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1. INTRODUCTION
The purpose of this article is to highlight the conditions on the coefficients of a reduced 
cubic of the form 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥3 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥2 + 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 such that it and its derivative are factorable 
over the rational numbers.  Such a cubic is useful to instructors of first semester Calculus 
courses when constructing a cubic which has rational zeroes (or, 𝑥𝑥𝑥𝑥-intercepts) and local 
extrema at rational values of 𝑥𝑥𝑥𝑥.  Included is Matlab code to generate coefficients of the 
polynomial.

2. BACKGROUND
This project was a result of attempting to construct a factorable cubic polynomial from a 
known factorable quadratic polynomial.  The intent was to use these polynomials in a 
Calculus 1 course where students would find the zeroes of the cubic to determine the 𝑥𝑥𝑥𝑥-
intercepts, then take the derivative and find the critical numbers to examine local extrema 
of the polynomial.  

This process began by considering a quadratic polynomial which has two rational zeroes, 
𝑥𝑥𝑥𝑥1 = − 𝑐𝑐𝑐𝑐1

𝑎𝑎𝑎𝑎1
and 𝑥𝑥𝑥𝑥2 = − 𝑐𝑐𝑐𝑐2

𝑎𝑎𝑎𝑎2
.  With such zeroes, the quadratic is constructed as

𝑃𝑃𝑃𝑃2(𝑥𝑥𝑥𝑥) = (𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥1)(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥2) = �𝑥𝑥𝑥𝑥 +
𝑐𝑐𝑐𝑐1
𝑎𝑎𝑎𝑎1
� �𝑥𝑥𝑥𝑥 +

𝑐𝑐𝑐𝑐2
𝑎𝑎𝑎𝑎2
�

or more conveniently

𝑃𝑃𝑃𝑃2(𝑥𝑥𝑥𝑥) = (𝑎𝑎𝑎𝑎1𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐1)(𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐2).
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Expanding,

𝑃𝑃𝑃𝑃2(𝑥𝑥𝑥𝑥) = 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 + (𝑎𝑎𝑎𝑎1𝑐𝑐𝑐𝑐2 + 𝑎𝑎𝑎𝑎2𝑐𝑐𝑐𝑐1)𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐2𝑐𝑐𝑐𝑐2

and integrating

�𝑃𝑃𝑃𝑃2(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 =
𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2

3
𝑥𝑥𝑥𝑥3 +

𝑎𝑎𝑎𝑎1𝑐𝑐𝑐𝑐2 + 𝑎𝑎𝑎𝑎2𝑐𝑐𝑐𝑐1
2

𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐2𝑥𝑥𝑥𝑥 + 𝐷𝐷𝐷𝐷

for some arbitrary constant of integration 𝐷𝐷𝐷𝐷. By defining

𝐴𝐴𝐴𝐴 ≡
𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2

3
,𝐵𝐵𝐵𝐵 ≡

𝑎𝑎𝑎𝑎1𝑐𝑐𝑐𝑐2 + 𝑎𝑎𝑎𝑎2𝑐𝑐𝑐𝑐1
2

,𝐶𝐶𝐶𝐶 ≡ 𝑐𝑐𝑐𝑐2𝑐𝑐𝑐𝑐2

then

𝑃𝑃𝑃𝑃3(𝑥𝑥𝑥𝑥) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥3 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥2 + 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 + 𝐷𝐷𝐷𝐷.

What values could 𝐷𝐷𝐷𝐷 have such that 𝑃𝑃𝑃𝑃3(𝑥𝑥𝑥𝑥) is factorable over the rational numbers? An 
initial investigation presented in this paper focuses on establishing conditions on the 
coefficients under the assumption 𝐷𝐷𝐷𝐷 = 0.

3. Methods
It is sufficient to consider a reduced cubic polynomial 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥3 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥2 + 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 with 
integer coefficients. The reduced cubic polynomial can be rewritten in a factored form

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥3 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥2 + 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥(𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥2 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥 + 𝐶𝐶𝐶𝐶).

Buddenhagen, et al., provided solutions to cubic polynomials termed “nice” cubics of the 
form

𝑦𝑦𝑦𝑦 = (𝑥𝑥𝑥𝑥 + 𝑎𝑎𝑎𝑎)𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥 − 𝑏𝑏𝑏𝑏)

for nonnegative integers 𝑎𝑎𝑎𝑎 and 𝑏𝑏𝑏𝑏 by using multiplication and translations.  The approach 
taken in this paper is different, yet yields similar results.

