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Abstract 

This article outlines the epistemology, utility, and methodology for formatively evaluating the 

cognitive achievement of curriculum using a quantifiable assessment process. Building on 

previous studies, we use Bloom’s taxonomy as the quantitative framework for curriculum 

assessment and implement a three-part evaluation vehicle based on a modified Delphi technique. 

During Delphi One learning objectives from individual course lessons are coded based on the 

taxonomical verbiage. In Delphi Two a six-part quantitative curriculum assessment is conducted 

to determine whether there is progressive cognitive continuity. Delphi Three then requires a 

holistic curriculum analysis to ensure content alignment with taxonomical objectives and content 

revisions and objective recoding based on the results of Delphi Two’s measures. A quantitative 

reassessment must then be conducted as one of the final steps of this Delphi to account for those 

revisions. We conjecture that this technique’s utility can only be realized with the use of 

articulated course learning outcomes and assessable learning objectives for a course’s lessons. 

We recommend this methodology be implemented as part of a curriculum development process 

and a follow-up study be conducted to determine effectiveness.  

Keywords: curriculum evaluation, course assessment, quantifying learning outcomes, weighting, 

Bloom’s Taxonomy, higher order thinking, lower order thinking, critical thinking, Delphi 
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Recontextualizing Bloom’s Taxonomy: Quantitative Measures in Formative Curriculum 

Assessments and Program Evaluations 

Curriculum evaluations are common practice amongst educators, administrators, and 

instructional designers within the academic community and industry. Datnow & Hubbard (2015) 

describe the scope of curriculum evaluations as being concerned with the quality of student 

interaction during classroom activities, student achievement, student attendance and behavior, 

course enrollment patterns, postsecondary success rates, and school climate (as cited in Kennedy, 

2011; Bernheardt, 1998; Data Quality Campaign, 2011). These research orientations, while 

certainly necessary, are summative and secondary to the need of a formative assessment of the 

curricular structure and content being used. In outcomes-based curriculum, a decisive point of 

content that is assessed are the learning outcomes within a course. James, McInnes, & Delvin 

(2002) argue that defined mechanisms for measuring and articulating course outcomes must be 

expected in higher education. This requires “a reasonable surrogate” that can systematically 

assimilate relevant assessment data through iterative formative evaluations towards 

demonstrating how a curricula’s content and mode of delivery meets its learning outcomes 

(Horner et al., 2005, p. 48). Doing so improves the propensity for researchers, such as Datnow & 

Hubbard, to discover higher rates of success in the summative foci they discuss. Yet, research is 

limited in defining relevant, formulaic curriculum assessment models for analyzing outcomes-

based curriculum in interdisciplinary contexts. The introduction of such a model would allow 

educators to find and interpret meaningful curricular data so that they may evaluate their 

instructional programs and inform decision makers.  

This article outlines the epistemology, utility, and methodology of a formative curriculum 

assessment method for measuring and quantifying the expected levels of cognition that should be 
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achieved within a curriculum. While building on previous studies, we continue to use Bloom’s 

taxonomy as the quantitative framework for assessing the cognitive domains that are being 

achieved. Differentiating this study is our introduction of a modified Delphi technique that uses 

the taxonomy as a part of a three-phased assessment process; whereby, a curriculum’s content is 

analyzed based on six metrics. These metrics then inform the decisions of program stakeholders 

as to necessary program overhauls and relevant curriculum refinement needs. 

Background and Prior Literature 

Of the corpus of relevant research, nearly every study acknowledges Bloom’s Taxonomy of 

Educational Objectives for the Cognitive Domain (Bloom et al., 1956) as being a valid 

framework for quantitatively measuring the effectiveness of curriculum in meeting its intended 

learning outcomes (Gribble, Meyer, & Jones, 2003; Horner, Zavodska, & Rushing, 2005; Assaly 

& Smadi, 2015). Armbruster & Ostertag (1989) describe the taxonomy as a hierarchal scheme 

for identifying a continuum of six specific cognitive demands in learning, ranging from relatively 

simple (e.g., knowledge, comprehension, application) to more complex (e.g., analysis, synthesis, 

and evaluation). Assay & Smadi (2015) similarly classify the cognitive domains into two levels 

of thinking by defining the relatively simple demands as Lower-Order Thinking Skills (LOTS) 

and the more complex demands as Higher-Order Thinking Skills (HOTS). Through the lens of 

these thinking skills, this assessment feedback can be critical input for evaluating whether the 

learning outcomes are adequately aligned, and at what cognitive levels (Krathwohl, 2002). This 

also provides curriculum designers, textbook writers, and instructors a framework for structuring 

curriculum with the appropriate distribution of the higher and lower-order cognitive demands 

(Surjosuseno & Watts, 1999).  

