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An elliptic curve is one of the form: y2 = x3 + ax + b where the coefficients a and b 
are chosen from some field K.  The field may be (among others) the real numbers, 
the rational numbers, or a finite field GF(q), where q = pn where p is prime and n is a 
positive integer.  All of our work in this paper will be done with K=GF(p)=<Zp ,+,×>.
The form y2 = x3 + ax + b is called the Wierstrass form of an elliptic curve. We require 
that the cubic x3 + ax + b does not have repeated roots in Zp which is equivalent to the 
condition that 4a3 + 27b2 ≠ 0 (mod p).  As an example, consider the graph of:
y2 = x3 - 7x - 5 over R :

                       

If we consider this elliptic curve over the field Z13, then we obtain a finite set of points:
{ (3, ±1), (6, 0), (7, ±9), (8, ±3), (11, ±1), (12, ±1) }.  If we add to this set the so-called 
point at infinity, denoted by O, we obtain a set denoted by E13(-7,-5) which contains 
a total of 12 points. E13(-7,-5) can be made into an abelian (commutative) group.  For 
insight into how the group operation should be defined we look at the geometry of 
elliptic curves over R.  Let E denote the elliptic curve. For points P(x1,y1) and Q(x2,y2) 
on E with x1≠x2, we define P + Q = R  to conform with the geometry:
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If Q = P, then we deifine P + P = 2P to conform with the geometry: 

               

Finally, if Q = -P, where –P = (x1,-y1), then we define P + (-P) = O:
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It is fairly easy to formulate these rules into algebraic form.  See, for example [5].  To 
begin we define: P + O = P for all P.  Next, following [5], if P1 = (x1 , y1) and P2 = (x2 , 
y2) are points on E with P1 , P2 ≠ O, define P1 + P2 = P3 = (x3 , y3) by:

1. If x1 ≠ x2 , then x3 = m2 – x1 – x2, y3 = m(x1 – x3) – y1, where m = (y2-y1)/(x2-x1).
2. If x1 = x2 but y1 ≠ y2. Then P1 + P2 = O.
3. If P1 = P2 and y1 ≠ 0 then x3 = m2 -2x1 , y3 = m(x1 – x3) – y1, where 

m = (3x1
2 +a) / (2y1).

4. If P1 = P2 and y1 = 0 then P1 + P2 = O.
I now present a number of TI-89 programs to do basic elliptic curve computations.  All 
computations will be done modulo a prime p > 3:

1. ecnopts(a,b,p): Computes the number of points on y2 = x3 + ax + b:

ecnopts(a,b,p): Prgm: DelVar x, aa, bb, xtm, ct: a -> aa: b -> bb: 0 -> fla: x^3 + aa*x 
+ bb -> f(x): 0 -> ct: For I, o, p-1: mod(f(i), p) -> xtm: If xtm = 0 Then: 1 -> fla: End 
If: jacobi(xtm, p): If k = 1 Then 1 + ct -> ct: EndIf: End For: If fla = 0 Then 2*ct -> ct: 
Else: 2*ct – 1 -> ct: EndIf: Disp “Total Points:” : Disp ct: Disp “Does Not Include O” : 
Disp “The Point At Infinity.” : EndPrgm

2. jacobi(a,b) returns 1 if a is a quadratic residue mod b and -1 if a is not:

jacobi(a,b): Prgm: mod(a, b) -> a: If a = 0 Then: 1 -> k: Goto stpe: EndIf: 0 -> ta[1]: 
1 -> ta[2]: 0 -> ta[3]: -1 -> ta[4]: 0 -> ta[5]: -1 -> ta[6]: 0 -> ta[7]: 1 -> ta[8]: 1 -> k: 
Lbl stp3: 0 -> v: While mod(a,2) = 0: 1 + v -> v: a/2 -> a: EndWhile: If mod(v,2) = 1 
Then ta[mod(b,8) + 1]* k -> k: EndIf: If mod(a,4) ≠1 and mod(b,4) ≠ 1 Then: -1*k -> k: 
EndIf: abs(a) -> r: mod(b, r) ->a: r -> b: If a = 0 Then: Goto stpe: EndIf: Goto stp3: Lbl 
stpe: Disp k: EndPrgm

