
MULTIPLE TASKS DERIVED FROM AN INTERACTIVE MODULE 
LINEAR TRANSFORMATION AND EIGENSPACE 

 
Hamide Dogan 

University of Texas at El Paso 
Mathematics 

El Paso, TX, 79968 
hdogan@utep.edu 

 
 
Introduction 
 
Advent of new technologies now makes it possible to implement activities to facilitate 
learning. In fact, the current means of use of technology can be classified into those used 
to disseminate information, assess knowledge, provide feedback, use as high computing 
tools, and to provide platforms to reveal conceptual meaning of abstract ideas (Dogan, 
2013, 2012, 2011; Dogan-Dunlap, 2010, 2006, 2004a, 2004b; Dogan, Carrizales and 
Beaven, 2011). Videos and social media such as YouTube are among the technologies to 
disseminate information. WebCT, blackboard, and webassign are some of these 
technologies that provide means to assess knowledge as well as provide feedback. Matlab 
and Mathematica are among the high computing technologies. Some of these 
technologies such as GSP and Geogebra can furthermore be used to provide means to 
reveal meaning behind abstract topics (Dogan, 2013, 2012, 2011; Dogan-Dunlap, 2010, 
2006, 2004a, 2004b; Dogan, Carrizales and Beaven, 2011). 
 
Focus in this paper will be on the technologies that provide means to reveal meaning, 
specifically on an activity in a GSP environment. This activity is developed to reveal 
meaning of abstract mathematical ideas of linear transformations, eigenvalues and their 
connections to other topics (Johnson, Riess and Arnold, 2002). As many of us are aware, 
mathematics is an abstract area, which makes it difficult for most novice learners to 
easily access meaning (Dogan, 2013, 2012, 2011; Dogan-Dunlap, 2010, 2006, 2004a, 
2004b; Dogan, Carrizales and Beaven, 2011). For instance, understanding the ideas and 
accessing the meanings of linear map from Rn to Rm is not easily available for many 
students from its formal descriptions using symbolic expressions. Thus, to many learners, 
having T: R3->R2 where 

 T( 







b
a

)= 










ba
ba

(Johnson, Riess and Arnold, 2002) may mean a bunch of symbols to 

manipulate. This aspect furthermore becomes a major obstacle toward understanding the 
formal description, and being able to connect this description to relevant topics such as 
image, range and dimension ideas (Dogan, 2013, 2012, 2011; Dogan-Dunlap, 2010, 
2006, 2004a, 2004b; Dogan, Carrizales and Beaven, 2011). This in fact causes many of 
the observed classroom mistakes such as giving rank value for a transformation that is not 
the focus when asked for a basis of a vector space. Another observed mistake implying 
formalism as the source is the reference to a matrix as a set (Dogan, 2013, 2012, 2011; 
Dogan-Dunlap, 2010, 2006, 2004a, 2004b; Dogan, Carrizales and Beaven, 2011). 
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Ability to form a strong understanding and make relevant and accurate connections 
between various aspects of abstract objects require one to be able to uncover meaning 
behind symbolic descriptions.  Our online module is formed precisely for this purpose of 
revealing meaning behind formal descriptions of various aspects of linear 
transformations, their eigenvalues and eigenvectors.  
 
Now, we will turn our attention to the description of the module, and to a set of proposed 
topics along with the perspectives in which these topics can be covered to maximize 
meaning extraction. 
 
Modules 
Set of web-based modules developed with the support of an NSF grant (CCLI-0737485) 
is used in responding to basic abstract linear algebra concepts. Modules provide online 
interactive dynamic geometric features of linear algebra ideas (Johnson, Riess and 
Arnold, 2002), and this project furthermore provides a set of investigative questions both 
addressing geometric and abstract aspects that are integrated into the modules (See fig. 
1). 

  
                 Figure 1.  Links and resources for the NSF project. 
 