Epistemological Underpinnings for Evaluating the Cognitive Domain  
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Plato intimates in The Republic an epistemological distinction between lower and higher 

forms of learning. He discounts the lower forms as being instructional vehicles for custom, 

repetition, and “dispositional molding” (Holland, 1980, p. 18). This contrasts his presumption 

that higher forms of learning foster true enlightenment; whereby, a rational account of individual 

assertions is required so as to allow for criticism through questioning, towards exposing and 

extinguishing “erroneous opinion” (p. 21). In his 1923 convocation address, Dartmouth 

College’s late president Earnest Martin Hopkins codified Plato’s epistemology by presupposing 

the aim of higher education as being the cultivation and development of the mind “to the end that 

[students] may know truth and conform to it” (“Pres. Hopkins outlines the aim of education’, 

1923, p. 2). This search for truth and expected intellectual comportment is realized through 

academic coursework that regularly requires students to translate conscious intelligence into 

action by “distinguish[ing] truth from error” (p. 1).  

Higher-order thinking skills (HOTS) in the cognitive domain. Hopkins’ sentiments bear 

the essence of the Platonic epistemology that now has the contemporary distinction of being 

called Higher-Order Thinking Skills (HOTS). In the hierarchal framework of Bloom’s 

taxonomy, HOTS are achieved by developing curricular content according to the taxonomy’s top 

three cognitive domains of Evaluation, Synthesis, and Analysis. The application of HOTS within 

the cognitive domains can be described as follows:  

• Evaluation: This is the highest cognitive form; whereby, a student appraises, assesses, or

critiques assignments and exercises based on specific standards and criteria.

• Synthesis: In this role, students bring together interdisciplinary concepts by identifying

abstract relations and formulating individual patterns and structures.

• Analysis: In this role, students divide the component parts of ideas and organize them so
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they may be understood (Gribble et al., 2005, pp. 10-11). 

Assay & Smadi (2015) propose that by incorporating HOTS into a curriculum “students 

[will be able] to grasp a deep understanding of what they are learning and be more critical and 

creative instead of merely recalling information” (p. 100). According to Hopkins, this calls for, 

“the diversity in points of view and [an] emphasis upon stimulating the student’s thought” 

(“Pres. Hopkins outlines the aim of education”, 1923, p. 2). Horner et al. (2005) also explain why 

this pedagogical mechanism matters in the contemporary context, “…[society] expect[s] that 

students should be able to think critically about the knowledge they inherit…[G]raduates [must] 

have the ability to analyze fact, data and information and to synthesize and evaluate the “facts” 

with which they are presented” (p. 1).  

Lower-order thinking skills (LOTS) in the cognitive domain. Much like the tenants of 

the Platonic epistemology, Hopkins also strikes a contrast between lower and higher forms of 

learning by suggesting the lower forms “[demand] conformity to the thoughts of others” through 

an emphasis on instruction versus facilitation (“Pres. Hopkins outlines the aim of education”, 

1923, p. 2). In the contemporary context, curricula delivering instruction using lower learning 

forms achieves the lower three cognitive domains of Knowledge, Comprehension, and 

Application within Bloom’s taxonomy. These domains foster the use of Lower-Order Thinking 

Skills (LOTS) and can be described as follows: 

• Application: In this role, students use new material and apply it through predefined

exercises to situations that require them to know and comprehend a subject first.

• Comprehension: In this role, students grasp material through interpretation and

articulating estimates based on their knowledge.

• Knowledge: This is the basic cognitive domain; whereby students must recall previously
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learned material, including facts, procedures, and theories (Gribble et al., 2005, p. 10). 

Dewey (1916) contextualizes LOTS from HOTS by making a distinction a priori 

between the two forms of learning by suggesting alignment with either training or educative 

teaching. This distinction is drawn by Dewey’s (1916) supposition that training is disciplinary in 

nature, involving “repeated responses to recurrent stimuli” for the purpose of adjusting cognitive 

tendencies so individual knowledge might be thwarted to action (p. 36). His supposition supports 

the premise that lower forms of learning serve individual base faculties for performance in 

cognitively-light fields, whereas the nature of higher forms of learning tends to be more 

reflective in cognitive-dense fields. Dewey (1916) goes on to note that industry is innately 

recalcitrant to maintaining a status quo and regularly changes its products and methods. In turn, 

industry’s changing nature leaves individuals at the mercy of their training, not the virtue of their 

higher cognitive aptitude. This implies a need for LOTS to be cultivated and nested within a 

HOTS framework so as to increase autonomous adaptability and versatility when the time arises. 

Dewey notes that protracting this vulnerability ensures the vitality of mental immaturity, leaving 

higher faculties under-developed due to the scope of their learning experiences being one of 

animalistic training versus humanistic education (Dewey, 1916, p. 16). Ultimately, the 

perpetuation of this industrial pedagogy also inculcates an inequity in opportunity for those 

whose lives revolve around the continuity of the skills requiring little more than LOTS.   