3.  ecptsnew(a,b,p) produces a complete list of points on y2 = x3 + ax + b:

ecptsnew(a,b,p): Prgm: ClrIO: DelVar x, ff, ep, cut, fla, kk, nnn: Disp “Number of 
points? “: Request “Enter p – 1 for All”, nn: expr(nnn) -> nnn: a -> aa: b -> bb: 
randMat(nnn,2) -> ep: x^3 + aa*x + bb -> ff(x): 1 -> j: 0 -> jj: 0 -> cnt: 0 -> fla: While j 
< nnn + 1 and jj < p: mod(ff(jj),p) -> xtm: If xtm = 0 Then: 1 -> fla: EndIf: jacobi(xtm, 
p): jj + 1 -> jj: If k = 1 Then: sqrtmdpm(xtm, p): jj – 1 -> ep[j,1]: “±” & string(rot[1]) -> 
ep[j,2]: Disp “A Point Is:”: Disp “(“ & string(ep[j,1]) & “,” & ep[j,2] & “)” : j+1 -> j: 
cnt + 1 -> cnt: Pause: EndIf: EndWhile: cnt -> ct: If fla = 0 Then: 2*cnt -> cnt: Else: 
2*cnt – 1 -> cnt: EndIf: randMat(2, ct) -> ecp: For I, 1, ct: ep[i,1] -> ecp[1, i] : ep[i,2] -
> ep[2,i]: EndFor: 0 -> anw: Disp “Matrix Without ± ?”: Disp “Enter 1 if Yes, 0 if No”: 
Input anw: If anw = 0 Then: Goto stpf: EndIf: 1 -> I: 1 ->j: randMat(2,cnt) -> ecpm: 
While i ≤  cnt: ecp[1,j] -> ecpm[1,i]: abs(expr(ecp[2,j]) -> ecpm[2,i]: If ecpm[2,i] = 0 
Then: Goto stpe: EndIf: i + 1 -> i : ecp[1,j] -> ecpm[1,i]: p – abs(expr(ecp[2,j])) -> 
ecpm[2,i]: Lbl stpe: : i + 1 -> i : j + 1 -> j: EndWhile: Lbl stpf: epT -> ep: Disp “Points 
Are In Variable ecp”: Disp “And ecpt (if requested””: Disp “Total Points:” Disp cnt: If 
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nnn ≥ p – 1 Then: Disp “Does Not Include O” : Disp “The Point At Infinity.” : EndPrgm
A listing for the TI-89 program sqrtmdpm() can be found in [3].
4. ecsump(r,s,a,b,p): Finds the sum of points r and s on y2 = x3 + ax + b where r = 
[x1,y1] amd s = [x2,y2]:

ecsump(r,s,a,b,p): Prgm: DelVar xone, yone, xtwo, ytwo: r[1,1] -> xone: r[1,2] -> 
yone: s[1,1] -> xtwo: s[1,2] -> xtwo: If [xone, yone] = [∞,∞] Then: [mod(xtwo,p), 
mod(ytwo,p)] -> sm: Goto stpe: EndIf:  If [xtwo, ytwo] = [∞,∞] Then: [mod(xone,p), 
mod(yone,p)] -> sm: Goto stpe: EndIf: mod(xone,p) -> xone: mod(yone,p) -> yone: 
mod(xtwo,p) -> xtwo: mod(ytwo,p) -> ytwo: mod(a,p) -> a: mod(b,p) -> b: If xone = 
xtwo and (yone = p-ytwo or ytwo = p-yone) Then: [∞,∞] -> sm: Goto stpe: EndIf: If 
xone ≠ xtwo Then: mod((ytwo-yone)*modinv(mod(xtwo-xone,p),p),p) -> λ : mod(λ^2-
xone-xtwo,p) -> xthree: mod((xone-xthree)*λ –yone,p) -> ythree: [xthree,ythree] 
-> sm: Goto stpe: EndIf: If xone = xtwo and yone ≠ 0 Then: mod((3*xone^2+a)
*modinv(2*yone,p),p) -> λ: mod(λ^2-xone-xtwo,p) -> xthree: mod((xone-xthree)* λ-
yone,p) -> ythree: [xthree,ythree] -> sm: Goto stpe: EndIf: If xone = xtwo and ytwo 
≠  0 Then: mod((3*xtwo^2+a)*modinv(2*ytwo,p),p) ->  λ : mod(λ^2-xone-xtwo,p) -
> xthree: mod((xone-xthree)* λ-ytwo,p) -> ythree: [xthree,ythree] -> sm: Goto stpe: 
EndIf: If xone = xtwo and yone = ytwo and yone = 0 Then: : [∞,∞] -> sm: Goto stpe: 
EndIf: Lbl stpe: Disp sm: EndPrgm
A listing for the TI-89 program modinv() can be found in [4].
5.  mdexpec(ba,e,n,a,b). Here ba = [x1,y1].  This program finds the value of e∙ba = 
e∙[x1,y1] modulo n on y2 = x3 + ax + b (mod n) using a form of modular exponentiation:

