
BASIC ELLIPTIC CURVE CRYPTOGRAPHY USING THE TI-89 AND MAPLE

 Joseph Fadyn
 Southern Polytechnic State University
 1100 South Marietta Parkway

 Marietta, Georgia 30060

An elliptic curve is one of the form: y2 = x3 + ax + b where the coefficients a and b
are chosen from some field K. The field may be (among others) the real numbers,
the rational numbers, or a finite field GF(q), where q = pn where p is prime and n is a
positive integer. All of our work in this paper will be done with K=GF(p)=<Zp ,+,×>.
The form y2 = x3 + ax + b is called the Wierstrass form of an elliptic curve. We require
that the cubic x3 + ax + b does not have repeated roots in Zp which is equivalent to the
condition that 4a3 + 27b2 ≠ 0 (mod p). As an example, consider the graph of:
y2 = x3 - 7x - 5 over R :

If we consider this elliptic curve over the field Z13, then we obtain a finite set of points:
{ (3, ±1), (6, 0), (7, ±9), (8, ±3), (11, ±1), (12, ±1) }. If we add to this set the so-called
point at infinity, denoted by O, we obtain a set denoted by E13(-7,-5) which contains
a total of 12 points. E13(-7,-5) can be made into an abelian (commutative) group. For
insight into how the group operation should be defined we look at the geometry of
elliptic curves over R. Let E denote the elliptic curve. For points P(x1,y1) and Q(x2,y2)
on E with x1≠x2, we define P + Q = R to conform with the geometry:

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 116

If Q = P, then we deifine P + P = 2P to conform with the geometry:

Finally, if Q = -P, where –P = (x1,-y1), then we define P + (-P) = O:

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 117

It is fairly easy to formulate these rules into algebraic form. See, for example [5]. To
begin we define: P + O = P for all P. Next, following [5], if P1 = (x1 , y1) and P2 = (x2 ,
y2) are points on E with P1 , P2 ≠ O, define P1 + P2 = P3 = (x3 , y3) by:

1. If x1 ≠ x2 , then x3 = m2 – x1 – x2, y3 = m(x1 – x3) – y1, where m = (y2-y1)/(x2-x1).
2. If x1 = x2 but y1 ≠ y2. Then P1 + P2 = O.
3. If P1 = P2 and y1 ≠ 0 then x3 = m2 -2x1 , y3 = m(x1 – x3) – y1, where

m = (3x1
2 +a) / (2y1).

4. If P1 = P2 and y1 = 0 then P1 + P2 = O.
I now present a number of TI-89 programs to do basic elliptic curve computations. All
computations will be done modulo a prime p > 3:

1. ecnopts(a,b,p): Computes the number of points on y2 = x3 + ax + b:

ecnopts(a,b,p): Prgm: DelVar x, aa, bb, xtm, ct: a -> aa: b -> bb: 0 -> fla: x^3 + aa*x
+ bb -> f(x): 0 -> ct: For I, o, p-1: mod(f(i), p) -> xtm: If xtm = 0 Then: 1 -> fla: End
If: jacobi(xtm, p): If k = 1 Then 1 + ct -> ct: EndIf: End For: If fla = 0 Then 2*ct -> ct:
Else: 2*ct – 1 -> ct: EndIf: Disp “Total Points:” : Disp ct: Disp “Does Not Include O” :
Disp “The Point At Infinity.” : EndPrgm

2. jacobi(a,b) returns 1 if a is a quadratic residue mod b and -1 if a is not:

jacobi(a,b): Prgm: mod(a, b) -> a: If a = 0 Then: 1 -> k: Goto stpe: EndIf: 0 -> ta[1]:
1 -> ta[2]: 0 -> ta[3]: -1 -> ta[4]: 0 -> ta[5]: -1 -> ta[6]: 0 -> ta[7]: 1 -> ta[8]: 1 -> k:
Lbl stp3: 0 -> v: While mod(a,2) = 0: 1 + v -> v: a/2 -> a: EndWhile: If mod(v,2) = 1
Then ta[mod(b,8) + 1]* k -> k: EndIf: If mod(a,4) ≠1 and mod(b,4) ≠ 1 Then: -1*k -> k:
EndIf: abs(a) -> r: mod(b, r) ->a: r -> b: If a = 0 Then: Goto stpe: EndIf: Goto stp3: Lbl
stpe: Disp k: EndPrgm