Zeroes of 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) are 

𝑥𝑥𝑥𝑥 = 0

and all values of 𝑥𝑥𝑥𝑥 where 

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥2 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥 + 𝐶𝐶𝐶𝐶 = 0.

To solve the second equation, one may use the quadratic formula and thus require the 
discriminant to be a perfect square, or
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𝐵𝐵𝐵𝐵2 − 4𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠1.

Thus, the first condition for 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) to be factorable over ℚ has been established.

The derivative of the cubic is a quadratic

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅′ (𝑥𝑥𝑥𝑥) = 3𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥2 + 2𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥 + 𝐶𝐶𝐶𝐶.

Solutions to 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅′ (𝑥𝑥𝑥𝑥) = 0 require the associated discriminant 

(2𝐵𝐵𝐵𝐵)2 − 3(4𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶) = 4𝐵𝐵𝐵𝐵2 − 12𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 4(𝐵𝐵𝐵𝐵2 − 3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶)

to be a perfect square.  Note that

�4�𝐵𝐵𝐵𝐵2 − 3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶� = 2�𝐵𝐵𝐵𝐵2 − 3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶

which gives us our second condition:

𝐵𝐵𝐵𝐵2 − 3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠2.

The problem is to find conditions on 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵, and 𝐶𝐶𝐶𝐶 such that a solution to the system

�𝐵𝐵𝐵𝐵
2 − 4𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠1

𝐵𝐵𝐵𝐵2 − 3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠2,
(1)

where each 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 is a perfect square, can be found.

Solving the system algebraically by subtracting the first equation of (1) from the second 
equation of (1) leads to 

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠2 − 𝑠𝑠𝑠𝑠1.

Substituting the result for 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 into (1)

�𝐵𝐵𝐵𝐵
2 − 4(𝑠𝑠𝑠𝑠2 − 𝑠𝑠𝑠𝑠1) = 𝑠𝑠𝑠𝑠1

𝐵𝐵𝐵𝐵2 − 3(𝑠𝑠𝑠𝑠2 − 𝑠𝑠𝑠𝑠1) = 𝑠𝑠𝑠𝑠2
⇒ �𝐵𝐵𝐵𝐵

2 = 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1

𝐵𝐵𝐵𝐵2 = 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1

leads to 

𝐵𝐵𝐵𝐵 = ±�4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1

In order for 𝐵𝐵𝐵𝐵 to be real we require that

4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 ≥ 0

or

𝑠𝑠𝑠𝑠2 ≥
3
4
𝑠𝑠𝑠𝑠1.
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For 𝐵𝐵𝐵𝐵 to be an integer, we require 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 to be a perfect square. A series of cases 
follows, leading to conditions on the coefficients of 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) which give the desired results.

3.1 Case 1: 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 = 0

If 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 = 0, then 𝐵𝐵𝐵𝐵 = 0 and (1) reduces to 

�−4𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠1
−3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠2,

(2)

and therefore either 𝐴𝐴𝐴𝐴 < 0 or 𝐶𝐶𝐶𝐶 < 0, with not both 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶 negative.  

The cubic 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) reduces to 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥2 + 𝐶𝐶𝐶𝐶) and the derivative is  𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅′ (𝑥𝑥𝑥𝑥) =
3𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥2 + 𝐶𝐶𝐶𝐶.

3.1.1 Scenario 1: |𝐴𝐴𝐴𝐴| and |𝐶𝐶𝐶𝐶| are both perfect squares

With opposite signs, 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥2 + 𝐶𝐶𝐶𝐶 is factorable as the difference of squares, but 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅′ (𝑥𝑥𝑥𝑥) is not 
factorable as the difference of squares.  Assuming that the leading term is positive (if not, 
just factor −1),

3𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥2 + 𝐶𝐶𝐶𝐶 = (3𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 − 𝑐𝑐𝑐𝑐)

where 𝑎𝑎𝑎𝑎2 = 𝐴𝐴𝐴𝐴 and −𝑐𝑐𝑐𝑐2 = 𝐶𝐶𝐶𝐶.  Distributing, we require −2𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 = 0.  This scenario is not 
possible unless either 𝐴𝐴𝐴𝐴 or 𝐶𝐶𝐶𝐶 is zero.  In the event 𝐴𝐴𝐴𝐴 = 0, then the polynomial is no longer 
a cubic as required. If 𝐶𝐶𝐶𝐶 = 0, then the polynomial is further reduced to the cubic 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) =
𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥3 which is always factorable over the rational numbers and whose derivative is also 
factorable over the rational numbers but which  does not yield polynomials useful to the 
calculus instructor since zero is the only “zero” of the polynomial.

