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Abstract: This paper examines some novel issues of testing unfairness from perspectives of the student, teacher, 
but mostly the test itself. The literature usually examines testing unfairness between various groups, considering 
mainly group demographics. We consider cognitively differentiated groups and test difficulty to examine how 
groups perform on a particular test, both having defined distributions of ability and difficulty, respectively. Even 
controlling the statistical parameters of the test and/or the group, there can be vast differences in outcomes, i.e. 
exam averages. This holds even for high stakes testing, leading to the reality grades are almost always 
“adjusted” to conform to testing expectations, i.e. we curve exam scores. In this section, we consider yet another 
aspect of unfairness, and that is with the numbers embedded in the test itself, and how it affects class grades 
with respect to class parameters. The two principle parameters about the student are the average ability and the 
variation of those abilities.  For the test, the two principle parameters are the average item difficulty and its 
variation.  However, we need also consider the actual distributions of the student abilities and the test 
difficulties. These must be co-mingled in an intuitive manner. Various types of distributions of these 
populations and difficulties are considered.  In addition, we need to model the actual densities of student 
abilities and item difficulties given the numbers of students and test items. For tests given to a relatively small 
number of students, there are other considerations such as the need to use simulations.  We discuss the 
sensitivity of grades to parameters, distribution of grades, the effect of a small number of test takers, and the 
relative variation in standardized tests.  
 
Keywords: Testing, item difficulty, class ability, normal distributions, beta distributions 

1. Introduction 

We constantly hear testing is unfair. Is it the testing, the tests or a combination of both? Is it the teacher or the 
student or the administration? Check “yes” for all. Indeed, students create unfairness for themselves in a variety 
of ways. We begin with a brief table of sources and review some. In the methods section, we illustrate that 
random effects do create surprisingly large effects and that in our continuing efforts to make tests fairer, we may 
be simply fooled by randomness (Taleb, 2001). A brief table of sources reveals a mix of sources, many of which 
only the teachers knows and can ever know.  
For example, many teachers, knowingly or not, telegraph to their students a spectrum of information about the 
test. For multiple choice tests, the list of why’s is endless, but there are other unfair practices that widen the gap 
between good and poor students. In some way, the practice of testing for almost every student type is unfair by 
its very nature. To frame our intent at examining more interesting and novel unfairness issues, we review some 
of the more standard issues of unfairness and limitation of multiple-choice tests. A multiple-choice question is 
generally “defined as a question in which students are asked to select one alternative from a given set of 
alternatives in response to a question stem” (Torres, Lopes, Babo, &Azevedo, 2011, p. 1).  
The purpose of the distractors is to appear as plausible solutions to the problem for those students who have not 
achieved the objective being measured by the test item. Conversely, the distractors must appear as implausible 
solutions for those students who have achieved the objective. Only the answer should appear plausible to these 
students. (Burton, Sudweeks, Merrill, & Wood, 1991, p. 3).  
The issues include question misinterpretation, the evaluation of knowledge beyond the range of options 
provided, difficulty in phrasing for identical interpretation by all students, the encouragement of guessing, 
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anxiety, and errant test-taking strategies. There are certain learning outcomes that are difficult to measure with 
this kind of test items (Torres et al., 2011) and students’ scores may not be fairly representative of true 
achievement unless the scores are transformed in some way to reduce the adverse effects of guessing (Downing, 
2003).  
 

Student Teacher Test Administrative
Cognitive Style Number of questions Practice time

Study practice Curriculum Difficulty distribution Curriculum
Group effects Rubric rigor Language Stress

Distribution of abilities Telegraph Answer traps
Response to grade Prep time Random effects
Testing strategies Halo effect Number of questions

Anxiety Time Management Question structure
Random effects Question type (MC, 

Essay, etc)

