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Cryptology is an effective tool to spark an undergraduate student’s interest in 
mathematics. Technology allows them to see encryption and decryption in action, thus 
adding to the fascination. We introduce some public key cryptographic methods based on 
the Discrete Logarithm Problem, and present their implementation in the computer 
algebra system Maple. 
 
Introduction 

Cryptology, the science of sending and receiving secret messages, is at the intersection of 
mathematics and computer science, and encompasses every aspect of modern life – 
online financial transactions, digital signatures, cloud computing; the list goes on. 
Modern cryptology relies almost entirely on mathematics for its integrity. Today's 
cryptosystems convert messages into numbers and perform computations to encrypt those 
numbers. The crucial element of this method is the use of operations that cannot be 
undone without infeasible, time-consuming computation, unless some extra information 
is known to the receiving party. Some of the commonly used cryptographic methods are 
easily accessible to undergraduates, and can kindle a long-term interest in mathematics 
and its applications.  

Cryptology has been of interest to mankind since centuries. One of the oldest known 
cryptographic methods is the Scytale, used by the ancient Spartans to communicate 
during military campaigns. The Scytale was first mentioned by the Greek poet 
Archilochus in the 7th century B.C., and is described by Plutarch (50-120 AD) [5]: 

The dispatch-scroll is of the following character. When the ephors send 
out an admiral or a general, they make two round pieces of wood exactly 
alike in length and thickness, so that each corresponds to the other in its 
dimensions, and keep one themselves, while they give the other to their 
envoy. These pieces of wood they call scytalae. Whenever, then, they wish 
to send some secret and important message, they make a scroll of 
parchment long and narrow, like a leathern strap, and wind it round their 
scytale, leaving no vacant space thereon, but covering its surface all 
round with the parchment. After doing this, they write what they wish on 
the parchment, just as it lies wrapped about the scytale; and when they 
have written their message, they take the parchment off and send it, 
without the piece of wood, to the commander. He, when he has received it, 
cannot otherwise get any meaning out of it,--since the letters have no 
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connection, but are disarranged,--unless he takes his own scytale and 
winds the strip of parchment about it, so that, when its spiral course is 
restored perfectly, and that which follows is joined to that which precedes, 
he reads around the staff, and so discovers the continuity of the message. 
And the parchment, like the staff, is called scytale, as the thing measured 
bears the name of the measure. - Plutarch, Lives (Lysander 19), ed. 
Bernadotte Perrin. 

 

Figure 1.   Scytale 

Another famous historic cryptosystem is the Shift Cipher, which was used by Julius 
Caesar to protect messages of military significance. The following example depicts the 
Caesar Cipher, utilizing a shift of three:  

Plaintext:    the quick brown fox jumps over the lazy dog 
Ciphertext: WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ 

These traditional cryptosystems are examples of symmetric cryptosystems. In these 
methods, the sender and the receiver are required to have a shared private key, which is 
used both to encrypt and decrypt the messages. Further, once it is known which particular 
symmetric cryptosystem is being used, encrypted messages can be decrypted either by 
brute force or by clever cryptanalysis. So in practice it becomes necessary to not let all 
parties know which symmetric cryptosystem is being used. The relatively recent concept 
of ‘public key’ cryptosystems, on the other hand, is revolutionary, in that it does not 
require the two parties to meet in order to exchange a key, and is based on the assumption 
that all parties know which method of encryption is being used.  

Over the past few years, our students have implemented some private and public key 
cryptosystems, such as the substitution ciphers, the German Enigma, and others. 
Watching the encryption and decryption of messages in real-time during class is exciting 
for the students. Moreover, this direct and active interaction with the cryptosystems 
facilitates a greater understanding of the underlying mathematics. 

Many private key cryptosystems are easily available on the web, including many good 
examples on Simon Singh’s website, The Black Chamber [6]. In this paper, we introduce 
some public key cryptosystems, whose security is based on the Discrete Logarithm 
Problem, and present their Maple implementations. These Maple implementations also 
attempt to bridge the gap between theoretical cryptography, whose main concern is 
security, and practical cryptography, which is guided by efficiency. 
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Public Key Cryptography 

The basic problem of Public Key Cryptography (PKC) is the following: Alice wants to 
send a secret message to Bob. Alice and Bob cannot meet in person to decide which 
method to use, or to exchange the key. Evil Eve is ‘eavesdropping’, and wants to know 
the secret message. The method of encryption is public knowledge. Evil Eve has high 
computation power, and is very smart. How can Alice send the secret message to Bob, 
without Eve being able to decipher it? 

 

Figure 2.   Public Key Cryptography 

The basis of PKC is the concept of One-Way Functions. These are functions that are easy 
to apply, but their inverse is difficult to calculate with limited time and memory 
resources. This allows for easy encryption, but decryption is hard, unless some other 
(trapdoor) information is available. The one-way function is used by Alice to encrypt her 
message, but only Bob, who has the trapdoor information, can decrypt her message. Eve 
can see the encrypted message, but is not able to decrypt it, since she does not have the 
trapdoor information. 

