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1 Introduction

The tracking of objects traveling in R3 has several applications. Government agencies
such as the Missile Defence Agency’s Aegis Ballistic Missile Defense System have
developed anti-ballistic missile weapons to defend against projectiles1. NASA’s Near-
Earth Object Program tracks the location of some objects in space that may pose a
threat to earth2. Even television stations, like FOX and NBC, have used technology
to track the position of a puck during hockey games3,4. Our aim here is to describe
a method that allows one to track and recover an object’s position in R3 using 2D
photographic images.

There are several different ways by which 3-dimensional information can be conveyed
and recovered via flat, 2D images. For example, anaglyphs combine two images of
a single object taken from slightly different perspectives using different colors (see
Figure 1a). By using properly oriented “3D glasses”, the images are filtered and
processed independently by each eye. The combination of the images in the brain
gives rise to a 3-dimensional effect.

(a) Hyperboloid anaglyph (red-cyan) (b) Icosahedron stereoscopic image

Figure 1: Examples of flat “3D images”

A different, but similar, method of producing 3D images involves simply placing the
two images of an object side by side. The observer is then forced to align his vision
(usually in the form of being “cross-eyed,” merging the two images into a third 3D
image) properly to achieve the desired effect (see Figure 1b).

Both of the examples mentioned above have a common feature. To achieve a 3-
dimensional effect, they required the use of two images taken of the same object from
slightly different perspectives. If one were interested in tracking the path of an object
traveling in R3, this might suggest that one must photograph the object in flight from
two different positions simultaneously. The tracking method outlined in this paper

1http://www.mda.mil/system/aegis_bmd.html
2http://neo.jpl.nasa.gov/
3http://dl.acm.org/citation.cfm?id=618415
4http://usatoday30.usatoday.com/sports/columnist/mccarthy/2008-05-11-McCarthy_

N.htm

2

[ 284 ]

 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

25th ANNIVERSARY International Conference on Technology in Collegiate Mathematics 

www.ictcm.com[284]



(a) Michie Stadium (b) Parrot drone

Figure 2: Setup items

shows that this is not always necessary. By using the sun and a football field, we can
recover 3-dimensional data from a single image.

2 Setup

We begin with a list of the necessary items:

• a standard, commercially available digital camera with a tripod,

• a football field,

• Mathematica (Excel or some other CAS can also be used), and

• a flying object to track.

We used Michie Stadium (see Figure 2a) in West Point, NY as our setting. Ideally,
the camera should be placed on some bleachers overlooking the field. The reason
for this is that the lines on the field will serve as reference points to be used in our
computations.

In our particular setup, for our flying object we utilized a Parrot quad rotor drone5

(see Figure 2b). An exact duplicate of the Parrot drone is not necessary for this
activity. The only major requirement of the object to be tracked is that it should be
large enough to be photographed from a distance.

5http://www.brookstone.com/parrot-ar-drone-2-quadricopter
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3 Formulas

In this section, we develop the formulas needed to convert between the 2-dimensional
coordinates of an object in a photographic image and its 3-dimensional position. Note
that in the process, we make several assumptions about idealized cameras and rays
of light. The subsequent section will give an example application of this process from
beginning to end.

Suppose that an idealized camera is is placed at a point �q in R3 facing an object (see
Figure 3). By an idealized camera, we mean the following:

• the camera occupies a single point in space,

• there is no length to the camera’s lens, and

• light rays striking the camera sensor are not distorted or bent in any way, i.e.,
no pinhole or barrel distortion.

�q

Figure 3: Initial camera position

After photographing the object, suppose that a semitransparent copy of the photo-
graph is held at the right distance and tilt so that the image and the background are
indistinguishable from the camera’s perspective (see Figure 4). The vector �p corre-
sponds to the direction and distance from �q to the center of the photograph.

Before proceeding, we need to choose an orientation for the plane corresponding to
the photograph. This is done by selecting two perpendicular unit vectors, �u and �v,
in the plane of the photograph so that �u×�v points in the direction of −�p (see Figure
4). These vectors describe the tilt about �p when the photograph was taken and they
serve as the basis of a 2-dimensional coordinate system for the photographic image.