This critique should not be misconstrued to suggest the irrelevance of LOTS in learning. 

Zohar (2007) argues that achieving the required information for success in academics and life 

requires a combination of higher and lower thinking skills, with the emphasis placed on tasks 

requiring higher cognitive demands. Yet, this combination is contingent on students first having 

a command of certain elementary facts that are both field-specific and interdisciplinary before 
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being equipped to engage in higher-order thinking (Armbruster & Ostertag, 1989, p. 2). Dewey 

(1910) describes this as a line of development of logical capacity, whereby students proceed 

from the concrete to the abstract. This is not to say curricula is limited to a cognitive progression 

of LOTS-to-HOTS alone. Lesson material can strive to incorporate learning at multiple cognitive 

levels during a single class and within a single course, without requiring sequential cognitive 

progression, while achieving course learning outcomes. It is only by assessing the levels and 

rates at which these cognitive levels are being achieved that stakeholders can holistically 

evaluate their curricula and make necessary modifications towards achieving the maximum 

benefit in cognitive participation.  

Utility of Bloom’s Taxonomy as a Quantifiable Tool 

The purpose of assessing curriculum is to discern whether certain goals, outcomes, and 

objectives are being achieved within a program according to pre-defined parameters (Hong, 

2007). A technique in executing a curriculum assessment is to collect data that defines the level 

of cognition being attained within the content, which then serves as an empirical input for 

exacting an assessment. While existing research concedes Bloom’s Taxonomy as being a valid 

framework for quantitatively measuring the consistency and quality of HOTS and LOTS, it can 

also be an input for categorizing and comparing cognitive skills. The taxonomy defines the 

academic quality of courses through describing course processes “in terms of the level of 

academic demands or rigor expected of the students” (Nordvall & Braxton, 1996, p. 486). For 

the taxonomy to effectively convey the expected rigor in an academic context, there must first be 

the existence of course learning outcomes that have an expected and measurable level of HOTS 

and LOTS that will be exercised during the course. Without such outcomes being clearly 

articulated from the outset, a well-defined assessment of the cognitive achievement within a 
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course cannot be decisively measured, thereby negating the possibility for an accurate 

programmatic evaluation to take place. By applying the taxonomy as an assessment framework a 

context of how to describe, categorize, and compare subject content is fostered through a lens of 

cognitive achievement within six taxonomical domains (Gribble et al., 2005, p. 4).  

Nordvall & Braxton (1996) posit that measurements in coursework quality and rigor are 

also vehicles for distinguishing the quality of one department or institution over another in terms 

of “academic quality” (p. 487). They limit the validity of any measure of academic quality to 

several preliminary variables: (a) prior student understanding of the course content, (b) 

individual student ability, and (c) the instructional goals. They also prescribe that the curricula 

should be challenging, “but not so challenging that students lack the psychological support they 

need to meet course expectations” (Nordvall & Braxton, 1996, pp. 487-488). These variables 

maximize the value of curriculum assessments, making them imperatives for guiding educators 

in choosing outcomes that are congruent with institutional and departmental goals. They also 

encourage informed modifications to course materials, thus increasing the likelihood of students 

achieving an appropriate cognitive level pursuant to the outcomes being sought.  

In higher education, defining instructional and cognitive goals is generally hierarchal, 

beginning at the institutional level and trickling down to the departmental and course levels. It is 

then at the course level that the learning goals are transposed in the form of outcomes and 

through those outcomes singular lesson objectives are defined.   

(Insert Figure 1) 

These outcomes must be defined according to the cognitive levels that will be achieved by the 

lesson content and instructional techniques of the class session. Figure 1 shows an expected 

linear progression of the learning objectives of each lesson within a course over a period of 10 

ICTCM  28th International Conference on Technology in Collegiate Mathematics

ICTCM.COM
120



lessons. Concurrently, the course learning outcomes are expected to be progressive and 

sequential, whereby the lesson objectives can be easily nested in the course outcomes, as the 

Institutional and Departmental goals serve as the overarching framework for which the outcomes 

and objectives are created.  The lesson outcomes and individual objectives are drafted using 

technical vocabulary that is taxonomically domain-specific in order to competently assess their 

validity in meeting their cognitive intent. The list of verbs in Table 1 provides an example of the 

types of qualitative syntax that is needed to assign a quantitative score according to the cognitive 

domain with which a verb is associated.  

(Insert Table 1) 

The domains and associated verbs are neither absolute nor discrete but are predominantly useful 

in describing the cognitive needs associated with course processes (Gribble et al., 2005, p. 4). 

They also codify the taxonomy’s relevance as an assessment framework insofar the terms 

provide a criterion for formatively assessing curriculum by measurably defining the cognitive 

actions within lessons.  