mdexpec(ba, e, n, a, b): Prgm: [∞,∞] -> z: ba -> m: While e ≠ 0: diva(e,2) -> d: If d[1,2] 
= 1 then ecsump(z,m,a,b,n): sm -> z: EndIf: d[1,1] -> e: ecsump(m,m,a,b,n): sm -> m: 
EndWhile: Disp z: EndPrgm
A listing for the TI-89 function diva can be found in [4].

6.  eclog(ba,s,a,b,p): Finds logba(s) via direct search, where logba(s) is the smallest 
“exponent” lg having lg∙ba ≡ s (mod p) on the curve y2 = x3 + ax + b:

eclog(ba,s,a,b,p): Prgm: DelVar lg, tm: 1 -> lg: If ba = [∞,∞] Then: If s = [∞,∞] Then: 
Goto stpe: Else: Disp “Log Does Not Exist”: Goto stpf: EndIf: : EndIf: If ba = s Then: 
Goto stpe: EndIf: ba -> tm: While lg ≤ p+1+2*ceiling(√(p)): ecsump(ba,tm,a,b,p): lg 
+ 1 -> lg: sm -> tm: If tm = s Then: Goto stpe: EndIf: EndWhile: Lbl stpe: Disp “Log 
Is:” : Disp lg: Lbl stpf: EndPrgm

7.  ecorder(c,a,b,n,pr): Finds the order of c = [x1,y1] in Epr(a,b) where y2 = x3 + ax + b 
and pr >3 is a prime.  The number of points in Epr(a,b) must be known to be n:

ecorder(c,a,b,n,pr): Prgm: factors(n): n -> t: For i,1,j: t/p[i]^e[i] -> t: 
mdexpec(c,t,pr,a,b): z -> a1: While a1 ≠[∞,∞]: mdexpec(a1,p[i], pr,a,b): z -> a1: t*p[i] -
> t: EndWhile: EndFor: Disp “Order Is:” : Disp t: EndPrgm
A listing of the TI-89 program factors() can be found in [2].
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8. ecnoptsh(a,b,p): computes the number of points in Ep(a,b) using the Hasse bounds 
(see [5] ):   p + 1 – 2 √(p) ≤ #( Ep(a,b)) ≤ p + 1 + 2√(p)  :

ecnoptsh(a,b,p): Prgm: DelVar tmp, ba, gcn, ysq, gc, pr2, ho, hi, rr, orde: int(2*√(p)
) -> pr2: p+1-pr2 -> ho: ho -> hok: p+1+pr2 -> hi: 1 -> gc: 0 -> trls: Lbl stp1: If trls ≥ 
5 then ecnopts(a,b,p) : Stop: EndIf: rand(p-1) -> r: r -> rr: mod(r^3+a*r+b,p) -> ysq: 
jacobi(ysq,p): If k = -1 Then: Goto stp1: EndIf: sqrtmdpm(ysq,p) rot[1] -> tm: [rr,tm] -> 
ba: eclog(ba, [∞,∞], a,b,p): lcm(lg,gc) -> gcn: gcn -> gc: int(hi/gcn) -> hig: int(hok/gcn) 
-> hog: hig – hog -> tmp: If tmp = 1 Then: If gcn = hok or gcn = hi Then: gcn -> orde: 
Goto stpe: ElseIf gcn > hok and gcn < hi Then: gcn -> orde: Goto stpe: ElseIf hig*gcn > 
hi Then: hog*gcn -> orde: Goto stpe: Else: hig*gcn -> orde: Goto stpe: EndIf: Else: 1 + 
trls -> trls: Goto stp1: EndIf: Lbl stpe: Disp “Order Is:” : Disp orde: EndPrgm