 

Figure 3.   One-Way Function 

In the modern day scenario, Alice wants to send her credit card information to 
Amazon.com through the internet, and the hacker Eve has access to the encrypted 
message as it goes through the internet channel. However, despite having access to 
advanced computational resources, Eve should not be able to decrypt Alice’s message to 
get the credit card information. The only party that should be able to do this is 
Amazon.com, because they have some additional trapdoor information regarding to the 
encryption algorithm.  
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Figure 4.   PKC Modern Day Scenario 

Discrete Logarithm Problem 

Let p be a large prime number, and let g be a primitive element (or generator) of the 
group p . Then every non-zero element of p  is equal to some power of g. By Fermat’s 

Little Theorem, 1 1.pg    So we can completely describe the multiplicative group 

 * 2 21, , ,..., p
p g g g  . For example, the set of integers modulo 5, 5 {0,1,2,3,4},  is a 

group with respect to the operations of addition and multiplication modulo 5, and has a 
primitive element, or generator, 2: 

 * 0 1 2 3
5 2 1,  2 2,  2 4,  2 8 3 .       

The operations of addition and multiplication modulo 5 in 5  are shown in the following 
tables:   

+ 0 1 2 3 4  * 0 1 2 3 4 
0 0 1 2 3 4  0 0 0 0 0 0 
1 1 2 3 4 0  1 0 1 2 3 4 
2 2 3 4 0 1  2 0 2 4 1 3 
3 3 4 0 1 2  3 0 3 1 4 2 
4 4 0 1 2 3  4 0 4 3 2 1 

 

The Discrete Logarithm Problem (DLP) seeks to find x, given ( ) (mod ).xf x h g p  The 
integer x is between 0 and p – 1, and is written as log ( )g h . Thus, the discrete logarithm is 

the function *
1log : .g p p   

While computing the modular exponentiation is easy, the discrete logarithm problem is 
hard; it takes exponential time by brute force. So the modular exponentiation is a one-
way function. The graph below shows that *

101 1307 1306log :   is a hard problem, since 
there the exponential function ( ) 101 mod(1307) for 1 1306xf x x    does not display 
any decipherable pattern. 

ICTCM.COM

ICTCM  28th International Conference on Technology in Collegiate Mathematics

243



 

Figure 5.   101 mod(1307) for 1 1306x x   

Diffie-Hellman Key Exchange and its Maple Implementation 

This method allows Alice and Bob to exchange a key without meeting in person, through 
an insecure channel. Alice and Bob start with a large prime number p, say with a hundred 
digits, and a generator g of ,p and place them in public domain. Here g is an integer 
which is less than, and coprime to p. They then pick their own secret keys x and y, and 
keep them to themselves. Alice calculates modxA g p  and sends it over to Bob over 
the insecure channel. Bob calculates modyB g p  and sends it over to Alice over the 
insecure channel. Alice then calculates modxB p  and Bob calculates mod .yA p  Since  

    mod mod mod mod mod ,
y xy x xy y xA p g p g p g p B p      

Alice and Bob now have a shared secret key. 

 

Figure 6.   Diffie-Hellman Key Exchange 

The protocol relies on the hardness of the Discrete Logarithm Problem. Since modular 
exponentiation is easy, Alice and Bob can easily calculate the secret key. On the other 
hand, even though Eve knows p, g ,gx, gy mod p, she is unable to determine gxy. The 
protocol also requires generation of large prime numbers.  

The implementation of Diffie-Hellman Key Exchange requires the following steps: 
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• Generate public modulus p and public base g 

• Generate a key pair for Alice and another for Bob 

• Give Bob’s public key to Alice and Alice’s public key to Bob 

• Each computes the shared secret with the public key received 

Our implementation of the Diffie-Hellman key exchange in Maple follows the algorithm 
described. First, public information is selected, using the modulus length specified by the 
user. This information is then used in determining Alice and Bob's public and private 
keys. Finally, Alice and Bob independently compute the shared secret.  

Although Maple can perform modular exponentiation, it does not do so efficiently. It first 
performs exponentiation through repeated multiplications, and then reduces modulo p. 
When dealing with large exponents, this requires computing and storing a very large 
number before the reduction modulo p. In order to decrease the computation time, 
numbers must be reduced as often as possible, instead of waiting until the end. An 
additional optimization is done through the use of the following trick:  

 
 

 

2 2

1
2 2

,   if  is even

,   if  is odd

n

n
n

x n
x

x x n





 
 

  

This trick drastically reduces the exponent into half, and thus allows for much faster 
computation.  

