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The Saint Petersburg Paradox is a well known illustration ofhow the psychology of risk 
and reward can diverge from the underlying mathematics. In the standard game a fair coin 
is tossed repeatedly until the first head occurs. The payoff is $1 ifthe game terminates in 
one flip, $2 ifin two flips, $4 if in three, and so on, doubling the payoff for each additional 
flip required to obtain the first head. The basic analysis of the game is a straightforward 
computation involving expected value, which turns out to be infmite (despite the fact that 
few individuals are willing to pay more than a few dollars to play). When one looks more 
closely at the game from the standpoint of the likelihood of making a profit after many 
repeated plays, however, more complex and interesting questions and computations arise. 
We use Maple to investigate these and other questions relating to the Saint Petersburg 
Paradox. This approach sheds some light on the nature ofthe paradox, because the human 
psychologyofrisk is often connected more closely to the probability ofloss, rather than the 
somewhat more involved notion of expected value. The computations associated with 
finding exact probabilities are intractable enough that the computational power ofMaple 
is a necessity. We also use Maple in our investigations to simulate repeated plays of the 
game, and check these against the theoretical probabilities. The mathematics and Maple 
used is at the level of an undergraduate special project. 

For the standard game, with a payoff of $2 n-I when the first head occurs on the n-th flip, 
we may easily find the expected payoff as: 

1 1 1 1 .. 1 "'1
1(-) + 2 ( -) + 4 ( -) + 8(-) + . .. = L 2n 

1 (-) = L - ,
2n2 4 8 16 n=O n=O 2 

which is a divergent series. Hence the expected value is considered to be infinite. The 
paradox is that few people are willing to pay more than a few dollars to play this game, 
even after the expected value computation is presented. The question is why the human 
psychology of the game is so far from the mathematics. 

For example, compare the game with the following: With a cost to play of $8, flip a fair 
coin repeatedly until the first head is obtained. If the first head is obtained on the n-th flip, 
the payoff is: 

Forn= 1,2,3,4,5: $ 0; 
For n = 6, 7,8 : $ 16; 
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For n = 9, 10, 11 : $ 28; 

For n = 12, 13, ... 18 : $ 400; 

For n = 19,20,21,22 : $ 40,000; 

For n = 23,24,25,26,27 : $ 4,000,000; 

Forn> 27: $ 50,000,000; 


Comparing this with the doubling payoffs of the St. Petersburg game, starting with $1, 

shows that this game is vastly less favorable to the player. However, thousands ofpeople 

choose to play the mathematical equivalent of this modified game every day. It is a 

representation of4 plays of the Georgia Lottery Power Ball Game in which 5 numbers are 

chosen from 1 - 59, plus one "powerball" number from 1 - 35. 


Many explanations that have been offered to explain the paradox. I shall focus on 

estimating the likelihood of a profit after N plays of the game, for a fixed cost to play per 

game, with assistance from Maple. 


First we load the packages we shall use. 


> restart: 

> with(RandomTools); with(plots); with(Statistics): 


Using the built in Random Variable features ofMaple we can simulate play very efficiently. 


> X:= RandomVariable(Geometric(.5)); 
> Sample(2/\X,10); 

[1., 4., 8., 2., 4., 2., 1., 2., 1., 2.] 

Finding the average return per play for the simulation is a simple computation. 

> ExpAve := N -> add( Sample(2/\X-1,N)[i], i=l..N)1N + 1: 
> ExpAve(100); 

5.250000000 
> ExpA ve( 500); 

5.552000000 
> ExpAve(1000); 

6.822000000 

We see that the growth in average payoff appears to be slow. For larger numbers ofgames 
the speed ofthe simulation can be increased by dividing into groups of 100. We define the 
procedure: 

> ExpAveBig := proc(N::integer) description "find an experimental average payoff 
for N plays of the game, computed in groups of 100"; 

Fl := floor(N/1 00); Temp := 0; 
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for j from 1 to FI do Temp := ( 100*G-l)*Temp + add(Sample(2/X-l,100)[i], 
i=1..100) + 100 )/(100*j) end do; 

if modp(N,100)<>0 then (FI*100*Temp +ExpAve(N-100*FI)*(N - FI*100»/N else 
Temp end if; 

end proc; 

> st:= timeO: ExpAveBig(100000); timeO - st; 
8.609750000 

41.984 

Thus we find that simulating 100,000 plays of the game requires roughly 42 second of 
Maple computing time, and yields an average payoff of only 8.6 . A reasonable question 
is how typical these average payoffs are. We can simulate 20 size 1000 sessions. 