3.1.2 Scenario 2: Either |𝐴𝐴𝐴𝐴| or |𝐶𝐶𝐶𝐶| is a perfect square, but not both

For discussion, assume 𝐴𝐴𝐴𝐴 is a perfect square.  From the first equation of the reduced system 
(2), an additional requirement is 

𝐶𝐶𝐶𝐶 =
𝑠𝑠𝑠𝑠1
−4𝐴𝐴𝐴𝐴

.

From the conditions on case 1, we already established that 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶 would have opposite
signs.   The additional requirement above states that 𝐶𝐶𝐶𝐶 is the ratio of two perfect squares, 
which implies 𝐶𝐶𝐶𝐶 is a negative of a perfect square.  This contradicts the condition for this 
scenario, and therefore is not possible.

3.1.3 Scenario 3: Neither |𝐴𝐴𝐴𝐴| nor |𝐶𝐶𝐶𝐶| is a perfect square

In this scenario, the first equation of (2) becomes 

𝐶𝐶𝐶𝐶 = −�
𝑠𝑠𝑠𝑠1
4
� /𝐴𝐴𝐴𝐴.
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or −𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠1
4

. This gives us another condition: the product −𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 must be a perfect square.  
If  either |𝐴𝐴𝐴𝐴| or |𝐶𝐶𝐶𝐶| is a prime, then the other is that prime multiple of a perfect square (e.g., 
|𝐶𝐶𝐶𝐶| = |−3| = 3, 𝐴𝐴𝐴𝐴 = 12 = 3 ∙ 4).  In the event either |𝐴𝐴𝐴𝐴| or |𝐶𝐶𝐶𝐶| is a composite whose 
factors are not perfect squares, then the other is a perfect square multiple of that composite 
(e.g., If |𝐴𝐴𝐴𝐴| = |−15| = 15 = 3 ∙ 5, then |𝐶𝐶𝐶𝐶| = 𝑘𝑘𝑘𝑘2|𝐴𝐴𝐴𝐴| = 15𝑘𝑘𝑘𝑘2 for any rational number 𝑘𝑘𝑘𝑘, 
therefore −𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = −(−15) ∙ 15𝑘𝑘𝑘𝑘2 = 225𝑘𝑘𝑘𝑘2 which is a perfect square).  Thus the product 
−𝐴𝐴𝐴𝐴 ∙ 𝐶𝐶𝐶𝐶 is not only a difference of squares (−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠1 − 𝑠𝑠𝑠𝑠2), but also is a perfect square.

An additional requirement exists from the second equation of (2),

𝐶𝐶𝐶𝐶 =
𝑠𝑠𝑠𝑠2
−3𝐴𝐴𝐴𝐴

.

Therefore, the product −3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠2 is required to be a perfect square to make the derivative 
factorable.  However, from the first condition of this scenario, it was required the product 
−𝐴𝐴𝐴𝐴 ∙ 𝐶𝐶𝐶𝐶 must be a perfect square.  This is a contradiction. It is trivial that if 𝑥𝑥𝑥𝑥 is a perfect 
square, then 3𝑥𝑥𝑥𝑥 cannot be a perfect square.

In conclusion the only viable option in the case 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 = 0 is the first scenario; 
however, the result is trivial.

3.2 Case 2: 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 ≠ 0

If 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 is a non-zero perfect square, then 𝐵𝐵𝐵𝐵 is an integer whose value is calculated by 

𝐵𝐵𝐵𝐵 = ±�4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1.

3.2.1 Scenario 1: 𝑠𝑠𝑠𝑠1 = 0

If 𝑠𝑠𝑠𝑠1 = 0, then

𝐵𝐵𝐵𝐵 = ±2�𝑠𝑠𝑠𝑠2 = ±2�𝐵𝐵𝐵𝐵2 − 3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 ⇒ 𝐵𝐵𝐵𝐵2 = 4(𝐵𝐵𝐵𝐵2 − 3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶) ⇒ 𝐵𝐵𝐵𝐵2 = 4𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶

which is identical to the result from the first equation of (1).  As a result,

𝐵𝐵𝐵𝐵 = ±2√𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶.

