| T M 27th International Conference on Technology in Collegiate Mathematics

BUILDING INTERACTIVE MATHEMATICS APPLICATIONS USING STENCYL

Dr. Robert L. Watson
Mathematics Department
University of Mount Olive

630 Henderson St.
Mount Olive, NC 28365

rwatson@umo.edu

Abstract

We will demonstrate how to use Stencyl, an emerging cross-platform application
development environment, to quickly build and publish math applications to a
variety of devices. Discussion will include a quick overview of the environment,
and examples of implementation.

Examples will illustrate how to implement communication with a server (for use
in a student response system), adaptive learning software, and assessment using
the core Stencyl tools and mathematics extensions (Instructional Software Devel-
opment Kit).

Once written, the application can then be published to Apple tablets and phones,
Android-powered tablets and phones, PC, Mac, and Linux, with very little, if any,
modifications needed between ports.

Suggestions for incorporation of the example applications in the classroom will be
provided.

1 Introduction

Recent advances in classroom instruction have ushered in steeper software re-
quirements. Such requirements may be problematic for smaller colleges, which
cannot take advantage of the economy of scale that larger universities can. Si-
multaneously, institutions of any size can benefit from writing their own custom
software, suited to their own particular needs. This is especially true in an environ-
ment, such as an experimental classroom, in which rapid updates to the software
may be necessary. In this case, owning the code allows for easier experimentation
and flexibility.

The usual difficulty in writing custom instructional software is the amount of time
which must be invested. To an instructor with little to no programming back-

www.ictcm.com

http://www.ictcm.com

| T M 27th International Conference on Technology in Collegiate Mathematics

ground, finding the time to learn a language on top of developing the software
would be problematic.

The goal of this paper is to discuss how Stencyl, a 2D game development envi-
ronment, can be extended to allow for quick development of instructional mathe-
matics software. Stencyl provides an environment that is similar to that of Scratch,
an authoring environment developed by MIT Media Lab. Both Stencyl and Scratch
use ”code blocks”, interlocking blocks that can be joined to form executable code.

i e R |
se | is down on *|[Last created Actor 7| @

ation to CNITHICEIGED for [Last Created Actor - |

event ENSINEEIIE] in all behaviors for this scene

Figure 1: Code blocks.

Stencyl also provides a library of pre-written modules, called “behaviors”, that
can be attached to a screen or element within the screen, and configured. In this
mannet, applications can be built using little or no code.

Stencyl seeks to simplify publishing across multiple platforms. Today, there are
numerous platforms (PC, Mac (0SX), 10S, Android, Linux, etc.) Many institutions
do not insist their students use a single, standard platform. So, any applications
must be pushed out to all platforms. Haxe, the programming language Stencyl
utilizes internally, addresses this issue. The developer needs to only write their
application using the Haxe language. The code can then be ported to multiple
platforms from the single Haxe source.

We will discuss the advantage and disadvantages of developing mathematics ap-
plications using Stencyl, and what may and may not be easily accomplished. We
will introduce the Instructional Software Development Kit, which extends Stencyl’s
functionality. We will also discuss some example applications, and classroom en-
vironments they may be adapted to.

2 Overview of Stencyl

To better understand how Stencyl can be used for instructional software develop-
ment, and what limitations may be encountered, we will provide a brief overview
of how the platform is designed.

Stencyl is a 2D game development platform. It offers a point-and-click, drag-and-
drop interface. While such an interface is targeted toward novice to intermediate-
level programmers, advanced programmers will find it easy to extend its function-
ality with their own engine extensions. Due to this design, Stencyl is already being
used at schools and universities in introductory-level programming courses.

www.ictcm.com

http://www.ictcm.com

| T M 27th International Conference on Technology in Collegiate Mathematics

In Stencyl, applications are developed using a variety of tools:
o A scene editor, which is used to create the display the user will interact with.

e The inspector. Interactive elements (including GUI elements) are referred to
as actors. The inspector allows for the customization and configuration of
actors that have been placed on the screen.

Ubuntu Medium 16

Figure 2: The “Submit Button” actor is drawn on the scene editor, along with other actors.
To the right, the inspector allows the selected actor to be configured. These actors provide
the elements the user interacts with, including text boxes, labels, captions, and buttons.

e Actors can be configured with any number of behaviors—pre-programmed
code libraries that add functionality to the actor. Behaviors can be down-
loaded from the web, and imported into any number of projects.