> seq(evalf[5](ExpAveBig(1000»,i=1..20); 
7.6230,6.4400,4.9190,6.0950,8.6553,4.4740, 3.9030,8.5857,26.872, 4.3150,10.311, 

6.4820,4.1770,4.5820, 5.4460, 5.8840, 6.0260, 6.2260, 4.5850, 13.099 

It appears that it will take a large number ofplays to recoup our losses, even when paying 
as little as $1°per play. We can graph the behavior of the simulated average payoff over 
time for 10000 plays. 

>N 10000; Values := Sample(2A X,N): RunningA verage := i -> add«V aluesfjD,j= 1. j)/i: 
pointplot( {seq([n,RunningAverage(n)],n=l..N)}); 
> 

10 

e 
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The simulations serve to show: 

1) How unstable the behavior of the typical average payoff per game appears to be. 

2) How small the typical average payoff per game appears to be, even for large n. 

3) While the expectation is infinite, making a profit appears to be relatively unlikely, even 

for paying modest amounts to play. 


We will now focus on examining the likelihood of profit. That is, for various costs per 

play, how does the probability of achieving a particular average payoff change as the 

number ofgames increases. First consider the exact probability ofearning a total ofat least 

M after N plays of the game. From this we can easily compute the probability that the 

average payoff exceeds various amounts. 


Let P(M, N) be the probability of a gross total payoff of at least M after N games are 

played. Hence for N > 1 we have 


P(M, N) = (~) P (M - 1, N 1) + (~)P (M 2, N - 1) + (~)P (M 4, N - 1) + ... 
2 	 4 8 

1
and P(M, 1) = 	k' where k = ceil (log2 M). 


2 


This recursive relationship is easily implemented in Maple. 

> MaxM:= 512; MaxN:= 100; 
> for m from 1 to MaxM do CompProb(m,l) := 1/(21\(ceil(1og[2](m)))) end do: 

for n from 2 to MaxN do 
for m from 1 to MaxM do 

CompProb( m, n) := add( CompProb(m-2I\i,n-l)/(21\(i+l)) ,i=O..(ceil(1og[2](m))-I) 
)+ 1/(2I\ceil(1og[2](m))) 

end do: 
end do: 

And so we have some sample values: 

>[evalf( CompProb(32,4) ),evalf( CompProb(256,3 2) ),evalf( CompProb(256,64) ),evalf( Co 
mpProb(512,32))]; 

[0.1262207031,0.1551353768,0.5582247605,0.06451659038] 

We can define the average payoff likelihood function: 

ProbAve(A, N) = Prob( average payoffis at least A after N plays) = P(A N , N) , 
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and implement it in Maple. 

> ProbAve := (m,n) -> CompProb(m*n,n); 

We may now, for example, examine how likely it is to earn an average payoff ofat least 10 
as N increases. 

> Average := 5; for i from 1 to 10 do lO*i, evalf(probAve(Average,10*i)) end do; 
Average:= 5 


10, 0.2508370436 

20,0.2978779218 

30, 0.3183649276 

40,0.3476678720 

50,0.3657424617 

60,0.3792860107 

70, 0.3934439328 

80,0.4081270388 

90,0.4226036559 

100,0.4353082165 

Unfortunately, the growth of the numbers makes an exact approach unproductive. For 
asymptotic behavior we will use the Central Limit Theorem. For convenience we will let: 

the number ofplays ofthe game = N = 2 n, for some integer n, 
and 

the minimum desired average payoffper game = M = 2 m, for some integer m. 

Now for i = 1, 2, ... , N = 2 n let 

Xi = payoff of the i-th game. 

-
Hence, if X is the sample mean for these N random variables we have: 

Unfortunately, since each X i has an infinite mean, the Central Limit Theorem cannot be 
used directly. For each i = 1,2, ... , N = 2 n we let: 

m 2n my. = x., if X. <2n
+ ; X. 

I 
= + , otherwise 

I I I 
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- -

-
Letting Y be the sample mean of these N random variables yields: 

P(X ~ 2m) ::: P(XI + ... +XN ~ 2fl+m) ::: P(Y + ... + YN ~ 2fl+m) =P(Y ~ 2m)
1 

Each Y i has a finite mean and variance which are easily computed as: 

J.l=n+;+2, cr2:::3(2fl+m-l)_(n+m:2)2+2. 

Using these values, setting up the normal approximation in Maple, and adjusting for when 
M and N are not powers of2, gives: 

> NormalApprox := (M, N) -> Probability( RandomVariable(Normal(O, 1)) > (M ­
(ceil(log[2] (M*N))+ 2)12)/sqrt( ( 3*2A(log[2]( ceil(M*N))-I) - ( (log[2]( ceil(M*N))+ 2Y2 
+ 2 )/4 ) 1N ) , 'numeric' ); 

In general, the normal approximation is considered appropriate for N > 30, and to be best 
near the mean. Before working more with the approximation, we examine the distribution 
we're approximating for N = 100. 