To be an integer value, it is then required the product 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 is a perfect square and the signs 
of 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶 must be identical.

3.2.2 Scenario 2: 𝑠𝑠𝑠𝑠1 = 𝑠𝑠𝑠𝑠2 ≠ 0

Let 𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠1 = 𝑠𝑠𝑠𝑠2. Then 𝐵𝐵𝐵𝐵 = ±�4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 = ±�4𝑝𝑝𝑝𝑝 − 3𝑝𝑝𝑝𝑝 = ±�𝑝𝑝𝑝𝑝 for some perfect square 
𝑝𝑝𝑝𝑝.  The system defined by (1) becomes

�𝑝𝑝𝑝𝑝 − 4𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 − 3𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑝𝑝𝑝𝑝,
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which leads to 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 0.  If 𝐴𝐴𝐴𝐴 = 0 then the polynomial is not a cubic.  If 𝐶𝐶𝐶𝐶 = 0, then the 
polynomial reduces further to 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥3 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥2 = 𝑥𝑥𝑥𝑥2(𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 + 𝐵𝐵𝐵𝐵) and the derivative is 
factorable as 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅′ (𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(3𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 + 2𝐵𝐵𝐵𝐵).  Both the polynomial and derivative are factorable 
over the rational numbers. This is another instance of a simplified scenario and is typically 
uninteresting to the instructor.

3.2.3 Scenario 3: 𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2 ≠ 0 and 𝑠𝑠𝑠𝑠1 ≠ 𝑠𝑠𝑠𝑠2

If both 𝑠𝑠𝑠𝑠1 ≠ 0 and 𝑠𝑠𝑠𝑠2 ≠ 0, then the number of combinations of 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 which lead to 
integer values of 𝐵𝐵𝐵𝐵 is far fewer than the other scenarios; however, identifying such 
combinations is more difficult.

Let 𝑘𝑘𝑘𝑘 and 𝑘𝑘𝑘𝑘 + 𝑛𝑛𝑛𝑛 be positive integers (𝑛𝑛𝑛𝑛 ∈ ℤ+).  Set 𝑠𝑠𝑠𝑠2 = 𝑘𝑘𝑘𝑘2 and 𝑠𝑠𝑠𝑠1 = (𝑘𝑘𝑘𝑘 + 𝑛𝑛𝑛𝑛)2.  Under 
this assumption, 𝑠𝑠𝑠𝑠2 < 𝑠𝑠𝑠𝑠1 for all 𝑛𝑛𝑛𝑛.  In order for 𝐵𝐵𝐵𝐵 to be a non-zero real number, we require 
4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 > 0, or

4𝑘𝑘𝑘𝑘2 − 3(𝑘𝑘𝑘𝑘 + 𝑛𝑛𝑛𝑛)2 > 0.

Simplifying,

𝑘𝑘𝑘𝑘2 − 6𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 − 3𝑛𝑛𝑛𝑛2 > 0.

The figure below displays 𝑦𝑦𝑦𝑦 = 𝑘𝑘𝑘𝑘2 − 6𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 − 3𝑛𝑛𝑛𝑛2 for six different values of 𝑛𝑛𝑛𝑛.

As can be seen, there always exist values of 𝑘𝑘𝑘𝑘 < 0 such that 𝑘𝑘𝑘𝑘2 − 6𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 − 3𝑛𝑛𝑛𝑛2 > 0;
however, only positive values of 𝑘𝑘𝑘𝑘 are considered so that 𝑠𝑠𝑠𝑠2 < 𝑠𝑠𝑠𝑠1.  The 𝑘𝑘𝑘𝑘-intercepts identify
where 𝑘𝑘𝑘𝑘2 − 6𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 − 3𝑛𝑛𝑛𝑛2 = 0.  Consequently, values such that 𝑘𝑘𝑘𝑘 is an integer greater than 
the intercept are to be considered.  Table 1 lists minimum values of 𝑘𝑘𝑘𝑘 for each value of 𝑛𝑛𝑛𝑛.

 

Figure 1: 𝑦𝑦𝑦𝑦 = 𝑘𝑘𝑘𝑘2 − 6𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 − 3𝑛𝑛𝑛𝑛2 for six different values of 𝑛𝑛𝑛𝑛
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The minimum positive integer can be generated by the following recursive sequence for 
𝑛𝑛𝑛𝑛 ≥ 3:

𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 = 𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛−1 + 𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛−2 − 𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛−3

where 𝑘𝑘𝑘𝑘0 = 0,𝑘𝑘𝑘𝑘1 = 7, and 𝑘𝑘𝑘𝑘3 = 13.