Modules are developed independently of the investigations to ensure that they can be 
utilized for multiple topics. Investigations included at   
http://www.math.utep.edu:8080/jsp/  
are the representative of many more instructional materials that can be designed utilizing 
the modules. Primary goal of these investigations is to provide the first-hand experience 
needed for an effective and accurate cognition of linear algebra concepts that are 
commonly introduced through abstract means. That is, these investigations are to provide 
concrete features preparing learners for a meaningful assimilation of abstract concepts 
that are mainly introduced formally. Even though our philosophy has been to utilize the 
modules for the beforehand introduction and investigation of basic features of abstract 
concepts, modules can also be utilized for assignments that focus on the reinforcement of 
information already introduced. See fig. 1 for a view of the website hosting the links to 
the modules and the relevant investigations. 
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          Figure 2.  Description of the module on linear transformation and eigenvalue. 
 
Module seen in figures 2 and 3, focus of this paper, is constructed using GSP and run in a 
Java environment. Main tools provided in the module are: Matrix, Determinant, Ratio, 
numerical values of point E, boxes for Trace, Show and Hide Grid buttons, Show and 
Hide Figures, and a Reset button. As seen in fig.3, geometric figures are two 
parallelograms; one for the identity transformation and the other to set a second 
transformation. The parallelogram in yellow stands for the identity matrix, and the one in 
pink represents the second matrix. Furthermore, AE line represents input vectors and AE’ 
line the image of AE under the transformation represented by the Pink parallelogram. 
Moreover, green dots represent input vectors and blue dots represent their images. See 
fig. 2 for the description of the module, and fig. 3 for a view of the module site and its 
tools. 
 
To reiterate, module provides multiple tools intentionally to allow multiple activities to 
support multiple ideas. That is, it is not to provide a single idea or activity. One can 
design multiple activities for multiple subjects using the tools provided in this module. 
For instance, at the site,  

                              http://www.math.utep.edu:8080/jsp/activities.html , 
one can find two separate investigations listed that are using the same module to support 
two separate sets of topics; eigenvalues and linear transformations (see fig. 1). One can 
also find in a dropdown menu, on the second column, a set of another 12 topics that can 
also be introduced using the same module. Of course, this module is not limited to only 
12 topics, it can also be used to address many more ideas. In short, the main theme of the 
module is to address any idea relevant to linear transformations, eigenvalues and 
eigenvectors. Note that this same site provides a detailed description of the module. See 
middle column on figure 1 with the link “For more detail Click Here.” Also, see figure 2 
for the description of the module. 
 
Let’s now take a look at a couple of module tools through specific examples. One of the 
tools is to form matrices via the geometric representations of parallelograms. It should be 
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noted here that transformations between Euclidean spaces can be represented as matrix 
multiplications (Johnson, Riess and Arnold, 2002). Each matrix entered into the module 

represents a linear transformation from R2 to R2. For instance, the matrix,  







02
11

 on fig. 

3 represents a linear transformation that sends the vector 







2
2

 to 







4
4

  via matrix 

multiplication: 







02
11









2
2

= 







4
4

. These vectors would be represented on the module as 

the line segments AE and AE’ respectively. Figure 3 shows both the algebraic and 
geometric descriptions of the matrix and the two vectors. Next, we will give some of the 
concepts among many more one can introduce using the very same module. 
 

 
            Figure 3. Module Tools and Geometric and algebraic representations of matrix,                    
two vectors. 
 
Linearity of Maps and Circle Vectors as Representative of Domain Vectors 
 
One can begin with introducing the idea of maps being linear (Johnson, Riess and 
Arnold, 2002). To do this, first, learners may be directed to observing relations between 
AE vector, a scalar times AE vector and AE’ line as their image vectors. If a specific AE 
vector and scalars are provided and asked to observe their geometric forms while taking 
note of the movement of AE’, students may come to a conclusion that AE’ vectors are 
originating from the same initial scalar used to obtain new vectors from AE. That is, AE’ 
is also the very same scalar value (paired with AE) times the image of derived input 
vectors from AE. 
 
