk’s probabilities. If one wishes to approximate
a J-binomial random variable with a single binomial random variable using the
average probability of success, the variance of the binomial random variable will
always be greater [1].

X <- (X+1)/2
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graph.matrix.min <- matrix(0,nrow = 20,ncol = 20)

rownames(graph.matrix.min) <- 1:20

colnames(graph.matrix.min) <- 1:20

for(j in 1:1044) for(k in 1:20) for(l in k:20){

graph.matrix.min[k,l] <- graph.matrix.min[k,l] + min(X[j,c(k,l)])

}

graph.matrix.min <- graph.matrix.min + t(graph.matrix.min)

diag(graph.matrix.min) <- diag(graph.matrix.min)/2

round(graph.matrix.min)

From this matrix, a binary adjacency matrix will be built. Larger values will
result in a one, smaller values will correspond to zero. A cut off value for zero
and one needs to be established. A common cut for boxplot outliers is 1.4 times
a measure of data spread; here we choose

Ajk = 1 if Mjk > min(M) + 1.5midrange(M)/2, (5)

Ajk = 0 otherwise. (6)

d.min <- diff(range(graph.matrix.min))/2

min.min <- min(graph.matrix.min)

adjacency.min <- matrix(0,nrow = 20,ncol = 20)

for(j in 1:20) for(k in 1:20){

if(graph.matrix.min[j,k]>

min.min + 1.4*d.min) adjacency.min[j,k] <- 1

}

rownames(adjacency.min) <- 1:20

colnames(adjacency.min) <- 1:20

adjacency.min[

order(graph.matrix.min %*% rep(1,20)),

order(graph.matrix.min %*% rep(1,20))]

From the adjacency matrix corresponding to the cycle intersection matrix, we
can see that questions 3, 5, 7, and 14 should be considered for replacing with one
question.

question learning objective
3 Determine which points are on the graph of an equation.
5 Calculate and interpret the slope of a line.
7 Identify the slope and y-intercept of a line from its equation.
14 Use a graph to locate maxima and minima.

Looking at which questions are similar, mastery of question 3 could be repre-
sented by mastery of question 14. Mastery of 7 could represent mastery of 5.

6 Conclusion

Creating a test or quiz that sufficiently evaluate subject mastery while using a
minimum number of questions is a challege. Extra problems waste resources,
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students’ time, and increases the burden of teaching a class. Treating a quiz or
test as a designed experiment opens the opportunity to use statistical techniques to
build better assignments. Techniques from regression are well developed and well
understood. Reducing a regression model is a natural way to identify questions
that do not contribute to evaluating subject mastery. A disadvantage of regression
techniques is that is depends on a response variable.
The graph theory approach of cliques gives faculty a tool to identify which

questions are redundant. An advantage of cliques is that this approach uses on
the predictor variables and does not require the faculty to come up with a response
variable.
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