As a result, if one selects consecutive squares (i.e., 𝑛𝑛𝑛𝑛 = 1), then are no useful integers less 
than 𝑘𝑘𝑘𝑘 = 7 to generate 𝑠𝑠𝑠𝑠2 = 𝑘𝑘𝑘𝑘2.  Similarly, if one selects squares of integers separated by 
2, then only integers greater than or equal to 13 are useful and so on.

If we set 𝑠𝑠𝑠𝑠2 = (𝑘𝑘𝑘𝑘 + 𝑛𝑛𝑛𝑛)2, 𝑠𝑠𝑠𝑠1 = 𝑘𝑘𝑘𝑘2, then  𝑠𝑠𝑠𝑠2 > 𝑠𝑠𝑠𝑠1 for all 𝑘𝑘𝑘𝑘 > 0, 𝑛𝑛𝑛𝑛 > 0, so 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 > 0 for 
all 𝑘𝑘𝑘𝑘 > 0, 𝑛𝑛𝑛𝑛 > 0.

4. Generating Cubic Triples
Recall that for 𝐵𝐵𝐵𝐵 to be an integer, we need 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 = 𝑞𝑞𝑞𝑞2 for some 𝑞𝑞𝑞𝑞 ∈ ℤ.  Values of 𝑠𝑠𝑠𝑠1,
𝑠𝑠𝑠𝑠2, and 𝑞𝑞𝑞𝑞 which satisfy that equation are coined cubic triples. Generation of the cubic 
triples is done by the first Matlab code found in the Appendix. For the first 20 perfect 
squares, 1, 4, 9, 16, …, 400, the code generates the eight unique sets of cubic triples shown
in Table 2. Included in Table 2 are the values of the quadratic coefficient, 𝐵𝐵𝐵𝐵, as well as the 
product of the cubic and linear coefficients, 𝐴𝐴𝐴𝐴 ∙ 𝐶𝐶𝐶𝐶.

Table 1 

𝑛𝑛𝑛𝑛 0 1 2 3 4 5 6 

𝑘𝑘𝑘𝑘 0 7 13 20 26 33 39 

Table 1: Minimum positive integer 𝑘𝑘𝑘𝑘 for each number 𝑛𝑛𝑛𝑛, such that 4𝑘𝑘𝑘𝑘2 − 3(𝑘𝑘𝑘𝑘 + 𝑛𝑛𝑛𝑛)2 > 0

Table 2 

��𝑠𝑠𝑠𝑠1,�𝑠𝑠𝑠𝑠2, 𝑞𝑞𝑞𝑞� (3,7,13) (5,7,11) (8,7,2) (7,13,23) 

(𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶) (13,40) (11,24) (2,−15) (23,120) 

��𝑠𝑠𝑠𝑠1,�𝑠𝑠𝑠𝑠2, 𝑞𝑞𝑞𝑞� (8,13,22) (15,13,1) (5,19,37) (16,19,26) 

(𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶) (22,105) (1,−56) (37,336) (26,105) 

Table 2: Cubic triples and resulting value of the coefficient, 𝐵𝐵𝐵𝐵, and the product of the coefficients 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶.  
Note each value of 𝐵𝐵𝐵𝐵 can be expressed as ±𝐵𝐵𝐵𝐵. 
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Geometrically, these triples represent sides of a triangle whose measurements are �3𝑠𝑠𝑠𝑠1, 𝑞𝑞𝑞𝑞,
and 2√𝑠𝑠𝑠𝑠2 (see Figure 2).  Base pairs, defined as (√𝑠𝑠𝑠𝑠1,√𝑠𝑠𝑠𝑠2), are used calculate to the third 
term of the cubic triple, 𝑞𝑞𝑞𝑞. For any 𝑐𝑐𝑐𝑐 ∈ ℕ, 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 = 𝑞𝑞𝑞𝑞2 ⇒ 4𝑠𝑠𝑠𝑠2𝑐𝑐𝑐𝑐2 − 3𝑠𝑠𝑠𝑠1𝑐𝑐𝑐𝑐2 = (𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)2, so 
any base pair actually generates an infinite sequence of cubic triples.  