This idea may be extended to considering all the vectors in the domain (in this case R2) 
via a set of vectors forming a circle with center at the origin. From this idea, students can 
demonstrate the scalar multiples of vectors on the circle observing not only that vectors 
on the circle can be used as a spanning set for R2, but also to observe that vectors on the 
circle would be enough to make accurate inferences about the images of all the vectors 
from the domain of the transformation (Johnson, Riess and Arnold, 2002). See figure 4 
for a view of how this activity may reflect itself on the module. After this activity, 
students can continue into investigating (again using the module tools) the ideas of Range 
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and Null Space of linear transformations. See figures 5a and 5b for a view of an activity 
that represents the range of a linear transformation. 

 
              Figure 4.  Demo on linearity and circle vector ideas. 
 
Range of Linear Transformation 
 
Let’s now look at range ideas with an example. Consider the transformation T: R2->R2, 

where T(x)=Ax  (*) with the matrix 









12
02

A  and the domain vectors 









v
u

x . 

Formally, the range of T is defined using set notation and matrix multiplication : 

Range(T)={ 







12
02









v
u

|for all 







v
u

 in R2} (**) (Johnson, Riess and Arnold, 2002). 

 
Clearly the description of the transformation in (*) is heavily arithmetic-oriented, and 
calls mainly for one to compute values. Moreover, the description of Range(T) in (**) 
similarly is very abstract that students (struggling with its formalism) may completely 
ignore this form (Dogan, 2013, 2012, 2011; Dogan-Dunlap, 2010, 2006, 2004a, 2004b; 
Dogan, Carrizales and Beaven, 2011). In fact, neither provides much hint on the overall 
behavior of, the visual aspects, and the structure of the Range of the transformation. On 
the other hand, the visual representations of input and output vectors as dots (green and 
blue respectively) provide an easily accessible overall behavior and the structure of the 
range. From figure 5a, one can infer easily that the range of T most probably will cover 
all vectors in R2. That is, it will consider each vector in R2 as its image vector. One 
furthermore may observe a peculiar behavior that the images of domain vectors are lined 
up favoring mainly one side (the right side) of the input vectors.  
 
Considering that fig. 5a is depicting a non-singular matrix, students may furthermore be 
directed to make a conjecture about the range of all linear transformations represented by 
any non-singular matrix. In short, interactive tracing of the input and output vectors can 
provide details to the location of each range vectors. Another word, as many of the 
readers would agree, these observed behaviors may not be possible for many learners to 
gain solely based on algebraic and arithmetic approaches. 
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                                           a                                                            b 
                 Figure 5. Circle approach to identifying Range of a nonsingular and a singular 

matrix. 
 
Now, let’s also look at a singular transformation and observe both algebraic and 
geometric representations of its range vectors (See fig. 5b). Consider the transformation 

T: R2->R2, where T(x)=Ax with 









22
11

A , and 









v
u

x . Formally, Range of T is again 

defined using set notation and matrix multiplication :  

                                          R(T)={  







22
11

 







v
u

|for all 







v
u

  in R2} 

 
Even though algebraic description may not reveal overall behavior of the function, the 
geometric representation of input and output vectors are seen easily to be clustering along 

the line spanned by the vector, 







2
1

, which also forms the columns of the matrix A (See 

fig. 5b). In fact, this observation may lead to discussions on the column space of A and 
the range of T adding more activities for learners to compare range and column space of 
matrices via their geometric representations. For instance, one can go back to the 

transformation defined by 









12
02

A  earlier, and reconsider the observed peculiar 

behavior of range positioning on the right of inputs in green (see fig. 4 and fig. 5a). This 
behavior can be investigated and explained, this time in light of the connection between 
the range of the transformation and the column space of the matrix, directing attention to 

the span of the vectors 







2
2

 and 







1
0

(Johnson, Riess and Arnold, 2002). Above example 

with the singular matrix 







22
11

 and its behavior (fig. 5b) may indeed provide a transition 

to discussions on the eigenvalues and eigenvectors of linear transformations. With this 
example, asking appropriate questions, learners attention can be directed to input vectors 

along the line spanned by the vector, 







2
1

, and their images as well as the value provided 

under the tool “Ratio AE’/AE” positioned on the center left (see fig. 3). Gradually, with 
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more examples of transformations and their images, one can introduce the ideas of 
eigenvalues and eigenvectors of linear transformations. 
 