¥ DEFAULT
Hide Actor o
List Based Graph Output ... = Supports a 2D graph of data points.
Unique Identifier

o) List Based Graph Output Behavior

Attributes
Active

Output Region This field is only available o
Draw Background

Graph Background Color ||

Graph Border Thickness 2

Thickness of graph border,

Figure 3: A behavior and configurable attributes

o A behavior editor, which is used to author behavior code. Code can be au-
thored using raw Haxe code, or drag-and-drop code blocks.

A developer can add their own code blocks, through the use of an engine extension.
The engine extension is raw Haxe code.

www.ictcm.com

http://www.ictcm.com

27th International Conference on Technology in Collegiate Mathematics

public function _customEvent Firecannon():Void

_BallExists = true;
propertyChanged("_BallExists®, _BallExists);
_BestHeight = asNumber(0);

propertyChanged (*_BestHeight", _BestHeight);
_Cannonball = getlLastCreatedActori];
propertyChanged(*_Cannonball*, _Cannonball);
Last Created Actor | getlLastCreatedactor().setXVelocity(_V0);
getlLastCreatedactor().setyvelocity(-(_vo));

Figure 4: Scratch-like code blocks and equivalent Haxe code

evaluate expression: FEIEIRFIRS

evaluate expression: [EFAFISEIGIEIRd with substitutions:
compare symbolic expression: = with substitutions:

Figure 5: Custom code blocks which use the engine extension capabilities
3 Instructional Software Development Kit

Some tools required for instructional software are not provided out-of-the-box.
These include tools ranging from basic GUI elements, such as buttons and check-
boxes, to mathematical interpreters. Some of these features can be downloaded
from the user community. However, a single library in which every object is de-
signed to work together would be more efficient. The Instructional Software Devel-
opment Kit was designed to address this concern.

The purpose of the Instructional Software Development Kit is to extend Stencyl’s
capabilities so that effective (mathematics) instructional software can be devel-
oped. The Instructional Software Development Kit is divided into two packages.
It includes engine extensions for mathematical expression interpretation, and a li-
brary of behaviors designed for use in instructional software.

The Instructional Software Development Kit provides a framework in which entire
applications can be developed with no coding. This is accomplished through the
extensive configurablility of the behavior library.

However, at some point it would be easier to start from scratch than modify the
existing behaviors in the Instructional Software Development Kit. The kit was
designed with certain applications in mind. Outside of these applications, the kit
should be considered a starting point, rather than an all-inclusive tool set.

The applications the kit was designed to build, with little to no coding, are:

¢ “Clicker” type applications, which present quiz questions and record student
feedback

¢ Interactive demonstrations, such as those which would accompany online
course reading material

¢ Special-purpose calculators

www.ictcm.com

http://www.ictcm.com

| T M 27th International Conference on Technology in Collegiate Mathematics

4 Mathematics Evaluation Engine Extension

The mathematics evaluation engine extension allows the developer to evaluate
mathematical expressions in infix notation. It provides code blocks that the de-
veloper can use in their own custom behaviors.

The extension accepts inputs as strings, and so is suitable for evaluating algebraic
expressions as input. The extension does not allow for true symbolic evaluation,
but does allow for substitutions. Thus, comparing two symbolic expressions for
equality can be accomplished by “sampling”, using either random, or pre-decided
inputs.

The code blocks provided are:

¢ evaluate expression e: takes a numerical, infix input and produces a real
number (float) as an output. e.g. Input: 1/(2 + 3) © 2 produces output:
0.04.

¢ evaluate expression ¢ with substitutions e: similar to the block above, but will
substitute a specified value for each variable before running the calculations.
e.g. Input: =10+t " 2, t =4 produces output: —160

¢ compare symbolic expression e = e with substitutions : compares two sym-
bolic expressions for equality at the specified values for the variables. e.g.
Input: x *2—1, (x =1} % (x + 1), t = 6 will produce output: true

Example 1. The following psuedo-code demonstrates how to use the extension to
determine if a student correctly computed the derivative of the polynomial x* — x.

studentRespose 1= x-1
correctAnswer = 2*x-—1
correct := true

for 1 from 0 to 99
t := randomFloat += 20 - 10 // Pick a random
real number from —10 to 10

if not [compare symboelic expression, studentResponse,
correctResponse, t]
correct := false
break
end 1if
end for

rebturn correct

The example program tests the student’s response with the correct response for

www.ictcm.com

http://www.ictcm.com

| T M 27th International Conference on Technology in Collegiate Mathematics

100 different, randomly selected inputs. In this example, it is highly improbable
(though not impossible) that the student’s incorrect response will be marked as
“correct”. The developer can decrease the chances of a false positive by repeating
the loop more than 100 times, or hand-picking known inputs that will yield a solid
test.