Formative Curriculum Assessment Methodology 

The nature of formative curriculum assessments is that they are conducted prior to 

curriculum being implemented as an instructional instrument. Relevant literature pertaining 

methods of formative curriculum assessment generally recommend gathering a few statistical 

metrics during the development process. While such metrics are certainly relevant for informing 

the creation of quality curriculum, their application can be maximized in the context of a 

curriculum assessment strategy that is nested in a programmatic evaluation. By modifying Rowe 

and White’s (1999) characterization of the classical Delphi method, this need can be met through 

redefining the method’s key features as requiring the following: 
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• Taxonomical assessments of learning outcomes on the merits of pre-defined criteria and

expert judgement, in lieu of complete subjectivity on the part of an assessor,

• Iterative curriculum assessments, via a phased program evaluation process that improves

the quality of curriculum by the completion of each iteration,

• Short feedback loops between assessors, developers, and administrative stakeholders to

provide all possible opportunities for curriculum refinement revisions and input, and

• Quantitative analysis through statistical aggregation of the relevant, pre-defined metrics

that can be interpreted during each iteration for improving curriculum quality.

In this case, Figure 2 shows how the Delphi programmatic evaluation process could appear when 

the method’s features are taken into consideration: 

(Insert Figure 2) 

There are three primary iterations, or rounds, that are introduced in Figure 2, Delphi’s R1-3, and 

several preliminary steps and one post-assessment step that are introduced that contextually 

influence the assessment measure’s in future Delphi rounds. Hsu & Sanford (2007) propose that 

three rounds of review is usually sufficient in collecting and reviewing information for reaching 

a consensus by all stakeholders (cf. Cypert and Gant, 1971; Ludwig, 1994, 1997; and Custer, 

Scarcella, and Stewart,1999). However, with the addition of more rounds, this technique can be 

both time-consuming and laborious, as it also relies on a lock-step, sequential method and a 

tremendous amount of input and engagement from process participants. The following 

discussion provides an overview as to the intricacies of the modified Delphi technique as it is 

applied to a curriculum assessment process.    

Curriculum Development Method Defined 

Once all institutional and departmental learning goals have been aligned and learning 
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stakeholders are in agreement as to the purpose of those goals, course outcomes can then be set. 

These course outcomes are determined by the intent of the institutional and departmental goals 

and are formed to be the underlying conceptual framework of the content within a corpus of 

curriculum. These outcomes are then subdivided into individual lesson learning objectives that 

define both how the lesson will be taught and what will be learned by the end of the lesson. 

Ultimately, this drives what Martin-Kniep & Uhrmacher (1992) define as curriculum, or rather 

“professionally and commercially developed materials” (p. 261). These totality of these materials 

can include textbooks and units of lesson plans and other instructional products that provide the 

conceptual framework of a course’s outcomes through tying course lessons together in a credible 

way. This requires a curriculum development process to be decided upon that is iterative and 

writing-focused, while also concerned with the instructional context in which the learning will 

occur. Detailing the types of curriculum development models is outside of the scope of this 

article. However, there are multiple models that can foster the integration of a formative 

programmatic evaluation process as discussed here. 

Delphi Round 1: Coding Learning Objectives  

In the first round of the Delphi process, lesson learning objectives are assessed for validity 

and coded according to the taxonomical domain with which each objective is aligned. Horner et 

al. (2005) and Assaly & Smadi (2015) use a single-phased curriculum assessment approach, 

where lesson learning objectives are analyzed and quantitatively coded according to the 

taxonomical domain each objective achieves based on the highest cognitive verb being used in 

that objective. Based on this methodology, the individual domain codes are as follows: 

Knowledge:               1 

Comprehension:        2 

ICTCM.COM

ICTCM  28th International Conference on Technology in Collegiate Mathematics

123



Application:              3 

Analysis: 4 

Synthesis: 5 

Evaluation: 6 

Once all of the verbs are coded, the sum of instances a verb appears within each of the six 

domains is computed and can be ranked along a linear spectrum to determine whether “upper-

level cognitive skills” are being emphasized and the frequency each domain is being exercised. 

(Horner et al., 2005 and Assaly & Smadi, 2015). Using Table 3, synchronizing the taxonomical 

domain coding for a course’s learning objectives can be facilitated.  

(Insert Table 3) 

Specifically, Table 3 allows for a practitioner to nest the learning objectives with learning 

outcomes within a course, while coding cognitive learning levels towards accruing a measurable 

sum for future quantitative analysis.  