Testing Unfairness - Sources

 
Table 1 - Sources of Testing Unfairness  

The topic of testing unfairness is vast, mostly unexplored, but ever present in our testing of students.  Each of 
the sub items of Table 1 has its own story to tell.  In this paper, we consider only the random effects of testing.  
This involves the statistics of the classroom, insofar as their abilities, and the statistics of the test. So we look at 
administering the same test year-after-year, with only the class changes.   Of particular interest will be just how 
much the class average can range.   We also study the effects of how many students take the test. The smaller 
the numbers, the greater possibilities for vastly different results.   So, we will introduce a theory involving 
student abilities and item difficulties.  They will be cast in the form of probability distributions.  From this we 
obtain a "theoretical" grade.  Unrealistically, this grade would be the class grade for an infinite sized class with 
an infinite number of items.  To obtain realistic results, we will simulate the grade computation by taking finite 
samples of the appropriate distributions, and then take the test for each student in the sample.  

2. Basic Assumptions 

To arrange the basic parameters, we make the some definitions. Following the tenets of the scoring correction 
literature, we assume that all student abilities are calibrated to be in the range  with the ablest students 
having ability 1 and the least able having ability 0.  In reverse item difficulties are also in the range  with 
the most difficult problems at 0 and the easiest problems at 1.  This inverse scale is in observation to standard 
item analysis (Barnard, 1995).  For student with ability  attempting to solve a problem of difficulty  the 
probability of the student solving the problem is assigned to be  

Pp | q
0 if p 1q
1
2 if p 1q
1 if p 1q

 
This means simply if the student knows the material at the level of difficulty  then the correct answer is given.  
If otherwise, the incorrect answer is given.  The middle case, with  is considered a "draw" with the 
resulting probability assigned as 1/2.  In all of our calculations, the middle case is vanishingly rare, essentially 
non-existent. When a test is comprised of one problem with one correct answer, there is little here.  However, in 
the following we consider a number of students and a number problem difficulties, and then compute the class 
average.  Before the details, we give the fundamental tenets of scoring correction (Budescu, Bar-Hiller, 1993; 
Hales and Marshall, 1972, Rowley and Traub, 1977, and Frary, 1988).  

1. The person tested either has the knowledge to answer it correctly or doesn’t.  
2. With the knowledge the person will answer correctly; without the knowledge, the person will 
guess.  
3. Each incorrect response was the result of a random guess (among all options given).  

 
These must be treated in turn.  The first is on knowledge and difficulty, and item 1.  Guessing is postponed but 
is rather easy to handle within our general framework.   Essentially, either a student knows the correct answer or 
not  Let us compute the true grade for a student of ability  taking a test of difficulties .  By the 
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formula above it will be  

T  1
n t 

i1
p1q i

n t

1

 
This is simply the proportion of the number of test items  where the difficulties  are less than the ability 

  Multiply by 100 to get the percentage.  We use these terms, percentages, and proportion, interchangeably. 
Now assume a class of  students with abilities given by   The true grade for each student follows 
the formula above with the appropriate  replacing   The true class average , therefore, is given by  

TC  1
n sn t 

j1

n s


i1

p j1q i

n t

1

 
So far, this amounts counting and then averaging. The word true will be clarified a bit later.  Note, we continue 
to omit the special case when the student ability is  and the problem difficulty is   This is 
inconsequential. One reason is that we will use random number generators that produce twelve digit numbers for 
both probabilities, and the other is the matter of fuzziness.  Namely, it can never be known exactly what the 
ability of either a student is or what the item difficulty is.  This is reasonable. It means we can omit the 
possibility.  However, this fuzziness actually constitutes one of the several simulation problems.   
First, it is important to give a form to the student (ability) and testing (difficulty) parameters in the terms of their 
probability densities.  We consider two forms of such densities, the normal and the beta. It is reasonable to 
envision either of these forms.  Even prior to this we need to generalize the relations to infinite distributions for 
both student abilities and item difficulties.  For example, suppose we are presented with a large number of item 
test with a huge number of students.  We need to express the formulae above in more generality.  These will be 
used later.  
 