It would not be difficult to extend the above program so that the student was given
a random polynomial to differentiate. The code blocks were designed with adap-
tive learning software in mind.

Adaptive learning software learns the student’s strengths and weaknesses, and
tailors its presentation to them. Such software can be especially beneficial in a de-
velopmental course. However, the software needs the capacity to analyze student
responses on the fly.

Example 2. The sample code below could be used in a lesson on the power rule
for derivatives:

if studentsSccore »= 70 then p := randomInteger{ -9, 9)
else p := randemlInteger(1, 9)

if studentsSccore »>= 70 then g := randomInteger({ -9, 9)
else g := randomInteger(1, 9)

a := randomInteger({ —-10, 10)

b 1= randoemInteger(-10, 10)

problemDisplayed := [string a*x"p + b*x"g]
correctAnswer := [string p*axx" (p-1) + g*b=*x"{g-1)]

If the student’s score is less than 70, then she’ll be given a simple polynomial, such
as 6x* —4x”. However, if her score is at least 70, she could be assigned the relatively
harder polynomial-like function with negative powers.

By taking advantage of the mathematics evaluation code blocks, the developer
could write a program that adapts its difficulty to the student’s needs. The students
responses could also be analyzed to look for certain common mistakes.

5 Behavior Library

The behavior library provides tools to implement the user-level functionality, rang-
ing from buttons and text input boxes to client-server communication. To better
understand what the purpose of the behavior library is, we’ll outline a typical de-
velopment work-flow:

¢ Lirst, the developer places actors on the screen. For example, two such actors
may be a “math input” box, and accompanying “submit” button

www.ictcm.com

http://www.ictcm.com

| T M 27th International Conference on Technology in Collegiate Mathematics

¢ Second, each type of actor comes pre-configured with select behaviors. These
behaviors can be configured using the inspector. (Refer back to Figure 2 on
page 3). More behaviors can be loaded, or existing ones removed.

¢ Third, for each behavior, attributes, or variables, are configured. Some of these

attributes configure the Instructional Software Development Kit's event-triggering

system, which is discussed below.

One of the more tedious issues is allowing the actors to communicate with each
other. Suppose the developer wishes their application to show a student a ques-
tion, then upload the student’s response to a server. The Instructional Software
Development Kit provides the required functionality.

The developer will need to place a button, a text input box, and the “Simple Data
Submission” actor that handles communication with a specified server. The button
is configured with the “PPush Button Behavior”, the text input box with “Math
Input Behavior” and the data submission module with “Simple Data Submission
Behavior”.

When the user clicks the “submit” button, this action must tell the “Simple Data
Submission” module actor to fetch the user’s input, store in the text input box, and
upload it to the server.

In our example, one event is needed. The event is triggered when the user clicks
the “submit” button. The code associated with the event is part of the “Simple Data
Submission Behavior”. However, this behavior is not attached to the “submit”
button actor. Rather, the data submission is its own stand-alone actor. Therefore,
the following must occur:

o User (the student) enters their response into the text input box, which is
stored in a variable within the “Math Input Behavior”, then clicks the “sub-
mit” button.

¢ The submit button triggers an event, “SubmitData”, that is code housed in
the “Simple Data Submission Behavior”.

¢ The “Simple Data Submission Behavior” reads the student’s input from the
“Math Input Behavior”

¢ The “Simple Data Submission Behavior” connects to a specified server, and
uploads the data.

The Instructional Software Development Kit provides an approach that allows
such configuration using only the inspector-hence, with no coding. For any be-
havior that specifies the name of an event, such as the event to be triggered when
a button is pushed, the development kit’s referencing system can be used.

As part of the kit, a “Unique ldentifier ” behavior is provided. This behavior, when
attached to an actor, will allow the developer to give that actor a unique name.

7

www.ictcm.com

http://www.ictcm.com

| T M 27th International Conference on Technology in Collegiate Mathematics

The name can be specified with the event in any attribute which requires an event
name. The format is Event Name | Identifier.