In its current form, the process of taxonomical verb assignment is entirely subjective and 

lacks a commonly acceptable list of domain-specific verbs that are easily assessable when 

applied to learning outcomes. This leaves the assessment criterion open to the use of any list of 

verbs that are believed to be domain-specific, which can result in verbs being used across 

multiple domains or being abandoned entirely when they might otherwise be relevant. An 

example of this occurrence can be taken from the lists of verbs used to assess cognitive 

achievement by The University of West Florida and Marquette University (see Table 1). Upon 

comparing the two lists, the verb Recognize is applied to the Knowledge domain by both 

universities. However, in the Comprehension column Recognize is absent from The University of 

West Florida’s verb list but is present in Marquette University’s Comprehension column 
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(“Bloom’s Taxonomy Action Verbs”, n.d. and "Action Words for Bloom’s Taxonomy”, n.d.). 

While our research did not uncover the practice of verb assignment to be erroneous when applied 

across multiple domains, there are other verbs which can better describe the outcome being 

sought by the practitioner. By using the same verb amongst multiple domains, the assessment 

process becomes arduous due to the assessor having to interpret the correct level of cognition to 

code, increasing the propensity for error. 

Delphi Round 2: Quantitative Curriculum Assessments  

The second Delphi round begins with a quantitative assessment of lesson content across 

the full spectrum of a desired course’s curriculum by using the taxonomical codes as the 

quantitative framework. In statistical analytics the three most important univariate measures 

correspond to the first three moments of central tendency, spread, and skewness, in that order. 

Gribble et al. (2005) follow this pattern by proposing the use of four quantitative metrics: 

1. The arithmetic mean between each of the six taxonomical cognitive domains that are

achieved by each learning outcome for an entire course,

2. The assignment of weight distributions based on the amount of class time allocated to

each learning outcome and those of constituent outcomes,

3. The spread of variance from the learning outcomes, relative to their aggregate

averages, and

4. The standard deviation from the mean (Gribble et al., 2005, p. 17).

Each of these metrics serve as decisive analytical touchpoints, but for skewness. Therefore, we 

propose two additional points of assessment: 

5. The median, and

6. Pearson’s Second Coefficient for Skewness
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Each metric adds insight as to cognitive validity and progressivist nature of the lessons. 

However, it should be noted that these are not the only assessment measures that can be taken 

and that any of these recommended measures can be assessed through standard computational 

software. The measures proposed here are suggested due to their simplistic relevance as 

assessment computations that add tremendous value to towards informing what, if any 

curriculum improvements might be necessary. Each measure’s purpose and computational 

methodology is discussed in greater detail below. 

Computation 1: Arithmetic mean. The arithmetic mean is an estimate of the sampled 

population’s central tendency. In this case the sampled population would be the sum of the 

taxonomically-coded learning objectives from a course curriculum. This measure is used because 

it is an unbiased estimator of the sampled population’s mean. Furthermore, the Law of Large 

Numbers guarantees that the arithmetic mean will converge to the population mean when the 

observations are independent and identically distributed.  

The arithmetic mean is found using (Insert Formula 1), where the sum of the scores for 

each learning objective, xj, is divided by the total number of the coded learning objectives within 

a course, n. An example of this computation in practice would be the following two lesson 

objectives being coded 2 and 4 respectively: 

Objective 1. Students will interpret in their own words the purpose of a thesis statement. 

Objective 2. Students will be able to distinguish between the different parts of an essay. 

The arithmetic mean between the objectives is 3, indicating that the lesson is, on average, aligned 

within the Application taxonomical domain.  

Computation 2: Time-weight distributions. Assigning time-weighted distributions to the 

learning outcomes is given by (Insert Formula 2), where the numerator variable Ωj represents the 
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assigned weight (and is a positive number), and xj represents the value of the coded taxonomical 

level and the denominator represents the sum of the assigned weights. Using a time-weighted 

average allows for central tendency of a course’s taxonomically coded learning objectives to be 

found when some objectives are more common than others; thereby allowing certain objectives 

with more weight to be more influential in the computation. In contrast, the arithmetic mean is 

the weighted mean, with all objectives being equally influential within the computation. In both 

the arithmetic and weighted means, if the formula is decomposed into addends, the coefficients 

of measurements will be positive and sum to one.  It follows that the weights in mean 

calculations form a probability vector.  This vector gives stakeholders a convenient way to verify 

that time weights match the academic program’s goals.  The arithmetic mean’s weights 

correspond to uniform probability on n possibilities.  The sample variance and sample standard 

deviation formula do not use weights that sum to one; the n-1 in the denominator of sample 

variance makes it an unbiased estimator of population variance.  If the entire population is 

measured, this n-1 should be replaced with n; for large sample sizes the distinction between n-1 

and n is negligible.  Therefore, the relevance of this measure extends from the probability that 

time distributions amongst learning objectives will not always be constant and will vary 

according to the needs of educational and administrative stakeholders. In short, this measure is 

used to ensure that the percentage of time spent in a class session on each learning objective is 

accurately captured using a weighted percentage. This requires a more decisive quantitative 

measurement that goes beyond the aggregate average of cognitive codes, and gives greater 

insight into the quality of curriculum design by assessing time as a variable. 