For instance if 𝑐𝑐𝑐𝑐 = 2 then

4(7)2 − 3(3)2 = (13)2 ⇒ 4(14)2 − 3(6)2 = (26)2

4(7)2 − 3(8)2 = (2)2 ⇒ 4(14)2 − 3(16)2 = (4)2

4(7)2 − 3(5)2 = (11)2 ⇒ 4(14)2 − 3(10)2 = (22)2

    4(13)2 − 3(7)2 = (23)2 ⇒ 4(26)2 − 3(14)2 = (46)2

  4(19)2 − 3(5)2 = (37)2 ⇒ 4(38)2 − 3(28)2 = (74)2

  4(19)2 − 3(16)2 = (26)2 ⇒ 4(38)2 − 3(32)2 = (13)2

etc.

Under the conditions from (1),

𝐵𝐵𝐵𝐵 = ±�4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 and 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠2 − 𝑠𝑠𝑠𝑠1.

Using the first cubic triple (3,7,13), 𝑠𝑠𝑠𝑠2 = 49 and 𝑠𝑠𝑠𝑠1 = 9.  Then 𝐵𝐵𝐵𝐵 = ±𝑞𝑞𝑞𝑞 = ±13 and 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 =
40. The general cubic

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(𝑎𝑎𝑎𝑎1𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐1)(𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐2)

 

Figure 2: Physical rendition of a triangle with side lengths that satisfy the equation 4𝑠𝑠𝑠𝑠2 − 3𝑠𝑠𝑠𝑠1 = 𝑞𝑞𝑞𝑞2
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requires 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐2 = 40 and 𝑎𝑎𝑎𝑎1𝑐𝑐𝑐𝑐2 + 𝑎𝑎𝑎𝑎2𝑐𝑐𝑐𝑐1 = ±13. Factors of 40: 1, 2, 4, 5, 8, 10, 20, and 
40 can be used to find values of 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2, 𝑐𝑐𝑐𝑐1, and 𝑐𝑐𝑐𝑐2.  However, only a few combinations lead 
to 𝑎𝑎𝑎𝑎1𝑐𝑐𝑐𝑐2 + 𝑎𝑎𝑎𝑎2𝑐𝑐𝑐𝑐1 = ±13.

Obvious factors of 40 which yield a sum of 13 are 8 and 5.  Thus, one possible solution is

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥 + 5)(𝑥𝑥𝑥𝑥 + 8) = 𝑥𝑥𝑥𝑥3 + 13𝑥𝑥𝑥𝑥2 + 40𝑥𝑥𝑥𝑥.

Consequently, the derivative is factorable over the rational numbers:

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅′ (𝑥𝑥𝑥𝑥) = 3𝑥𝑥𝑥𝑥2 + 26𝑥𝑥𝑥𝑥 + 40 = (3𝑥𝑥𝑥𝑥 + 20)(𝑥𝑥𝑥𝑥 + 2).

However, simply satisfying the first criterion 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐2 = 40 is not sufficient to yield a 
viable solution to the problem.  For instance, let 𝑎𝑎𝑎𝑎1 = 5,𝑎𝑎𝑎𝑎2 = 1, 𝑐𝑐𝑐𝑐1 = 1, and 𝑐𝑐𝑐𝑐2 = 8.  The 
cubic is factorable, but its derivative is not.

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(5𝑥𝑥𝑥𝑥 + 1)(𝑥𝑥𝑥𝑥 + 8) = 5𝑥𝑥𝑥𝑥3 + 41𝑥𝑥𝑥𝑥2 + 8𝑥𝑥𝑥𝑥

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅′ (𝑥𝑥𝑥𝑥) = 15𝑥𝑥𝑥𝑥2 + 82𝑥𝑥𝑥𝑥 + 8

It is therefore necessary as stated to satisfy the condition 𝑎𝑎𝑎𝑎1𝑐𝑐𝑐𝑐2 + 𝑎𝑎𝑎𝑎2𝑐𝑐𝑐𝑐1 = ±13. By 
observation, one key point is that the quadratic coefficient in the cubic was not ±13 and is 
a clue there may an error in the cubic polynomial.  This does not imply that the only 
solutions using the cubic triple (3,7,13) are 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 5𝑥𝑥𝑥𝑥3 ± 13𝑥𝑥𝑥𝑥2 + 8𝑥𝑥𝑥𝑥.  Other possible 
cubic polynomials that satisfy the criteria include

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(5𝑥𝑥𝑥𝑥 + 1)(8𝑥𝑥𝑥𝑥 + 1) = 40𝑥𝑥𝑥𝑥3 + 13𝑥𝑥𝑥𝑥2 + 𝑥𝑥𝑥𝑥,