Continuous Densities  Of course, not all students have the same ability, and not all test items have the same 
difficulty.  We need to assume both have a probability density. Define  to be the mean or average ability of 
the student population with standard deviation   We write  to be the probability density of student 
abilities. Similarly, let  be the probability density of item difficulties having mean  and standard 
deviation  Note  Some consideration should be given about how the difficulty of an item is 
measured.  
The generalization of the true average class exam score in these circumstances is 

 
This applies for discrete densities, as above, in the cases when the distributions are point masses and 

 where  is the Dirac density supported at  This is the case when the 
integrals are defined in the usual symmetric manner as limits of step functions. This number is in , and 
therefore to get the grade percentage multiply by 100. Thus, the more general formula reduces to the previous 
one with discrete densities.   
With continuous densities as we use below in computations, there is assumed a test with both an infinite number 
of questions and an infinite number of students. Yet in practice,  is near to the simulated average  when 
numbers of questions and students are reasonably large.  We state the interesting result consistent with these 
ideas.   
Theorem 1.    If  and  are continuous symmetric densities about their means  and  
respectively, with  then  

 
 
Here, symmetric means  for all appropriate values . The proof is not difficult but takes us 
beyond the scope of this paper.    For our purposes, it is best to regard the densities as pertaining to those 
normal, or even uniform.  But the grade follows from the theorem.    When the means of difficulty and ability 
are in this relation,  and , they are said to be complementary.    
We will consider the types of densities (or distributions) used in the simulations.  They are the normal and beta 
densities.  Both exhibit properties we expect and see in student populations and test item difficulties.  For 
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example, on a test, it is common for there to be just a couple of challenging problems, with most of the others 
relatively routine.  It is also common to see abilities of the class to be somewhat biased toward the higher end, 
with fewer students of only slight ability.  The normal and beta densities have these properties.  

3. Normal and Beta Distributions 

The familiar normal density has the form  

 
Its graph shows the traditional bell-shaped curve.  In this example, we consider student abilities to be normally 
distributed with mean  and standard deviation  The range of item difficulties is also assumed to be 
normally distributed with mean  and standard deviation   We take the standard deviations to keep the 
distribution substantially within .  This computes various probabilities for the bi-normal distribution arising 
in testing.  For example, with  
 

1 0. 5 1 min1, 11/3
2 0. 6 2 min2, 12/3

 
The true class average, for these means and standard deviations, is 

 
We can apply a change of variables to both variables to transform this to  

 
The true grade is given by  

 
We can apply a change of variables to both variables to transform this to  

 
It is easy to see, by looking at respective ranges of integration that  if  or  increase, then  increases.   
Similarly,  if  or  decrease, then  decreases.  This is as expected: make the students better or the test 
easier, and grades go up, and vice versa.  Observe as well the true grade is an invariant of the sum In 
the special case where the sum is one, i.e.  the true grade formula becomes 

 
Thus, the true grade is independent of the means.  Moreover, if we consider just the integral  
 

 
it is a simple matter to see it is invariant under  which is to say, also invariant under changes in the respective 
standard deviations. In the case, , this evaluates to  thus substantiating our theorem.  

The standard deviations were taken to keep the distributions more-or-less in  though this is not really 
necessary. As you see, because this test is relatively easy, with  the test favors higher grades even 
though the mean ability for all students is .  Simply by looking at the expression for  we see the 
relations between the four variables is nonlinear.  
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Figure 1 shows what a typical theoretical grade vs. difficulty looks like when using normal densities.  In this 
graph  and  All such graphs have this general sigmoidal appearance as  ranges in 

. The -axis below is the difficulty mean  with  
 

 
Figure 1  

This suggests the expected grade , now expressed as a function of its four primary 

parameters, is an increasing function of  and in fact we note that  Moreover, it is relatively easy to 

show that  attains its maximum when , that is to say 

 
It is of some interest to note that even a small change in student ability can magnify the class grade outcome for 
such balanced or nearly balanced scenarios (i.e. ).  These results depend on the essential double 
symmetry of the normal distributions. The smaller  is, the larger is the magnification, and moreover, this 
occurs proportional to the square of .  Typically, the magnification is about triple the change in the mean 
student ability. For example, a 1% change in mean class ability can change the class grade by 3% or more, while 
one would expect a corresponding 1% change.  One upshot of this is that tests with a very narrow spread of 
problem difficulties or student abilities can have a dramatic effect on class grades.   This is a sensitivity aspect 
of testing of grades in their correspondence to student ability or problem difficulty.  One way to minimize the 
magnification is to administer a test with a wide variety of difficulties.  Finally, note 