In this context, the time is distributed according to the time exercised by each learning 

outcome during a class. A percentage weight is then found for each learning outcome relative to 
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the outcome’s time distribution and divided by the sum of the weights being assigned. The 

outcome coded as a four uses ten minutes of the total class-time (0.20); whereas, the outcome 

coded as a two uses 40 minutes of the class-time (0.80), with the sum of 0.80 and 0.20. Because 

the weights measure the weighted distribution of time during a class, the sum of the two weights 

should always equal one, as 100-percent of the class-time distributed between the outcomes. By 

applying 𝜇𝜇w = 0.20(4) + 0.80(2), therefore 𝜇𝜇w= 2.4, falling towards the middle of the 

Comprehension domain. By using time-based weighting here, we find that the measure of central 

tendency and the taxonomical value of the learning objectives changes from where it was in the 

arithmetic mean.  

Computation 3: Variance. The third computational assessment requires the measure of 

variance (σ2) relative to the aggregate weighted averages of the learning outcomes. There are two 

measures of variance, which include the population variance and the weighted variance. Using,  

(Insert Population Variance Formula) 

the population variance is a quantitative measure of the spread of a course’s learning objectives 

based on the arithmetic mean. The unit of measurement of the variance is the square of 

observations within a unit of measurement. In this case the observations of the units of measure 

would be the coded taxonomical objectives. Additionally, the weighted variance is an estimate of 

the spread of the taxonomical objectives when some observations are more important than 

others. Observations with more weight are more influential in the computation. The variance’s 

unit of measurement is the square of observations’ unit of measurement. Using, 

(Insert Weighted Variance formula) 

and our example, we find that σ2 = 0.80(2 - 2.4)2 + 0.20(4 – 2.4)2 = 0.64. This measure allows 

educators and administrative stakeholders to have an indicator of the squared differences in 
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distribution values relative to the weighted mean. In turn, this provides them a quantitative basis 

for consideration as to whether to narrow or widen the variance in how curriculum and learning 

objectives foster learning.  

 Computation 4: Standard Deviation. The fourth computational assessment requires the 

measure of standard deviation (σ). There are two measures of standard deviation, including the 

population standard deviation and the weighted standard deviation. Using,  

(Insert Population Standard Deviation Formula) 

the population standard deviation is also a quantitative measure of the spread of a course’s 

learning objectives based on the arithmetic mean. The unit of measurement of the standard 

deviation is the units of measure observed. In this case the observations of the units of measure 

would also be the coded taxonomical objectives. Additionally, the weighted standard deviation is 

an estimate of the population’s spread when some observations are more important than others. 

Observations with more weight are more influential in the computation. Using, 

(Insert Weighted Standard Deviation formula) 

σ is found by taking the square root of the variance, where σ = 0.80, resulting in there being a 

one-to-one relationship between both the variance and standard deviation, pursuant to the 

stakeholder’s preference of which measure to use. However, if either the σ or σ2 is available the 

converse can be readily computed.  

Computation 5: Median. Measuring for the median of the taxonomically coded learning 

objectives allows for researchers and practitioners to determine the quality of distribution 

through knowing what the measure for central tendency is for all of the learning outcomes within 

a course. This measurement of centrality is also a preferable measure in determining whether the 

population of course learning objectives skew one way over another. Such a data point would not 
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otherwise be apparent by using the aggregate average or weighted average. To find the median 

within a learning outcome data set, the central measure should be found, which would fall 

between the taxonomic codes of one and six. For example, if the following learning outcomes 

are coded: 

1 1 2 3 3 3 3 4 4 4 4 4 4 5 5 5 6 6 

the median is four due to it being the ninth of 18 learning objectives measured, with an aggregate 

average of 3.7. However, the median may not always be the best measure due to the propensity 

for the population of learning objective sets to skew further one way as a result their taxonomical 

coding. Take the following data set as an example: 

1 2 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 

If this set were an actual set of learning objectives than the median would be the maximum 

possible value of six, however, the aggregate average would be 5.1. The nature of this data set 

makes the aggregate average a more accurate measure. Depending on the distribution of these 

learning outcomes and the time-weight distributions assigned to each amongst the lessons, the 

measure could be even lower, making the median an even less useful measure. When data is 

skewed, a median is considered a more trustworthy measurement of central tendency that means.  

Medians measure the middle of the data, approximately half of the data will be less than or equal 

to a median, and approximately half will be greater than or equal. Means can change greatly 

from the inclusion or exclusion of a few extreme values. Unweighted medians are rank statistics 

and are resistant to unusually extreme value.   

Computation 6: Pearson’s Second Coefficient for Skewness. 