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(2𝑥𝑥𝑥𝑥 + 5)(𝑥𝑥𝑥𝑥 + 4) = 2𝑥𝑥𝑥𝑥3 + 13𝑥𝑥𝑥𝑥2 + 20𝑥𝑥𝑥𝑥,

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(5𝑥𝑥𝑥𝑥 + 2)(4𝑥𝑥𝑥𝑥 + 1) = 20𝑥𝑥𝑥𝑥3 + 13𝑥𝑥𝑥𝑥2 + 2𝑥𝑥𝑥𝑥,

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(4𝑥𝑥𝑥𝑥 + 5)(𝑥𝑥𝑥𝑥 + 2) = 4𝑥𝑥𝑥𝑥3 + 13𝑥𝑥𝑥𝑥2 + 10𝑥𝑥𝑥𝑥,

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(5𝑥𝑥𝑥𝑥 + 4)(2𝑥𝑥𝑥𝑥 + 1) = 10𝑥𝑥𝑥𝑥3 + 13𝑥𝑥𝑥𝑥2 + 4𝑥𝑥𝑥𝑥,

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥 + 1)(5𝑥𝑥𝑥𝑥 + 8) = 5𝑥𝑥𝑥𝑥3 + 13𝑥𝑥𝑥𝑥2 + 8𝑥𝑥𝑥𝑥, and

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥 + 1)(8𝑥𝑥𝑥𝑥 + 5) = 8𝑥𝑥𝑥𝑥3 + 13𝑥𝑥𝑥𝑥2 + 5𝑥𝑥𝑥𝑥.

Additional cubic polynomials can be developed using other cubic triples derived.

5. Additional Matlab Code
The Appendix contains an additional Matlab code which is used to generate the coefficients 
of a cubic polynomial that satisfy the criteria presented in this paper.  The coefficients 
generated are assumed to be integers and the cubic coefficient is positive.  In addition, 
situations where the cubic is a simplified cubic (𝐴𝐴𝐴𝐴 = 0 or 𝐶𝐶𝐶𝐶 = 0) are ignored.
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The storing of solutions eliminates both the repetition of identical results and those 
coefficients that are different only by a constant scaling factor.  For instance, the cubic 

𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥3 + 11𝑥𝑥𝑥𝑥2 + 24𝑥𝑥𝑥𝑥

is a valid result.  Any scalar multiple of the cubic is also valid.  Only the base coefficient 
triple (𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶) = (1,11,24) is generated from the code.  Results are formatted as a matrix 
whose rows are of the form [𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖 𝑗𝑗𝑗𝑗 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚], where the first three columns are the 
coefficients of the cubic, in order, and the next four columns are the indices used to generate 
the factors of 𝐴𝐴𝐴𝐴 (𝑎𝑎𝑎𝑎1 = 𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎2 = 𝑗𝑗𝑗𝑗) and 𝐶𝐶𝐶𝐶 (𝑐𝑐𝑐𝑐1 = 𝑘𝑘𝑘𝑘, 𝑐𝑐𝑐𝑐2 = 𝑚𝑚𝑚𝑚),  respectively.

The code given uses values of 𝑎𝑎𝑎𝑎1 and 𝑎𝑎𝑎𝑎2 from 1 to 10 and values of 𝑐𝑐𝑐𝑐1 and 𝑐𝑐𝑐𝑐2 from -10 to 
10, resulting in a total of 442 generated sets of coefficients.  Simply doubling the values (1 
to 20 and -20 to 20, respectively) the number of sets of coefficients increases nearly seven-
fold to 2954 sets.  The number of possible reducible cubic polynomials whose derivatives
are factorable over the rational numbers is larger than once thought.  

6. Future Work
The reduced cubic 𝑃𝑃𝑃𝑃3𝑅𝑅𝑅𝑅(𝑥𝑥𝑥𝑥) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥3 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥2 + 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 is addressed in this article. The authors 
have begun modifying the reported codes to work with a full cubic 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥3 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥2 +
𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 + 𝐷𝐷𝐷𝐷.  Possible methods of tackling the full cubic include use of transformations to take 
the full cubic to a reduced cubic or a depressed cubic, and using Eisenstein’s Criterion to 
find reducible cubic polynomials.