If we prefer to use Maple© we can code each of these (with the exception of jacobi 
since Maple already has a built-in jacobi function) as Maple 16 procedures:
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We now describe a basic form of elliptic curve encryption based on the ElGammal 
cryptosystem [5].  For this, we follow the discussion in [1].  We begin with a plaintext 
message M encoded as the x-coordinate of the point PM which lies on the curve y2 = x3 
+ ax + b (mod p).  We choose a point G on the curve whose order n in Ep(a,b) is a large 
prime number.  Both Ep(a,b) and G are made public.  Each user (Alice and Bob) selects 
a private key nA and nB and forms the public keys PA = nAG and PB = nBG. If Alice (A) 
encrypts PM to send to Bob (B), she chooses a random positive integer k < n and sends 
Bob the ciphertext pair of points:
PC = { kG , (PM + kPB )}.  Upon receiving the ciphertext message PC , Bob recovers the 
original plaintext PM via the computation:
( PM + kPB ) – [nB (kG)] = ( PM + knBG) - [nB (kG)] = PM .
Note that a cryptanalyst would know G and also kG (which appears in PC), so if he 
could find k from this information, he could decode PM + kPB (because he also knows 
PB) as follows:  (PM + kPB) – kPB = PM .  Finding k from G and kG is the elliptic curve 
discrete logarithm problem: logG (kG) = k which is considered to be a computationaly 
intractable problem for large values of k and a “generator” point G with large order n. 
The encoding and decoding schemes are implemented on the TI-89 as:

ecencryp(pm,pb,ge,k,a,b,p): Prgm: mdexpec(ge,k,p,a,b): z -> kg: mdexpec(pb,k,p,a,b): 
z -> kpb: ecsump(pm, kpb, a,b,p): sm -> pmkpb: Disp “Encrypted P Is:” : Disp “kg = “: 
Disp kg: Disp “pmkpb =” : Disp pmkpb: EndPrgm

ecdecryp(kg, pmkpb, nb, a, b, p): Prgm: mdexpec(kg, nb, p, a, b): z -> nbkg: mod(-
1*nbkg[1,2],p) -> nbkg[1,2]: ecsump(pmkpb, nbkg, a, b, p): sm -> pm: Disp “Plaintext 
Point Is:” : Disp pm: EndPrgm