Eigenvalues and Eigenvectors 
 

For the transformation, 









12
02

A , mentioned above, let’s go back to the domain 

vectors and their images depicted in Figures 6a and 6b. These figures show that the 
transformation defined by A appears to have two eigenvalues with ratios; AE’/AE≈2.0 
and AE’/AE≈1.0 with two groups of eigenvectors forming two separate lines. Next, using 
the two observations, learners can form a conjecture addressing all eigenvalues and 
eigenvectors of the transformation. This may follow by formal mathematical arguments 
to prove their conjectures.  
 
Now let’s look at another example with a singular matrix (see fig. 7). We will consider 

the earlier example on fig. 5b of the transformation represented by 









22
11

A . In the 

earlier case, we looked at the behavior of the range of the transformation (fig. 5b). Now 
let’s use the module to observe eigenvalues and eigenvectors (if any) of this 
transformation. 

 
                         a                                                       b  
Figure 6. Eigenvalues of a nonsingular transformation. 

 
Comparing the figures 5b and 7 reveals a connection between the range and an 
eigenvalue of the transformation. In fact, AE’/AE ratio indicates that 3 might be an 
eigenvalue of the transformation and its eigenvectors are all the vectors in the range of 
the transformation (fig. 7). Learners can be further prompted to reconsider the nullspace 
of the transformation in the context of eigenvalues. This may aid them to begin thinking 
about the vectors in the nullspace and investigate whether these vectors may be 
considered for an eigenvalue. The earlier formal mathematical work on the nonsingular 
matrix may help learners to make connection to zero being an eigenvalue for the vectors 
of the nullspace. Since eigenvalue zero and its connection to vectors of the nullspace 
cannot be observed geometrically, formal algebraic discussion is necessary for the 
learners to make connections. One furthermore may continue with discussions on 
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whether and in what situations zero would be an eigenvalue leading to singular matrices 
as the ones having zero as an eigenvalue. 

 
                Figure 7. An eigenvalue of a singular transformation. 
 
We can also give a transformation with no real eigenvalues by having learners to 

investigate the behavior of the matrix, 










01
10

A  (see figure 8). This work may 

prompt learners to begin thinking about complex numbers as potential eigevalues leading 
to formal work on identifying complex eigenvalues. 
 
Sign of Determinant and Orientation of Image Vectors 
 
In fact in an actual implementation of the particular module, not only various aspects of 
linear transformations and eigenvalues were investigated, our students also observed an 
interesting behavior among the transformations whose geometric aspects observed. Many 
observed that there is a correlation between the sign of the determinant of the 
transformation and its direction in which image vectors located in comparison with the 
input vectors. It appears that if the determinant of a matrix is negative, then non-
eigenvalue related image vectors are located to the left of input vectors and travel 
counterclockwise; and if the determinant is positive then they are located to the right of 
input vectors 

 
             Figure 8. Transformation with no real eigenvalue. 
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and travel clockwise. See figures 9a, 9b and 9c for an example of a matrix, 










10

01
A , 

with a negative determinant and the orientation of image vectors (in blue with E’ point)  
compared to the input vectors (in green with E point). 
  

 
                              a                               b                                         c  
          Figure 9.  Negative determinant and orientation of image vectors. 
 
Clockwise orientation can be observed in the figures 10a, 10b and 10c for the matrix, 












01
10

A , with positive determinant. 

 
                           a                                          b                                      c                       
            Figure 10.  Positive determinant and orientation of image vectors. 
 
Conclusion 
 
In this paper we discussed a single module, and how one can introduce multiple ideas 
using the very same module. From the examples we provided, readers may have sensed 
that it is possible to reveal abstract ideas via interactive dynamic online modules. In 
addition, our readers may have experienced the richness of a module that can handle the 
introduction of many aspects of linear transformations, eigenvalues and eigenvectors.  In 
conclusion, we, the authors, strongly believe in the power of online interactive and 
dynamic modules that can reveal meaning behind abstract concepts handling various 
aspects of many topics single handedly. 
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