 

ICTCM  28th International Conference on Technology in Collegiate Mathematics

ICTCM.COM
42



11 
 

7. Appendix
The Matlab program for generating the cubic triples is given below.  

%%cubic triple generator
clc; clear;
m=31; %%m is a positive integer used to be the maximum number of 

%%integers investigated.
s=zeros(m);
for i=1:m

s(i)=(i-1)^2; %%s is a vector whose entries are perfect squares of 
an %%integer

end

N=zeros(m,m);
results=[0 0 0 0];
for i=1:m

for j=1:m
N(i,j)=4*s(i)-3*s(j); %%Matrix composed of all combinations 

of %%4(s_2)-3(s_1)
Q=sqrt(N(i,j)); %%Square root of each entry of A
if imag(Q)==0 %%Only considering real numbers

temp=mod(Q,1); %%Testing to see if value is an integer
if temp~=0

N(i,j)=0; %%Toss out number if it is not an 
integer

end
else %%If imaginary part exists

N(i,j)=0; %%toss out numbers with imaginary parts
end
if N(i,j)~=0 && s(j)~=0 && s(i)~=s(j)

results=[results; sqrt(s(j)) sqrt(s(i)) Q s(i)-s(j)];
%%results in order of [√𝑠𝑠𝑠𝑠1 √𝑠𝑠𝑠𝑠2 B AC]

end
end

end

%%Elimination of non-base triples (repeated by a common factor)
[m,n]=size(results);
results=results(2:m,1:n); %%Eliminated 1st row of zeros 
Soln=results(1,1:n); %%Defines size of Solution matrix 
for r=2:m-1

g=gcd(results(r,1),gcd(results(r,2),results(r,3)));
%%Identifies Greatest Common Devisor

sqs1=(results(r,1)/g); %%Divides √𝑠𝑠𝑠𝑠1 by the GCD
sqs2=(results(r,2)/g); %%Divides √𝑠𝑠𝑠𝑠2 by the GCD
B=(results(r,3)/g); %%Divides B by the GCD

if sqs1~=results(1:r-1,1) | sqs2~=results(1:r-1,2) | 
B~=results(1:r-1,3)

%%Elimination of non-base triples (repeated by a common factor)
oldresults=Soln;
Soln=[oldresults; results(r,1:n)]; 

end
end
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The Matlab program for generating the coefficients of a cubic that is factorable over the 
rational numbers and whose derivative is also factorable over the rational numbers is 
given below.  

%%Coefficient Generator, D=0
clc; clear;
soln=[0, 0, 0, 0, 0, 0, 0]; %%Initializing a solution

for i=1:10;
for j=1:10;

for k=-10:10;
for m=-10:10;

a1=i;
a2=j;
c1=k;
c2=m;

A=a1*a2; %%Cubic coefficient
B=a1*c2+a2*c1; %%Quadratic coefficient
C=c1*c2; %%Linear coefficient
if A~=0 && C~=0 %%Eliminates simplified cubic

Discrim=(B^2-(4*A*C))^(1/2); %%Discriminant of reduced 
cubic

DDiscrim=((2*B)^2-(4*3*A*C))^(1/2); %%Discriminant of
derivative

integerTestA=~mod(Discrim,1);
%%Tests discriminant of reduced cubic to make sure 

it is
%% an integer

integerTestB=~mod(DDiscrim,1);
%%Tests discriminant of derivative to make sure it is 

an
%% integer

if integerTestA==1 && integerTestB==1 %%Only use 
integer

results
oldSoln=soln;
soln=[oldSoln; A B C i j k m]; 
%%results store coefficients and index values a1, 

a2, c1,
%%and c2 values

end
end

end
end

end
end

[m n]=size(soln); %%Sets size of solution matrix
soln=soln(2:m,1:n); %%Eliminate 1st row of zeros 
Soln=soln(1,1:n); %%Defines size of Solution matrix 

for r=2:m-1
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g=gcd(soln(r,1),gcd(soln(r,2),soln(r,3)));
%%Identifies GCD of the polynomial
A=(soln(r,1)/g); %%Reduces A by the GCD
B=(soln(r,2)/g); %%Reduces B by the GCD
C=(soln(r,3)/g); %%Reduces C by the GCD

if A~=soln(1:r-1,1) | B~=soln(1:r-1,2) | C~=soln(1:r-1,3)
%%Throws out polynomials in solution that once divided by the 
GCD are %%the same as a previous solution 
oldsoln=Soln;
Soln=[oldsoln; soln(r,1:n)]; %%Storage of unrepeated solution

end
end
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