Example 1 (TI-89).
We use p = 653 and y2 = x3 – 7x + 145 .  We’ll encode the letters A—Z by the scheme:
A = 1, B = 2, …, Y = 25, Z = 0.  For Alice to encode the message “BFF” to send to  
Bob, we see that BFF corresponds to ciphers 266.  To check that 266 is the x-coordinate 
of a point on the elliptic curve, define f(x) = x3 – 7x + 145, so that f(266) = 18819379 ≡ 
572 (mod 653).  So y2 ≡ 572 (mod 653) and sqrtmdpm(572, 653) gives 35 as a square 
root of 572 modulo 653.  Note that is 572 were not a quadratic residue modulo 653 
we might do a simple shift of the encoding of the letters, such as (for example) A = 
2, B = 3 …, Y = 0, Z = 1, or see the method first  proposed by Koblitz on page 174 of 
[5].  We will use (266, 35) as our message point: PM = (266,35).  To find the order of 
E653(-7, 145) we run ecnopts(-7,145,653) to obtain 650 total points (including O, the 
point at infinity).  For a generator point we may chose a random value of x, 0 ≤ x ≤ 
652.  For example, if x = 0 then f(0) = 145 and sqrtmdpm(145,653) gives 168.  Running 
ecorder([0,168], -7, 145, 650, 653) yields an order of 650 for this point.  Although 650 
is not a prime, using the “generator” point G = [0,168] will serve our purpose for  this 
small example.  If Bob’s secret key is nB = 97, then his public key is PB = nBG, so that:
PB = 97 • [0,168].  For this computation we employ: mdexpec([0,168],97,653,-7,145) to 
obtain  PB = [349,254].  If Alice’s random number k (which she selects) is k = 243, then 
the encrypted message which Alice sends to Bob can be obtained by:
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ecencryp([266,35], [349,254], [0,168], 243, -7, 145, 653) to produce the ciphertext pair: 
kg = [268,62] and pmkpb = [101,258], or PC = [ [268,62] , [101,258] ].  Now Bob may 
decrypt PC by using ecdecryp(kg, pmkpb, nb, a, b, p) which in our example is:
ecdecryp([268,62], [101,258], 97, -7, 145, 653).  This outputs the plaintext point PM as 
[266, 35].  So the message is in the x-coordinate, which is 266 which we map back into 
“BFF”.

Using Maple 17, encryption and decryption procedures are given by:

Example 2 (Maple 16)
We use the prime p = 9883 and y2 = x3 +765x + 871.  We encode the letters A – Z by 
the shift scheme: E = 1, F = 2, G = 3,… C = 0, D = 1.  The message which Alice will 
send to Bob is “LIKE” which corresponds to plaintext ciphers as 8571.  To check that 
8571 is the x-coordinate of a point on the elliptic curve we define: f:=-> x3 +765x + 
871. Then modp(f(8571), 9883) gives 5791.  Then msqrt(5791, 9883) produces the y-
coordinate which is 3277, so our message point PM is [8571, 3277].  To find the order 
of the group E9883 (765, 871), we run ecnopts(765, 871, 9883) which gives 9827.  For 
a “generator” G we choose a random x,  0 ≤ x ≤ 9883.  For example, if x = 7 then 
modp(f(7), 9833) gives 6569 and then msqrt(6569, 9883) yields the y-coordinate which 
is 2813.  Our prospective G is [7, 2813].  Next we find the order of G in the group 
E9883 (765, 871) by running ecorder([7, 2813], 765, 871, 9827, 9883) which produces  
“order is 9827”.  As an alternative to find the order we may run eclog([7, 2813], [∞,∞], 
765, 871, 9883) which produces “log is 9827”.  This alternate method does not require 
knowledge of the order of E9883 (765, 871) but may run longer than ecorder.  If Bob’s 
secret key is nB = 873, then his public key is PB = nBG, so that:
PB = 873 • [7, 2813].  For this computation we use: mdexpec([7, 2813], 873, 9883, 765, 
871) to obtain  PB = [7516, 1555] which is Bob’s public key.  If Alice’s random number 
k (which she selects) if k = 2477, then the encrypted message which Alice sends to Bob 
can be obtained by: ecencrypt( [8471, 3277], [7516, 1555], [7, 2813], 2477, 765, 871, 
9883).  This produces the ciphertext pair: PC = [ [4225, 3276], [27, 203] ].  Now Bob 
may decrypt PC by using ecdecryp(kg, pmkpb, nb, a, b, p) which in our example is:
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ecdecryp([4225, 3276], [27, 203], 873, 765, 871, 9883).  This outputs the plaintext point 
PM as [8571, 3277].  So the message is in the x-coordinate, which is 8571 which we 
map back into “LIKE”.

It should be clear that the programs presented here are intended for demonstration 
purposes and only as a learning tool.  For real applications the prime should be 100 
or more digits.  Our TI-89 programs can handle (without excessive waits) 3 or 4 digit 
primes and the Maple procedures can handle up to 5 or 6 digit primes only.  Clearly 
we need better algorithms to deal with more realistic applications of elliptic curve 
cryptography.   However this basic introduction should give you a reasonably good idea 
of  how it works.
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