3. ecptsnew(a,b,p) produces a complete list of points on y2 = x3 + ax + b:

ecptsnew(a,b,p): Prgm: ClrIO: DelVar x, ff, ep, cut, fla, kk, nnn: Disp “Number of
points? “: Request “Enter p – 1 for All”, nn: expr(nnn) -> nnn: a -> aa: b -> bb:
randMat(nnn,2) -> ep: x^3 + aa*x + bb -> ff(x): 1 -> j: 0 -> jj: 0 -> cnt: 0 -> fla: While j
< nnn + 1 and jj < p: mod(ff(jj),p) -> xtm: If xtm = 0 Then: 1 -> fla: EndIf: jacobi(xtm,
p): jj + 1 -> jj: If k = 1 Then: sqrtmdpm(xtm, p): jj – 1 -> ep[j,1]: “±” & string(rot[1]) ->
ep[j,2]: Disp “A Point Is:”: Disp “(“ & string(ep[j,1]) & “,” & ep[j,2] & “)” : j+1 -> j:
cnt + 1 -> cnt: Pause: EndIf: EndWhile: cnt -> ct: If fla = 0 Then: 2*cnt -> cnt: Else:
2*cnt – 1 -> cnt: EndIf: randMat(2, ct) -> ecp: For I, 1, ct: ep[i,1] -> ecp[1, i] : ep[i,2] -
> ep[2,i]: EndFor: 0 -> anw: Disp “Matrix Without ± ?”: Disp “Enter 1 if Yes, 0 if No”:
Input anw: If anw = 0 Then: Goto stpf: EndIf: 1 -> I: 1 ->j: randMat(2,cnt) -> ecpm:
While i ≤ cnt: ecp[1,j] -> ecpm[1,i]: abs(expr(ecp[2,j]) -> ecpm[2,i]: If ecpm[2,i] = 0
Then: Goto stpe: EndIf: i + 1 -> i : ecp[1,j] -> ecpm[1,i]: p – abs(expr(ecp[2,j])) ->
ecpm[2,i]: Lbl stpe: : i + 1 -> i : j + 1 -> j: EndWhile: Lbl stpf: epT -> ep: Disp “Points
Are In Variable ecp”: Disp “And ecpt (if requested””: Disp “Total Points:” Disp cnt: If

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 118

nnn ≥ p – 1 Then: Disp “Does Not Include O” : Disp “The Point At Infinity.” : EndPrgm
A listing for the TI-89 program sqrtmdpm() can be found in [3].
4. ecsump(r,s,a,b,p): Finds the sum of points r and s on y2 = x3 + ax + b where r =
[x1,y1] amd s = [x2,y2]:

ecsump(r,s,a,b,p): Prgm: DelVar xone, yone, xtwo, ytwo: r[1,1] -> xone: r[1,2] ->
yone: s[1,1] -> xtwo: s[1,2] -> xtwo: If [xone, yone] = [∞,∞] Then: [mod(xtwo,p),
mod(ytwo,p)] -> sm: Goto stpe: EndIf: If [xtwo, ytwo] = [∞,∞] Then: [mod(xone,p),
mod(yone,p)] -> sm: Goto stpe: EndIf: mod(xone,p) -> xone: mod(yone,p) -> yone:
mod(xtwo,p) -> xtwo: mod(ytwo,p) -> ytwo: mod(a,p) -> a: mod(b,p) -> b: If xone =
xtwo and (yone = p-ytwo or ytwo = p-yone) Then: [∞,∞] -> sm: Goto stpe: EndIf: If
xone ≠ xtwo Then: mod((ytwo-yone)*modinv(mod(xtwo-xone,p),p),p) -> λ : mod(λ^2-
xone-xtwo,p) -> xthree: mod((xone-xthree)*λ –yone,p) -> ythree: [xthree,ythree]
-> sm: Goto stpe: EndIf: If xone = xtwo and yone ≠ 0 Then: mod((3*xone^2+a)
*modinv(2*yone,p),p) -> λ: mod(λ^2-xone-xtwo,p) -> xthree: mod((xone-xthree)* λ-
yone,p) -> ythree: [xthree,ythree] -> sm: Goto stpe: EndIf: If xone = xtwo and ytwo
≠ 0 Then: mod((3*xtwo^2+a)*modinv(2*ytwo,p),p) -> λ : mod(λ^2-xone-xtwo,p) -
> xthree: mod((xone-xthree)* λ-ytwo,p) -> ythree: [xthree,ythree] -> sm: Goto stpe:
EndIf: If xone = xtwo and yone = ytwo and yone = 0 Then: : [∞,∞] -> sm: Goto stpe:
EndIf: Lbl stpe: Disp sm: EndPrgm
A listing for the TI-89 program modinv() can be found in [4].
5. mdexpec(ba,e,n,a,b). Here ba = [x1,y1]. This program finds the value of e∙ba =
e∙[x1,y1] modulo n on y2 = x3 + ax + b (mod n) using a form of modular exponentiation:

mdexpec(ba, e, n, a, b): Prgm: [∞,∞] -> z: ba -> m: While e ≠ 0: diva(e,2) -> d: If d[1,2]
= 1 then ecsump(z,m,a,b,n): sm -> z: EndIf: d[1,1] -> e: ecsump(m,m,a,b,n): sm -> m:
EndWhile: Disp z: EndPrgm
A listing for the TI-89 function diva can be found in [4].

6. eclog(ba,s,a,b,p): Finds logba(s) via direct search, where logba(s) is the smallest
“exponent” lg having lg∙ba ≡ s (mod p) on the curve y2 = x3 + ax + b:

eclog(ba,s,a,b,p): Prgm: DelVar lg, tm: 1 -> lg: If ba = [∞,∞] Then: If s = [∞,∞] Then:
Goto stpe: Else: Disp “Log Does Not Exist”: Goto stpf: EndIf: : EndIf: If ba = s Then:
Goto stpe: EndIf: ba -> tm: While lg ≤ p+1+2*ceiling(√(p)): ecsump(ba,tm,a,b,p): lg
+ 1 -> lg: sm -> tm: If tm = s Then: Goto stpe: EndIf: EndWhile: Lbl stpe: Disp “Log
Is:” : Disp lg: Lbl stpf: EndPrgm

7. ecorder(c,a,b,n,pr): Finds the order of c = [x1,y1] in Epr(a,b) where y2 = x3 + ax + b
and pr >3 is a prime. The number of points in Epr(a,b) must be known to be n:

ecorder(c,a,b,n,pr): Prgm: factors(n): n -> t: For i,1,j: t/p[i]^e[i] -> t:
mdexpec(c,t,pr,a,b): z -> a1: While a1 ≠[∞,∞]: mdexpec(a1,p[i], pr,a,b): z -> a1: t*p[i] -
> t: EndWhile: EndFor: Disp “Order Is:” : Disp t: EndPrgm
A listing of the TI-89 program factors() can be found in [2].

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 119

8. ecnoptsh(a,b,p): computes the number of points in Ep(a,b) using the Hasse bounds
(see [5]): p + 1 – 2 √(p) ≤ #(Ep(a,b)) ≤ p + 1 + 2√(p) :

ecnoptsh(a,b,p): Prgm: DelVar tmp, ba, gcn, ysq, gc, pr2, ho, hi, rr, orde: int(2*√(p)
) -> pr2: p+1-pr2 -> ho: ho -> hok: p+1+pr2 -> hi: 1 -> gc: 0 -> trls: Lbl stp1: If trls ≥
5 then ecnopts(a,b,p) : Stop: EndIf: rand(p-1) -> r: r -> rr: mod(r^3+a*r+b,p) -> ysq:
jacobi(ysq,p): If k = -1 Then: Goto stp1: EndIf: sqrtmdpm(ysq,p) rot[1] -> tm: [rr,tm] ->
ba: eclog(ba, [∞,∞], a,b,p): lcm(lg,gc) -> gcn: gcn -> gc: int(hi/gcn) -> hig: int(hok/gcn)
-> hog: hig – hog -> tmp: If tmp = 1 Then: If gcn = hok or gcn = hi Then: gcn -> orde:
Goto stpe: ElseIf gcn > hok and gcn < hi Then: gcn -> orde: Goto stpe: ElseIf hig*gcn >
hi Then: hog*gcn -> orde: Goto stpe: Else: hig*gcn -> orde: Goto stpe: EndIf: Else: 1 +
trls -> trls: Goto stp1: EndIf: Lbl stpe: Disp “Order Is:” : Disp orde: EndPrgm