> N:= 100 Max floor(500/N): DistCheck i-> 
CompProb(N*i,N)-CompProb(N*(i+IIN),N) :pointplot( {seq([n,DistCheck(n)],n=I ..Max, 
IIN)}); 
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For N = 100 and M =4, the nonnal approximation has a mean of5.5, which is to the right 
ofthe maximum value of the actual distribution. Hence, because our probabilities are for 
the likelihood of exceeding a particular average value, we would expect the nonnal 
approximation to be higher than the actual value. We can see this by comparing: 

> NonnaIApprox(4,100); evalf(ProbAve(4,100)); 
0.7348778558 
0.6298449494 

Ifwe do place a small amount of trust in the nonnal approximation, work near the mean, 
and treat the computations as providing a very rough estimate, then we may approximate 
the number of games needed to raise the probability of a profit to at least.5 . Recall that 

.. I n+m+2 h h b fwe have t he mean 0 f our approximatmg nonna as , were t e num er 0 
2 

games = N = 2 n, and the desired average payoffper game is M 2 m. Using the nonnal, 
we have that the probability ofbeing above the mean is .5 . Hence, for a fixed value of 
M = 2 m, the number of games, N 2 n required to raise the probability above .5 occurs 
when: 

n+m+2
2mM = > 

2 

This is easily solved for n to produce: 

n > 2m + 1 m - 2 

Hence, based on this approximation, the number ofgames required to raise the probability 
of a profit to around .5, when paying M = 2 m per play is around: 

2n 2 2m l 4MN = = + m 2 :::: 

Unfortunately, it is impossible to check this approximation against exact values because 
N grows so quickly. It does, however, shed some light on the paradox. Many people's 
reactions to the claim that, in the long run, they would make money paying any amount to 
play (based on the infinite expected value) is to question how long that would take, since 
large payoffs are rare. In fact, based on this analysis, it would take a very long time. For 
example, ifpaying $25 per play, and using Maple to streamline the game playing (at a 
rate of 1000 games per second) we would need to play continuously for approximately: 
> evalf«4"25)/(l000*60*60*24*365)); 

35702.05184 
YEARS, in order to at least break even, with a probability around .5 . 
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So, in some sense, there is no St. Petersburg paradox. The intuition that it would take an 

unacceptably long time to realize a profit is correct. Of course, it is worth remembering 

that this analysis is based on our normal approximation, which certainly deserves a better 

justification. This will be the subject of future research. 


We close with several interesting variations on the St. Petersburg Paradox. The original 

version ofthe game can be modeled by making repeated draws, with replacement, from an 

urn with one red and one green ball. Ifthe n-th draw is the first time a green is drawn, then 

the payoff is 2 n • 1. By modifying these rules we may produce several other games. 


For each of the following: 

I) The urn begins with one green and one red ball. 

2) Each drawing is a single ball and done with replacement. 

3) Drawing continues until the first green ball is drawn from the urn. 

4) The payoff is simply the number ofdraws (no doubling ofpayoff values). 

Now consider the following games:. 


Game A: 

Each time a red ball is drawn (and so the game does not end), one green ball is added to the 

urn, in addition to the replacement of the red ball drawn. 


GameB: 

Each time a red ball is drawn (and so the game does not end), one red ball is added to the 

urn, in addition to the replacement of the red ball drawn. 


GameC: 

Each time a red ball is drawn (and so the game does not end), it is replaced, but no other 

balls are added to the urn. 


Before reading on, purely from an expected value standpoint, what preference order do 

these games have and how much would you be willing to pay to play each? 


Game A: These conditions yield a probability function of: P (n) == 
n 

, where n 
(n + 1)! 

is the number of draws the game lasts. Using the series for eX yields an expected value 

average payoff still only rises to $2.10. 

of 
e - 1 - $1.72. Interestingly, if one doubles the payoff per draw (1,2,4,8, ... ), the 

e + 12 

~ 
4 
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Game B: These conditions yield a probability function of: P(n) = 1 , where n 
n(n + 1) 

is the number ofdraws the game lasts. The expected payoff is then the harmonic series, 
which diverges. Hence the expected value is infinite, just as it is for the St. Petersburg 
paradox. However, the average payoff growth rate here is even slower. 

Game C: This yields a probability function of: P(n) ~,where n is the number of 
2n 

draws the game lasts. Using the geometric series yields an expected value of $2.00. 
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