Skewness measures whether there are observable extreme values following a common 

direction along either the first and fourth quartiles, incurring an asymmetric form to the central 
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tendency along that direction. Positive skewed data will have several extreme values greater than 

the rest of the data.  Negative skewed data will have several extreme values less than the rest of 

the data. Symmetric data will have approximately half of the extreme values on the left, and half 

on the right when graphically observed. A Measure of Skewness can be assessed, giving 

researchers an accurate depiction of whether the tendency of the curriculum operates in upper or 

lower quartiles pursuant to the taxonomical codes assigned to the learning objectives that were 

analyzed in the first Delphi. One of the easiest ways to spot skewness when analyzing results is 

to find the difference between the mean and the median.  This gives stakeholders a simple 

arithmetic operation to recognize a lack of symmetry when only sparse statistics are available.  

Pearson’s second coefficient of skewness rescales this difference using, 

(Insert Pearson’s Second Coefficient Formula Here) 

thereby accounting for data spread. If the data is symmetric, the skewness statistic will be close 

to zero.   

Delphi Round 3: Content Analysis, Content Revisions, Learning Objectives Recoded, and a 

Quantitative Reassessment 

Once all of the quantitative metrics are compiled the course being assessed must undergo 

a comprehensive analysis. During this analysis, lessons endure a thorough review that ensures 

learning objectives and lesson content actually align. Therefore, if a lesson: 

• Fails in meeting the cognitive intent of the taxonomical domain for which the lesson’s

objective(s) is coded,

• Fails to meet the intended cognitive level that the content reflects within the defined

learning objective(s), or

• Fails in being sufficiently progressivist in cognitive achievement,
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The lesson must be recomposed by exercising one of the following actions: 

• Adjusting the lesson content to meet the actual cognitive level of the objective,

• Adjusting the lesson learning objective(s) to the taxonomically sufficient level that meets

the actual cognitive level of the content, or

• Removing the objective and content from consideration entirely.

Once all of the course lessons are analyzed and the appropriate revisions successfully instituted, 

the actions within Delphi’s 1 and 2 must be re-engaged. This ensures the most accurate data is 

accumulated and is based on layered qualitative and quantitative analytics; thereby giving all 

stakeholders a decisively precise snapshot of the state of a course’s curriculum.  

Verification and Approval 

Though not necessarily a step in the actual assessment process, gaining verification of 

measures and qualitative feedback of the curriculum under review from neutral, competent 

sources can be extremely useful. Institutional and departmental stakeholders can and will 

certainly provide feedback as to curricular expectations in terms of outcomes, and will also 

ultimately approve the validity and utility of the course measures. However, unbiased feedback 

from a neutral source informs the process in a holistic sense through providing a “sanity check” 

as to the alignment of the curriculum, the quality and understandability of the content, and 

through their insistence on asking elementary questions that might otherwise be ignored by those 

closely involved.  

The process of independent verification also requires the measuring researcher to articulate 

the process and results in terms that the stakeholders will ultimately require as well. However, it 

is important to note this process has the potential to be: (1) extremely useful, requiring possible 

re-writes and concurrent re-assessments based on the quality of feedback given by the 
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independent party being engaged, or (2) detrimental, with content revisions being incorporated 

that fail to measure up to the stakeholders’ needs, (3) a complete waste of time due to the party’s 

lack of knowledge on the subject(s) and the stakeholders’ needs. The process of verification must 

be definitively contemplated and the process well defined, as well as those who might be 

involved. Yet, by engaging in this process, the likelihood of stakeholder acceptance of the 

curriculum measures surges and potential oversights are appreciably mitigated.   

Conclusion 

The orientation of educational program research is predominantly summative, and focused 

on collective student achievement and other ancillary factors. Although we acknowledge such a 

posteriori evaluation factors as being relevant in measuring the quality of a course, we must 

emphasize the utility of a formative evaluation model that measures the quality of a corpus of 

curriculum prior to student engagement. Bloom’s Taxonomy, combined with the phased Delphi 

model we propose provides the “reasonable surrogate” Horner et al. (2005) describe as being 

necessary in demonstrating how effectively a curricula’s content and mode of delivery meets its 

learning outcomes. Generally, we would appraise effectiveness through the assessment results 

because they convey the cognitive levels that every lesson should achieve and because the 

quantitative metric serves as an illustrative benchmark in whether a lesson emphasizes HOTS 

during facilitation. We would also evaluate whether the lessons and overall course are 

cognitively progressive and sequential in their structure. Admittingly, the determination of how 

effectiveness is defined remains within the subjective purview of the stakeholders for whom the 

evaluation pertains. 