 
T 0. 5 if 1 12

T 0. 5 if 1 12

T 0. 5 if 1 12

 

Beta Distributions 

The beta density on [0,1] is defined by 

 
where , and where  denotes the gamma function (Johnson, et. al., 1995) The values  and  are 
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called the shape parameters of the beta density. When  it has the general shapes shown in Figure 2.  
The mean or expectation is given by  

 
and standard deviation by 

 
This density, which can be biased toward zero or one by selecting  and  appropriately, seems a better model 
for student abilities or item difficulties because they are first confined to  but also they may be more 
representative of the actual situation.  It is far easier to imagine for an average class the distribution of rather low 
abilities is lower than that for greater abilities.  It is also easy to imagine for test item difficulties there are more 
easy problems that difficult ones.   
This does seem to contradict the use of normal densities, as we are accustomed to with the IQ test.  Yet it is 
important to remember IQ scores are normalized to  after the IQ test is taken. It may also account for 
at least college admission standards that favor better students. It would be expected that plotting student 
admissions would bias toward the upper end.  This example shows the Beta density with the lower mean for 

 and  and the one with the greater mean Beta density for  and   It is always the 
case if  the distribution will be biased toward the right.  
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Figure 2. Beta densities  

 
It is significant these are not symmetric.  Suppose we look at two balanced profiles with means  and   

This implies we have  and .  Thus, for each  and , there is a pair of 

ability and difficulty profiles. We compute the expected true grade as 

 
 

where the "complementary" densities are given by  and 

.  It is a simple matter (change of variable and then change of 

order) to show that  
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Since the sum of the two right-hand integrals must be one, it follows that   
Thus the true mean enjoys the same property as in the normal distribution case, even through symmetry is not 
present.  A general theorem for the beta distributions can be proved.  
 
Theorem 2.  We have the four positive shape coefficients   and  with and  referencing 
student ability, and with and  referencing test difficulty.   Then the true grade 

 satisfies the following 
 Given α₁, β₁, α₂ are constant, then If β₂ increases, then  
 α₁, β₁, β₂ are constant, then if α₂ increases, then  
 β₁, α₂, β₂ are constant, then if α₁ increases, then  
 α₁, α₂, β₂ are constant, then if β₁ increases, then  

The proof, while not difficult, is a bit too long for inclusion here.  
 
From these, it is easy to conclude related statements about the respective means and the true grade. If you prefer 
to set the mean and standard deviation for the Beta distribution, it is possible to determine the shape parameters 
by simply solving the system 

 
for  and Rewritten,  there obtains an alternative form for   

 
It is also easy to see that  

 
Therefore, along lines with the form  the mean remains invariant. However, such an assignment does 
not leave the standard deviation invariant. Beginning with the mean and standard deviation, one solves to obtain 
the related shape parameters given by  

 

 
 
Consider the normal case discuss above with the mean and standard deviation parameters as given. Let’s use 
these to compute the simulated average grade for the respective beta densities.  The respective shape parameters 
are    and  The average grade is given by  

 
 which is remarkably close the average when using the normal densities. Note, these integrals are generally not 
computable in closed form, that is by a formula, except of course when the shape parameters are integers.  In 
these cases, the resulting formula is merely unwieldy.   Just as with the normal distributions, they are computed 
numerically.  The beta densities graphed are 
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Figure 3 - Beta densities  

 
Accommodating multiple choice tests is relatively easy in the framework set out.  Indeed, adhering to the first 
principle, we will assume that if the student’s ability  exceeds difficulty the students answers the 
question correctly.  In alternative case the student, the student gets the wrong answer.  However, when the 
answers are multiple choice, with say , total distractors, the student guesses.  And of those guessed at random, 
about  of the time, the student guesses correctly.  This gives the average class corrected grade of 