The vectors �q, �p, �u and �v are known as the camera vectors. It may sound counterin-
tuitive at first, but only seven distinct parameters are needed to completely describe
all four camera vectors. Both �q and �p require three parameters each. Once these
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�q

�p

�u

�v

Figure 4: Semitransparent image with camera vectors

two vectors are known, since �u is a unit vector restricted to the plane of the pho-
tographic image, it is completely determined by a single additional parameter. It
follows immediately from the above discussion that �v is completely determined by
�u.

Once the camera vectors are known, we are ready to convert between 3-dimensional
positions in R3 and a 2-dimensional coordinate system in the image with basis �u and
�v.

3.1 3D to 2D

Let �a be the 3-dimensional position of an object of interest (see Figure 5). By as-
sumption, there is a light ray that travels in a straight line between �a and �q that is
parallel to

�m = �a− �q. (1)

This light ray passes through the plane of the photographic image.

Let �h be the vector projection of �m onto �p (see Figure 5). That is,

�h =

(
�m · �p
||�p||2

)
�p. (2)

It follows that the vector �m−�h is perpendicular to �h and forms a right triangle with
�m playing the role of the hypothenuse. Using similar triangles, we see that

�w =
||�p||
||�h||

(�m− �h) (3)

is parallel to �m − �h and it is contained in the plane of the photographic image (see
Figure 5). In particular, it points from the center of the photographic image to the
intersection point of the plane and the line segment traced out by �m.
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�m
�h

�m− �h
�a

�q

�p

�w

Figure 5: Projection of �a onto the photographic image

To complete the conversion from 3D to 2D, we need to decompose �w as a linear
combination of the vectors �u and �v. Since �u and �v are unit vectors, we must simply
compute the dot products

s = �w · �u and t = �w · �v. (4)

We can now use the point (s, t) as our 2-dimensional coordinate for the projection of
�a onto the photographic image.

3.2 2D to 3D

In this situation, we assume that we have the 2-dimensional coordinates (s, t) from
the photographic image as in (4). Our goal is to reconstruct the position vector �a
from the previous section.

Using the 2-dimensional coordinates (s, t), we see that the location of the point on
the photographic image in R3 is given by �q+ �p+ s�u+ t�v. This means that �a must lie
on the line

L(r) = �q + r(�p+ s�u+ t�v) (5)

where r ∈ R. Unfortunately, this is not enough information to determine �a, as there
are an infinite number of choices for the value r.

There are a few ways to overcome the difficulty mentioned above. If two images
were made of the same object from different perspectives, then one could find �a by
determining the intersection of two nonparallel lines created by applying (5) to two
different sets of camera vectors and 2-dimensional photographic image coordinates.
Alternatively, if the height of the object at �a is known, then the value of r could be
computed by setting the z-component of (5) equal to the known height of the object
(assuming that L(r) is not parallel to the xy-plane).

The intent here is to avoid having to use two cameras and to assume nothing about
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Figure 6: Initial image of the football field

the position of the object. In the next section, we show how we can overcome the
difficulty of only having a single photographic image by using the sun.

4 Implementation

Figure 6 shows an example of a typical image containing the Parrot drone in flight.
(Note that the red circle in the image has been inserted to highlight the location of
the Parrot drone on the lower right portion of the image.) We would like to find the
3-dimensional location of the drone given nothing more than this image. To do so, we
must first find the camera vectors associated with this image so that we can compute
(5) using (1), (2), (3), and (4).

In practice, it can be difficult to know the camera vectors �q, �p, �u, and �v before a
photograph is taken. Careful measurements can be made after fixing the camera’s
location in R3, but this is not necessary. One way to determine the camera vectors is
to photograph a background with known reference points whose positions in R3 can
be easily determined. In our case, we used a football field to accomplish this.

First we choose a 3-dimensional coordinate system to describe the position of any
photographed object in R3. We took the origin to be at the center of the football
field at a height that is in the horizontal plane intersecting the sidelines of the field.
It is not obvious from Figure 6, but the football field is “crowned,” meaning that the
center of the field is raised to allow for better water drainage. Therefore, our origin
actually lies below the center of the field of play. Figure 7a shows an overlay of our
choice of coordinate system on the football field in R3. The positive x-direction is
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(a) 3D coordinate system (b) 2D coordinate system

Figure 7: Initial image with different coordinate systems

taken to go from left to right, the positive y-direction is taken to go away from the
camera, and the positive z-direction is taken to go upwards towards the sky.