If we prefer to use Maple© we can code each of these (with the exception of jacobi
since Maple already has a built-in jacobi function) as Maple 16 procedures:

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 120

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 121

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 122

We now describe a basic form of elliptic curve encryption based on the ElGammal
cryptosystem [5]. For this, we follow the discussion in [1]. We begin with a plaintext
message M encoded as the x-coordinate of the point PM which lies on the curve y2 = x3
+ ax + b (mod p). We choose a point G on the curve whose order n in Ep(a,b) is a large
prime number. Both Ep(a,b) and G are made public. Each user (Alice and Bob) selects
a private key nA and nB and forms the public keys PA = nAG and PB = nBG. If Alice (A)
encrypts PM to send to Bob (B), she chooses a random positive integer k < n and sends
Bob the ciphertext pair of points:
PC = { kG , (PM + kPB)}. Upon receiving the ciphertext message PC , Bob recovers the
original plaintext PM via the computation:
(PM + kPB) – [nB (kG)] = (PM + knBG) - [nB (kG)] = PM .
Note that a cryptanalyst would know G and also kG (which appears in PC), so if he
could find k from this information, he could decode PM + kPB (because he also knows
PB) as follows: (PM + kPB) – kPB = PM . Finding k from G and kG is the elliptic curve
discrete logarithm problem: logG (kG) = k which is considered to be a computationaly
intractable problem for large values of k and a “generator” point G with large order n.
The encoding and decoding schemes are implemented on the TI-89 as:

ecencryp(pm,pb,ge,k,a,b,p): Prgm: mdexpec(ge,k,p,a,b): z -> kg: mdexpec(pb,k,p,a,b):
z -> kpb: ecsump(pm, kpb, a,b,p): sm -> pmkpb: Disp “Encrypted P Is:” : Disp “kg = “:
Disp kg: Disp “pmkpb =” : Disp pmkpb: EndPrgm

ecdecryp(kg, pmkpb, nb, a, b, p): Prgm: mdexpec(kg, nb, p, a, b): z -> nbkg: mod(-
1*nbkg[1,2],p) -> nbkg[1,2]: ecsump(pmkpb, nbkg, a, b, p): sm -> pm: Disp “Plaintext
Point Is:” : Disp pm: EndPrgm

Example 1 (TI-89).
We use p = 653 and y2 = x3 – 7x + 145 . We’ll encode the letters A—Z by the scheme:
A = 1, B = 2, …, Y = 25, Z = 0. For Alice to encode the message “BFF” to send to
Bob, we see that BFF corresponds to ciphers 266. To check that 266 is the x-coordinate
of a point on the elliptic curve, define f(x) = x3 – 7x + 145, so that f(266) = 18819379 ≡
572 (mod 653). So y2 ≡ 572 (mod 653) and sqrtmdpm(572, 653) gives 35 as a square
root of 572 modulo 653. Note that is 572 were not a quadratic residue modulo 653
we might do a simple shift of the encoding of the letters, such as (for example) A =
2, B = 3 …, Y = 0, Z = 1, or see the method first proposed by Koblitz on page 174 of
[5]. We will use (266, 35) as our message point: PM = (266,35). To find the order of
E653(-7, 145) we run ecnopts(-7,145,653) to obtain 650 total points (including O, the
point at infinity). For a generator point we may chose a random value of x, 0 ≤ x ≤
652. For example, if x = 0 then f(0) = 145 and sqrtmdpm(145,653) gives 168. Running
ecorder([0,168], -7, 145, 650, 653) yields an order of 650 for this point. Although 650
is not a prime, using the “generator” point G = [0,168] will serve our purpose for this
small example. If Bob’s secret key is nB = 97, then his public key is PB = nBG, so that:
PB = 97 • [0,168]. For this computation we employ: mdexpec([0,168],97,653,-7,145) to
obtain PB = [349,254]. If Alice’s random number k (which she selects) is k = 243, then
the encrypted message which Alice sends to Bob can be obtained by:

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 123

ecencryp([266,35], [349,254], [0,168], 243, -7, 145, 653) to produce the ciphertext pair:
kg = [268,62] and pmkpb = [101,258], or PC = [[268,62] , [101,258]]. Now Bob may
decrypt PC by using ecdecryp(kg, pmkpb, nb, a, b, p) which in our example is:
ecdecryp([268,62], [101,258], 97, -7, 145, 653). This outputs the plaintext point PM as
[266, 35]. So the message is in the x-coordinate, which is 266 which we map back into
“BFF”.

Using Maple 17, encryption and decryption procedures are given by:

Example 2 (Maple 16)
We use the prime p = 9883 and y2 = x3 +765x + 871. We encode the letters A – Z by
the shift scheme: E = 1, F = 2, G = 3,… C = 0, D = 1. The message which Alice will
send to Bob is “LIKE” which corresponds to plaintext ciphers as 8571. To check that
8571 is the x-coordinate of a point on the elliptic curve we define: f:=-> x3 +765x +
871. Then modp(f(8571), 9883) gives 5791. Then msqrt(5791, 9883) produces the y-
coordinate which is 3277, so our message point PM is [8571, 3277]. To find the order
of the group E9883 (765, 871), we run ecnopts(765, 871, 9883) which gives 9827. For
a “generator” G we choose a random x, 0 ≤ x ≤ 9883. For example, if x = 7 then
modp(f(7), 9833) gives 6569 and then msqrt(6569, 9883) yields the y-coordinate which
is 2813. Our prospective G is [7, 2813]. Next we find the order of G in the group
E9883 (765, 871) by running ecorder([7, 2813], 765, 871, 9827, 9883) which produces
“order is 9827”. As an alternative to find the order we may run eclog([7, 2813], [∞,∞],
765, 871, 9883) which produces “log is 9827”. This alternate method does not require
knowledge of the order of E9883 (765, 871) but may run longer than ecorder. If Bob’s
secret key is nB = 873, then his public key is PB = nBG, so that:
PB = 873 • [7, 2813]. For this computation we use: mdexpec([7, 2813], 873, 9883, 765,
871) to obtain PB = [7516, 1555] which is Bob’s public key. If Alice’s random number
k (which she selects) if k = 2477, then the encrypted message which Alice sends to Bob
can be obtained by: ecencrypt([8471, 3277], [7516, 1555], [7, 2813], 2477, 765, 871,
9883). This produces the ciphertext pair: PC = [[4225, 3276], [27, 203]]. Now Bob
may decrypt PC by using ecdecryp(kg, pmkpb, nb, a, b, p) which in our example is:

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 124

ecdecryp([4225, 3276], [27, 203], 873, 765, 871, 9883). This outputs the plaintext point
PM as [8571, 3277]. So the message is in the x-coordinate, which is 8571 which we
map back into “LIKE”.

It should be clear that the programs presented here are intended for demonstration
purposes and only as a learning tool. For real applications the prime should be 100
or more digits. Our TI-89 programs can handle (without excessive waits) 3 or 4 digit
primes and the Maple procedures can handle up to 5 or 6 digit primes only. Clearly
we need better algorithms to deal with more realistic applications of elliptic curve
cryptography. However this basic introduction should give you a reasonably good idea
of how it works.

 References
1.Chouinard, Jean Yves, Notes on Elliptic Curve Cryptography, 2002,

http://www.site.uottawa.ca/~chouinar/Handout_CSI4138_ECC_2002.pdf
2. J.N. Fadyn, Accessing the Primes and Exponents from the TI-89 “Factor”
 Command, Proceedings of the ICTCM 2009.
3. J.N. Fadyn, Faster Square Roots Modulo a Prime on the TI-89, Proceedings of
 the ICTCM 2013.
4. J.N. Fadyn, Solving Quadratic Congruences Modulo a Prime on The TI-89,

Proceedings of the ICTCM 2010.
5. Washington, L.C., Elliptic Curves : Number Theory and Cryptography, Second

 Edition , CRC Press, 2008.

26th International Conference on Technology in Collegiate Mathematics

www.ictcm.com 125