 
As is apparent, this raises the overall grade.  Suppose a true-false exam is given, where  

Then   Thus, when the instructor sees the class with an average of 80% on such an 
exam, it really means the demonstrated knowledge is but 60%.  This calculation is reminiscent of scoring 
correction formulae, used in reverse.  In our simulations, we will report the true and corrected grades based on 

 answer choices.   Accommodating partial credit can be done similarly, but exactly how it is done is 
rather teacher dependent.  For the SAT exam, there are strict grading rubrics applied that attempt to delimit 
individual preferences for partial credit.  
Thus, the word "true" refers to the strict grade construction without guess and partial credit factors. 
 
 
4. The Simulations  
As noted earlier, the continuous normal and beta distributions are fine but basically assume an infinite 
population of students and an infinite number of test items.  Therefore, they can’t be used to simulate actual 
classroom performance, where there may be as few as a dozen students and perhaps only ten test items.   This 
seems to be what happens from year to year as student populations change.  We will see rather large spreads of 
the class grades even when the test remains the same year-by-year.  Normally, we will administer (i.e. simulate) 
the tests over a 25 year period.  This implication will be that there is really no such thing as a fair test.  While 
standard deviation may be reasonably small, it is the range of averages that is more telling, mostly because it can 
happen.  
As to the precision of student abilities and item difficulties, it is natural to expect these are subject to some 
variation.  That is when determining how a student may do on a particular item, both the ability and the 
difficulty are unknown precisely.  In fact, it is reasonable to argue they are only approximate.  For example, if 
the student’s ability is given as  it should be reasonable to expect 

 
where  is the mean ability and  is some stochastic term.  For example,  could be a normal random 
variable with zero mean and small variance. However, simulations with this consideration included do not 
change outcomes to any significant extent.  Thus, they are omitted.  
In using normal distributions, it is certainly the case that the natural domain extends over the interval  
One may surmise this can affect the results significantly, and therefore truncated normal distributions should be 
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used (Johnson, et. al. 1994).  However, over the means and standard deviations we consider for reasonable 
classes and exams, outcomes, particularly grade ranges, change only very slightly.  Indeed, we will usually set 
standard deviations of abilities and difficulties quite small, and still the grade ranges are remarkably large.  
 
The algorithm.  The description of this model is relatively simple to program for any with even modest 
programming skills.  No details are omitted.  First select n and m, the number of students and number of test 
items respectively.  Now select a population S of n student abilities, ,  1,...,is i n , and a population of D of m 

test item difficulties, , 1,...,mid i  .  For student i, the score iG  is the number of occurrences where 

1 , 1,..,i js d j m   , and the grade is 100 iG
mT  .  The class average is the average of the individual 

student grades. The populations are usually selected according to some rule, such as those discussed above.  
 
As regards the condition where the ability is exactly complementary difficulty, and the conditional probability 
should be  this does not affect outcomes either.  Both abilities and difficulties are randomly selected according 
to the prescribed distributions have twelve digits, the upshot being this essentially never occurs, as checksums 
concur.  What seems to be the problem, that is the deviations from true or expected grades is the granularity of 
the selected distributions when class sizes or test items are relatively small.  It is easy to argue yearly that 
student abilities have just about the same distribution, as given by average and standard deviation.  However, 
these two parameters are gross when compared with various possible samples having those parameters.  This 
could explain why some teachers lament their class is not good this year or really good.  It is because they are! 
 
In our simulations, we compute , the average true grade over all the simulation years, and the corresponding 

standard deviation .  The corrected true grade corresponding to  multiple choices will be  

with standard deviation , as is easy to derive.  So, multiple choice exams will enjoy a higher overall 
average and lower standard deviation, certainly making the test look better, maybe more fair. 
 
Normal Distributions. In the first set of simulations, we use for item difficulty and student ability normal 
distributions such as those shown in Figure 4.  In this example, the means are 0.6 (ability) and 0.5 (difficulty) 
with standard deviations 0.2 and 0.17 respectively.  The theoretical mean, or true grade, is 77.88. 
 