Next we chose a 2-dimensional coordinate system that is specific to the image from
Figure 6. Figure 7b shows an overlay of our choice of coordinate system on the
photographic image. In this case the origin is simply located at the center of the
image. The positive x-direction is taken to go from left to right and the positive
y-direction is taken to go from the bottom to the top of the image.

We are now ready to begin the process of calibrating the image, that is, determining
the camera vectors for that particular image. To do this we select some points on
the image whose coordinates can be easily found in both the 2D and 3D coordinate
systems selected. For example, since a regulation college football field is 160 feet
across, the 50 yard sideline on the far side of the field in Figure 6 is located at the
point (0, 80, 0) (units are in feet). In the photographic image, the same point is located
at the point (−51, 347) (units are in pixels). We can combine these two coordinates
into the single 5-tuple (−51, 347, 0, 80, 0).

Repeating this process multiple times gives us a list of n 5-tuples

(s1, t1, x1, y1, z1), . . . , (sn, tn, xn, yn, zn).

The objective is then to find the seven parameters determining the camera vectors
that best approximate (si, ti) given (xi, yi, zi) for i = 1, . . . , n. More precisely, we
want to find the seven parameters determining the camera vectors that minimize the
sum of squared differences

E =
n∑

i=1

(ŝi − si)
2 +

n∑
i=1

(t̂i − ti)
2

where (ŝi, t̂i) is the predicted value of (si, ti) using (4) when given (xi, yi, ti) for i =
1, . . . , n. By importing such 5-tuples into Mathematica, this can be accomplished
using the FindMinimum function.

Having estimated the camera vectors, we can now use the 2D coordinate of the
Parrot drone in Figure 6, along with (5), to create a 3-dimensional line L1(r) that
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Figure 8: Shadows cast by a goal post and the Parrot drone

passes through the camera’s location �q and the Parrot drone’s position in R3. As was
mentioned in Section 3.2, knowing the formula for L1(r) is not enough to determine
the drone’s 3-dimensional position.

Figure 8 shows an image of a goal post taken at about the same time as Figure 6. The
shadows in the image all roughly form similar triangles with the object that produced
them because all of the sun rays striking the the field are essentially parallel. On large
scales this is not true, but since we are working over a fairly localized area, we assume
that all sun rays in the image are parallel.

We can now use the known dimensions of the goal post (these are not all standard)

and the location of the of the goal post’s shadow to find a 3-dimensional vector �f that
is parallel to the sun rays in the image. The reader might wonder how the location
of the mentioned shadow can be found in R3. This goes back to the discussion in
Section 3.2 which states that if the height of the desired object is known, 0 feet in
the case of a shadow on the field, then the 2D to 3D conversion can be determined
using only a single line. If we let q3, p3, u3, and v3 stand for the z-components of the
camera vectors �q, �p, �u, and �v, respectively, then it follows that when (5) is evaluated
at

r =
q3

p3 + su3 + tv3
,

we obtain the position of a shadow on the field in R3. From this we can compute
the vector �f as the difference between the goal post’s and its corresponding shadow’s
position. The above procedure can also be used to find the location of the Parrot
drone’s shadow in R3. Together with �f , we can construct a second line, L2(r), passing
through the Parrot drone’s location in R3.

9
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Due to errors associated with the estimation of the camera vectors and the 2D posi-
tions of objects in Figure 6, L1(r) and L2(r) may not intersect. The Parrot drone’s
location is therefore estimated using a two-step procedure. First we minimize the
function

F (r1, r2) = ||L1(r1)− L2(r2)||, (6)

which computes the distance between the two lines. This can be done in Mathematica.
We then estimate the Parrot drone’s position as given by the point

L1(r
′
1)− L2(r

′
2)

2
(7)

where (r′1, r
′
2) is the absolute minimum of (6). Geometrically, (7) represents the

midpoint of the shortest line segment connecting L1(r) and L2(r).

5 Conclusion

The goal of this paper was to demonstrate a relatively inexpensive method for de-
termining the location of an object moving in R3 using a single photographic image.
The mathematics involved did not exceed material covered in typical multivariable
calculus and linear algebra course. This suggests that this activity could be applied
in a undergraduate level class. For more advanced students, those interested in image
recognition could take this activity one step further, automating the detection of the
object of interest. Many options exist, giving educators a wide range of choices, from
basic applications of geometry to more open-ended projects.
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