Of course, the stakeholders involved in defining effectiveness exercise their intent through 

specifying strategic instructional and cognitive goals which are ultimately refined by subordinate 
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stakeholders such as individual departments and course facilitators. However, there may also be 

extrinsic stakeholders that could come to value the relevance of a quantitative curriculum 

evaluation methodology in other contexts. Referencing Nordvall & Braxton’s (1996) assertion, 

an evaluation model such as this essentially opens the potential for distinguishing the quality of 

one department or institution over another in terms of “academic quality” (p. 487). In particular, 

the result of this potentiality coming to fruition would be the availability of consumer data to 

prospective parents, students, collegiate ranking agencies, and other relevant parties interested in 

ascertaining the level of HOTS that a course, department, and institution expects to achieve. This 

model also affords accreditation agencies the foundational data they would need to articulate 

how an institution generates “critical thinking”, so long as the expectation is set for this 

evaluation model to be incorporated into the institutional research process.  

In closing, this article adds to the limited research field of formative curriculum evaluation 

processes. We believe it is clear that measuring and quantifying the expected levels of cognition 

achieved within a curriculum should be integral for informing the decisions of program 

stakeholders as relevant program overhauls and curriculum refinement needs. We acknowledge 

that there is a void of empirical research for determining the effectiveness of this model. 

Therefore, we recommend this methodology be implemented as part of a curriculum 

development process and a follow-up study be conducted using the proposed modified Delphi 

technique, so long as the assessment is conducted in concert with taxonomically-articulated 

lesson learning objectives. We conjecture that only then can this technique’s utility can be 

effectively realized. 
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Table 1 
Sample List of Taxonomical Verbs 

Higher-Order Thinking Skills Lower-Order Thinking Skills 
Knowledge Comprehension Application Analysis Synthesis Evaluation 
Cite Add Acquire Analyze Abstract Appraise 
Define Approximate Adapt Audit Animate Assess 
Describe Articulate Allocate Blueprint Arrange Compare 
Draw Associate Alphabetize Breadboard Assemble Conclude 
Enumerate Characterize Apply Break down Budget Contrast 
Identify Clarify Ascertain Characterize Categorize Counsel 
Index Classify Assign Classify Code Criticize 
Indicate Compare Attain Compare Combine Critique 
Label Compute Avoid Confirm Compile Defend 
List Convert Calculate Correlate Construct Discriminate 
Match Defend Capture Detect Cope Estimate 
Meet Describe Change Diagnose Correspond Evaluate 
Name Detail Classify Diagram Create Explain 
Outline Differentiate Complete Differentiate cultivate Grade 
Point Discuss Compute Discriminate Debug Hire 
Quote Distinguish Construct Dissect Depict Interpret 
Read Elaborate Customize Distinguish Design Judge 
Recall Estimate Demonstrate Document Develop Justify 
Recite Example Depreciate Ensure Devise Measure 
Recognize Explain Derive Examine Dictate Predict 
Record Express Determine Explain Enhance Prescribe 
Repeat Extend Diminish Figure out Facilitate Rank 
Reproduce Extrapolate Discover File Format Rate 
Review Factor Draw Group Formulate Recommend 
Select Generalize Employ Identify Generalize Release 
State Give Examine Illustrate Generate Select 
Study Infer Exercise Infer Handle Summarize 
Tabulate Interact Explore Investigate Incorporate Support 
Trace Interpret Express Layout Integrate Test 
Write Observe Factor Minimize Lecture Validate 

Paraphrase Figure Order Model Verify 
Review Illustrate Outline Modify 
Rewrite Investigate Point out Network 
Subtract Manipulate Select Organize 
Summarize Modify Separate Prepare 
Translate Predict Size p Prescribe 

Project Subdivide Produce 
Relate Transform Rearrange 
Sequence Reorganize 
Simulate Rewrite 
Sketch Specify 
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Table 2 
Domain-Specific Verbs Used by Two Universities for Assessing Cognitive Achievement 
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Table 3 
Curriculum Assessment Matrix for Taxonomical Cognitive Domain Assignments 

Taxonomical Cognitive Domain Assignment 

Course 
Title 

Course 
Learning 

Outcome(s) 

Lesson 
Title 

Lesson 
Objective(s) 

Level 1: 
Knowledge 

Level 2: 
Comprehension 

Level 3: 
Application 

Level 4: 
Analysis 

Level 5: 
Synthesis 

Level 6: 
Evaluation 

Lesson
Score 

 

Total   

Formula 1.  Arithmetic Mean 

Formula 2. Weighted Arithmetic Mean 

Formula 3. Variance 

Formula 4. Weighted Variance 

Formula 4. Standard Deviation 
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Formula 5.  Weighted Standard Deviation 

Formula 6. Pearson’s Second Coefficient 

Figure 1. Hierarchical Methodology in Defining Cognitive Progression in Learning 

Figure 2. Tri-Phased Delphi Evaluation Process for Programmatic Curriculum Assessments 
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