 
Figure 4 - Normal densities 

 
We use these data in simulating a fixed test of 10 items given to 20 students.  We perform the simulation over 
25 cycles with new student populations with identical statistics taken each cycle with t.  We have added a 
renormalization feature where for the typical student population is normalize to the precise mean.  The class 
average with standard deviation is illustrated in Table 2. 
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Year Grade Standard Deviation Year Grade Standard Deviation
1 88.00 19.89 14 70.50 24.17
2 78.00 28.58 15 83.50 18.72
3 71.00 30.42 16 80.50 20.12
4 84.00 20.88 17 87.50 19.16
5 79.50 25.64 18 68.50 28.70
6 79.50 17.91 19 84.00 22.34
7 88.00 16.73 20 71.50 27.77
8 73.50 23.23 21 88.00 12.40
9 72.00 30.02 22 79.00 28.82
10 78.50 21.59 23 75.00 27.24
11 83.00 19.22 24 64.00 29.81
12 78.00 28.21 25 75.50 23.28
13 73.50 18.43  

Table 2 - Variation in grades over 25 cycles 
     
 For this example, the average over all 25 cycles is 78.16, with a standard deviation of 6.63.  The minimum 
average is= 64.00, and the maximum average is 88.00, giving a range of 24 points or two letter grades. The 
reason for this seriously large range is the low number of items and small class size.  For the same 10 item test, 
now with a class size of 100, the minimum average is 76.00, the maximum average is 80.40 giving a range of 
4.40 over a 25-year cycle. In all cases, there is a large standard deviation of grades for each cycle.   
    When the true grade is relatively high, such as in this example, the variation is less.  We now consider tests 
and classes with the following parameters:  Student: Average ability 0.4. Standard Deviation 0.0667; Test: 
Average Difficulty 0.6 Standard Deviation 0.1. Again, the distributions are normal.  Results are displayed in 
Table 3.  The theoretical mean, or true grade, is 50.00.  We first consider various class sizes for a 33 item test. 
 

 
Table 3 - Normal distributions and grades for class sizes 

 
The average is, of course, the average of the averages over the 25 cycles.  It varies according to the selected 
random samples for the test, for which we normalized the mean difficulty to be exactly 0.6, and the class 
abilities, which change from cycle to cycle with the prescribed mean and standard deviation.  Thus, the class 
itself is a random sample, and as such it does have a natural mean and standard deviation, close to but not 
exactly the prescribed values (μ=0.4 and σ= 0.0667).  Note, as the class size increases the spread of average 
grades decreases, but for even reasonably sized classes the range is more than a letter grade.  It is no wonder we 
curve tests and constantly question how we are teaching.  Finally, note that all these values themselves range 
quite a bit from simulation to simulation.  Random effects are quite real and perhaps have a greater effect than 
one might imagine. 
 
Beta Distributions.  We consider the beta distributions with the shape parameters α₁=6.0 and  β₁=4.5 for 
ability, together with and α₂=1.2, and β₂=0.9 for difficulty.  For such distributions, the theoretical grade is 
66.26.  The respective means and standard deviations are μ₁=((6.0)/(6.0+4.5))= 0.571, σ₁= 0.146,  
μ₂=((1.2)/(1.2+0.9))= 0.571, and σ₂= 0.281.     These have the general appearance as shown in Figure 5. 
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Figure 5 – Two beta densities 

 
As you can see, the student abilities (blue) have a roughly normal shape where student abilities range 

around 0.6 but taper off at the ends, 0 and 1.  The test, on the other hand, has a high proportion of easy problems 
(vertical asymptote), with the proportions of more difficult problems much smaller. This is not unlike tests we 
give, a sufficient number of easy problems to give the students a confidence boost, but many problems of 
graduated difficulty.  Such shapes are not possible using normal distributions.  To illustrate better, we illustrate 
this distribution with the approximate number of questions for a 33 item test with these shape parameters.  (See 
Table 4.) 