For example, in the case of our data submission, the “Simple Data Submission
Behavior” houses an event called “SubmitData”, which, when called, executes the
code to communicate with the server. The “Push Button Behavior” requires the
developer to specify an event to trigger when the button is pushed. To make our
example work, we need the button to trigger the “SubmitData” event.

The “Simple Data Submission Behavior” is attached to an actor. Suppose we name
this actor “DatalUpload” using the Unique Identifier.

The “Push Button Behavior” event should be set to SubmitData | DataUpload.
This tells Stencyl to loop through all the actors with the identifier “DataUpload”,
and trigger the event “SubmitData” in all behaviors attached to that actor. Since
one of these behaviors is the “Simple Data Submission Behavior”, the code which
uploads the data will execute.

Push Button Behavior

Active

Event Trigger
Up Animation

Figure 6: Configuring a button to trigger the event “SubmitPrompt” in an actor named
“Clicker”

Actors must also be able to read and write attributes housed in behaviors in other
actors. The Instructional Software Development Kit implements the following
scheme for behaviors that specify a “target”—an attribute where data should be
read or stored.

[Unique ID].[Behavior].[Attribute Name]

It should be noted that the internal names of all attributes are prefixed with an
underscore. For example, of a behavior has an attribute “width”, then the internal
name is “_width”, and so should be referenced in this way in the “Attribute Name”
above.

B Button Input Behavior

Clicker.Simple Clicker Behavior, CurrentResponse

Selection.Label Behavior._Contents

Value is a Variable

Figure 7: Configuring a variable to be written into (“Targets”), and read from (“Value”)

www.ictcm.com

http://www.ictcm.com

| T M 27th International Conference on Technology in Collegiate Mathematics

6 Intended Uses

The purpose of the Instructional Software Development Kit is to simplify the pro-
cess of authoring small, light-use applications. It’s not designed to efficiently build
large-scale applications to compete with the major course content management
systems.

Since small-scale apps can be quickly developed, the Instructional Software De-
velopment Kit should find use in experimental courses and higher-level courses
which are beyond the scope of the tools provided by the major publishers.

| Simple Quiz 2 |

First,
What is 8+72

|
|
Cb |
|
|

(| T —

Figure 8: This simple clicker demonstration was written using the Instructional Software
Development Kit. The clicker is designed as a mobile app. It downloads an instructor’s
quiz, prompts the student for responses, then uploads them to a server.

Stencyl also implements Box-2D as its physics engine, which allows for quick de-
velopment of interactive demonstrations.

4

Cannons Max Height (1) =27.3 m Time of Apex (8 0.47 sec ° [
Figure 9: Box-2D is used to power the cannonball in this interactive demonstration. Such
demonstrations could prove particularly useful in an online classroom setting, in which
live demonstrations would not be feasible.

www.ictcm.com

http://www.ictcm.com

| T M 27th International Conference on Technology in Collegiate Mathematics

7 Limitations

There are a number of limitations to the Stencyl platform that are worth noting.
First and foremost, while the platform is finding increasing use in the classroom,
it was designed as a game development tool. Hence, much of the documentation
is written with this use in mind. Furthermore, most articles and user communities
are targeted toward game developers.

Stencyl is also proprietary. While the cost is modest (197 USD yearly subscription
fee to target mobile platforms), it is a consideration.

There are also a few issues regarding iOS devices. As of time of writing, iO5 apps
must either be downloaded from Apple’s store, or the developer must pay a 300
USD fee to distribute apps outside of the Apple network. This matter can compli-
cate distributing apps to students with iOS devices.

While the Instructional Software Development Kit may ease application develop-
ment on the user-end, server-side code must be authored using traditional tools
(e.g. PHEF, Perl). As an example, the server-side code in our data submission exam-
ple would receive the data, store it in a file, and produce the output for instructor
use. None of this code could be developed with Stencyl.

8 User Manual and Source Download

The Instructional Software Development Kit can be downloaded at:
http://ancrthegonaluniverse. com/math/isdk. html
and user manual at:

http://anorthogonaluniverse. com/math/isdk—manual . html

Other resources:
¢ Stencyl Main Site: www. stencyl . com

¢ Stencyl Education Site: www . stencyl.com/education/faqg

www.ictcm.com

http://www.ictcm.com