Below is a sample program execution yield:  

• >performExchange(10) 
Public modulus: 7214268101 
Public base: 7108591800 

• Alice’s private key: 698412101 
Alice’s public key: 3461922501 

• Bob’s private key: 511091197 
Bob’s public key: 3052477831 

• Shared secret, as calculated by 
Alice: 4109225554 
Bob: 4109225554 

While the Diffie-Hellman Key Exchange allows two parties to publicly share a secret 
key, it is just a key exchange, and not a cryptosystem. Once Alice and Bob have a shared 
secret key, a symmetric encryption algorithm can be used to securely communicate a 
chosen message.  
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El Gamal Cryptosystem 

A cryptosystem must allow the secure communication of chosen message, not just 
randomly generated data, as in the Diffie-Hellman key exchange. The El Gamal Public 
Key Cryptosystem allows Alice to send a secret message to Bob. Its security is also based 
on the hardness of the discrete logarithm problem.  
 
Alice wants to send a message m to Bob. There are three steps in the protocol: key 
generation, encryption, and decryption. For key generation, Bob, or another trusted party, 
chooses a large prime number p, say with a hundred digits, and a generator g of ,p and 
places them in public domain. As before, g is an integer which is less than, and coprime 
to p, and has a large prime order. Bob chooses a secret number (private key) b, and keeps 
it to himself, calculates modbB g p  and sends it over to Alice over the insecure 
channel. For encryption, Alice choses a random number k, calculates  

 1

2

(mod )

(mod )

k

k

c g p
c mB p



  

and sends these over to Bob. For decryption, Bob computes 1 (mod )bx c p , and 

multiplies it’s modular inverse to 2c  to obtain the message   11
2

k kc x mB B m
   . 

 

Figure 7.   El Gamal Cryptosystem 

The implementation of the El Gamal Cryptosystem requires the following: 

• Key generation by Bob 
- generate public modulus p and public base g 
- generate Public key B and private key b 

• Encryption by Alice 
- Alice splits the message into blocks and converts each block into numbers. 
   Individual characters are converted to numbers based on the ASCII numerical 
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  code 
- Choose a different random number k for each character block, and calculate 
   1 2,c c   

• Decryption by Bob 
- Decrypt each encrypted block 
- Convert each decrypted block into a series of characters 
- Concatenate all blocks together into the original plaintext string 

The number, k must be used to encrypt only one message block. While the plaintext 
consists of one integer, m, the ciphertext consists of two integers,  1 2,c c , and all three 
are between 2 and p – 1. Eve knows the public values, p and g, and also the value of 

modbB g p , however she is unable to decrypt the message, since she does not know b. 
 
During text encoding, characters are manipulated according to their ASCII values. The 
user can decide the number of digits in the keys. Below is a sample program execution, 
encrypting and decrypting the message “Test message”, and specifying that 10 digit keys 
should be used: 
 
> performEncryption("Test message", 10) 
Key generation: 0.008000 sec. 
Encryption: 0.016000 sec. 
Decryption: 0.019000 sec. 
Public modulus: 8297478979 
Public base: 3350272820 
Bob's keys: 
Private: 595387459 
Public: 6023553422 
Encrypted message: 
[2022194496, 5664659242] 
[5118996000, 2717054611] 
[8218117505, 618022799] 
Decrypted message: Test message 
 
The code timing at the beginning of the output indicates that the encryption and 
decryption are fast. Increasing the key and message length makes the program slower. 
Modular systems allow the computer to restrain the magnitude of the numbers down to a 
manageable size. 
 
Conclusions 

Cryptology today is more than just sending secret messages. Today, secure 
communications play an unprecedented role – from defense systems, to e-banking, to e-
commerce, to telecommunications, to online course management systems, and so on. 
Current cryptographic protocols include key exchange; digital signatures, and many 
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others. For example, we are concerned with authentication (is the message really from 
Alice, and was not corrupted by Eve on the way, how can Alice make sure that Bob 
received the message, how can Bob make sure that Alice cannot deny having sent the 
message), zero-knowledge proofs (how can Alice convince Bob that she has a certain 
piece of information, without revealing the information to Bob), secret sharing (Alice, 
Bob, Carly, . . . , Yenjin, and Zake each have a piece of information that is part of a 
commonly held secret S. If N or more of them meet and combine their knowledge, then S 
can be reconstructed, but if less than N of them meet, they cannot reconstruct S). All of 
these protocols are in common usage in computer networks today. It is rewarding to show 
to the student how mathematics forms the basis of cryptographic systems.  

While some of the more traditional cryptosystems, like the Caesar’s Cipher, are widely 
implemented, and easily available on the web, the authors have described the 
implementation of some of the newer cryptosystems, based on the discrete logarithm 
problem.  

In the future it would be worthwhile to explore the cryptanalysis of these ciphers, and 
implement various methods that solve the discrete logarithm problem, for example, index 
calculus method, Shank’s baby step giant step algorithm, and the Pohlig Hellman 
algorithm. By analyzing the weaknesses that these methods can possibly cause, the 
cryptosystems can be made more secure.  
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