 
Table 4 - Numbers of items by difficulty 

 
This table reveals in numbers what the graph expresses, a number of very easy problems with problems of all 
other difficulties in significant proportions. For example, there are about two quite difficult problems.  Very 
few, if any in this class will be successful at these items. On the other hand, there are nearly five very easy 
questions, which almost all students in the class will solve correctly.   Next, we applied this test with 33 items 
and given to 40 students for twenty-five cycles. Results are shown in Table 5. 
 

Year Grade Standard Deviation Year Grade Standard Deviation
1 66.06 17.68 14 60.73 18.85
2 67.64 17.82 15 60.30 16.74
3 62.18 16.76 16 62.00 16.95
4 59.64 15.99 17 56.24 17.62
5 63.15 15.43 18 59.09 16.40
6 55.52 16.03 19 61.58 16.32
7 63.39 19.46 20 58.06 15.25
8 61.15 19.19 21 63.76 18.28
9 64.18 18.75 22 55.21 16.21
10 61.27 16.78 23 57.21 16.33
11 64.00 16.73 24 59.52 17.76
12 58.42 19.16 25 60.55 16.34  
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Table 5 - Variation in average grades for beta densities 
 

However, for each cycle we modified the test by about 1% for each item, normally distributed.  Over 
the 25 cycles, the overall average was 60.79, with standard deviation = 3.14. The minimum average was 55.21; 
the maximum average was 67.64.  Interestingly, the range of grades was 12.42, implying that by essentially the 
same test to statistically the same class over 25 cycles, the range was more than one letter grade.  Now we repeat 
the process for the same test for 25 cycles to various classes statistically identical.  Typical results are shown in 
Table 6. As a general rule, if the test has fewer items, the ranges will become larger.  This leads us to conclude 
that giving even the same test year after year can yield results of wide variation, even if the classes are 
statistically the same. 
 

 
Table 6 - Beta distributions - class grades vs. class size 

 
    What is important to note is that with a 33 item exam, the test average for various sets of 25 cycles varies 
quite a lot.  We selected a test to roughly match the theoretical average.  Another point to note is the decrease in 
the range as the number of students increases.  However, a class size of 2000 is extreme; it is more reminiscent 
of high stakes and placement exams.  Finally, one may inquire if there is a significant difference in outcomes 
had we used normal distributions for the student abilities and item difficulties instead of the beta distributions.  
In fact, there are.  For one thing, the shapes are radically different.   
 
5. Conclusions 
    When we refer to the same class taking the same test, we always mean the same class statistically.  That is, 
classes having the same distributions. This is the fundamental assumption under which schools operate every 
year.  It allows for a fixed curriculum and relatively fixed end-of-course exams.  It permits the educational 
system the stability it has.   What our simulations do show is that for small item number tests and/or small 
classes, there arise wild variations in class averages.   We note that changing the test, even by small amounts, 
can also cause wide swings The instructor who gives the same 10 item quiz every year in say Calculus I, should 
by our simulations experience quite different results from year to year.  The department that gives common 
exams to all sections will see wide swings in section averages, for the two reasons that each section while 
statistically the same, is different and each section taught by a different instructor sees different things in the 
classroom.  In both cases, the small quiz and the large common exam there are other unfairness issues.   They 
are often with the teacher, in the forms of (1) how much information the teacher telegraphs to the student, or (2) 
how well the teacher teaches. In the common exam scenario, the exam makers must carefully pick questions and 
inform instructors of some sort of exam shell.  Otherwise, results will and do vary widely, as experience has 
shown.   
    One of several problems in putting this to the general application from known data, is that almost all data 
comes from known tests for various student groupings.  The four parameters we have used, two means and two 
standard deviations, plus the distribution forms are combined.  This means it is necessary to separate them from 
the collective whole.  This will be the topic of another paper.   
    Nonetheless, in summary we may say when it comes to testing, the multitude of unfairness forms is large, and 
how they intertwine is not well understood.  The simulations have shown what can happen when we 
accommodate only student abilities and item difficulties, and here variations are considerable. 
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