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ABSTRACT: The sequence recursively defined 
by ~ =1, P2 == 2, and P == 2· P - 2 for n ~ 3 is often called the Pell Sequence orn n- 1 + Pn 

Fibonacci sequence of order two. In this paper, the TI-89 and MATHEMATICA 8.0 
enable one to examine ratios of successive terms, explore divisibility and periodicity, 
furnish early prime outputs and provide algebraic proofs of palatable number tricks. 

We begin by considering the sequence 1,2,5,12,29, 70, 169,408,985, .... This 
sequence is often referred to as the Pell sequence or a Fibonacci sequence of order two. 
Observe that the initial two terms are fixed at 1 and 2. After that, each term is the sum of 
twice the previous term plus the term two places before it. To cite three early examples, 

~ =2 . ~-l + ~-2 = 2· P. + ~ = 2·2 + 1 = 4 + 1 5, 


~ = 2 . ~_I + ~-2 =2 . ~ + P2 = 2·5 + 2 10+ 2 =12 and 


Ps =2·Ps-J + Ps-2 2· ~ +~ == 2·12+5 =24+ 5 =29. 


The table below furnishes the initial twenty terms in the sequence: 

n:n: P : P :n n 

5741
1 
 1 
 11 

2 
 2 
 12 
 13860 


5 
 33461
3 
 13 

4 
 14 
 80782
12 


29 
 15 
 195025
5 

6 
 70 
 16 
 470832 

7 
 169 
 17 1136689 


408 
 2744210
8 
 18 

985 
 6625109
9 
 19 


15994428
2378 
 20
i 
 10 


Examining the table in some detail for this small data set, one is led to the following 
conjectures concerning divisibility in this sequence: 

Conjecture 1: Every even numbered term is even. 
Conjecture 2: Every fourth term is divisible by both 3 and 4. 
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Conjecture 3: Every third term is divisible by 5. 
Conjecture 4: Every sixth term is divisible by 7. 
Conjecture 5: Every seventh term is divisible by 13. 

The proofs of these conjectures are easily resolved via The Principle of Mathematical 
Induction. Let us illustrate the proof of Conjecture 3: 

Let P(n) be the proposition 51 ~.n' 


Step 1: Prove P(l) is true (This is the Basis Case): 


51 ~'l ¢::> 51 ~ ¢::> 515 ¢::> 5 ::: 5·1 which is true. 


Step 2: Assume P(k) is true (This is the Induction Hypothesis) : 


We assume 51 ~k' 


Step 3 : Pr ove that P (k ) ~ P (k +1). (This establishes the induction) : 


We prove 51 ~k ~ 51 ~(k+l) ¢::> 51 P3k' ~ 51 ~'k+3' U sin g the recursion relation 


in our sequence we observe that PH +3 ::: 2· P3.k+2 + ~'k+l ::: 2· (2 . ~'k+l + ~'k ) + ~k+l = 
4 . ~.k+l + 2 . ~k + ~'k+1 = 5 . ~'k+l + 2 . ~'k' By the Induction Hypothesis, 51 ~k ~ 512 . ~'k' 


In addition, 515 ~ 515 . ~'k+l' Since 512· ~k and 515· ~k+l ~ 51 [ 5 . ~'k+l + 2 . ~.k ] ¢::> 51 ~k+3 ¢::> 


51 ~(k+l) establishing our induction. 


Step 4: By The Pr inciple of Mathematical Induction, sin ce the statement is true for n 1, it must 


be true for n = 1+1= 2, n ::: 2 +1=3, ... i.e. "In EN. This completes the proof of our contention. 


The TI-89 illustrates a graph, Table, and Trace Values. Divisibility is achieved using the 
mod command. Consider the following screen captures in FIGURES 1-16 where the 
calculator is placed in SEQUENCE MODE: 

[f1:"11:!l, FZ. III n J~T{J1T~ f.ti." ,lfr~ J.FZOOMEdit v' All StwleAxes... 
JLOTS 
v' Ul~.- I) + ul(n ­ 2)uil . 

u2=
ui2= 
u~=ui = 
u4= 

ui4= 
1,15=

u15= 
ui1={2 1} 

FIGURE 1: The Sequence Input. FIGURE 2: The Sequence Input. 
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rf1~J: n·.I.. ZOOM 
n- TatL£ SETUP 

tblStart ••••••• III 
..tbl ••••••••••• 11. I 
Graph <-> Table OFF~ 
Independent •••• AUTO~ ,~ (Enter=~AIJ~ (ESC=CANEEL) 

lInE t [[NT(81:PK ANp [[$Cl:ci\Ncn 

FIGURE 3: The Table Setup. FIGURE 4: The Table Revealed. 

FIGURE 5: The Table Revealed. FIGURE 6: The Table Revealed. 

nMin"" 
nMa:>:<;::,,!:plotStrt=l.
plotStef?"'l.
xMln= -le.
xMax=1EJ.
xsel=l.
YMin= -1(;).
YMax=10.
ysc1=l. 

FIGURE 7: The Standard Window. 

l:"'1:!I, n·1I1·!~ ~IF F~ lV~"lIr~li.:'" ,If? ~ 1':1... ~ ZOOM Traee Regraph Math Draw... i ( 

:: 

•. 
ne:3.
xe:3. ':Ie:S. 

1 

FIGURE 8: The Third Term is 5 . 

FIGURE 9: The Zoom Fit Option. 

• 
ne:9.
xe:9. ye:985. I 

FIGURE 10: The Ninth Term is 985. 

FIGURE 11: The Zoom Fit Window. FIGURE 12: The Mod Key. 
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2. 2. 
3. e. 
4. 2. 
5. 4. 
6. e. 
7. 4. 
8. 3. 

2) 5... 0=1. 

FIGURE 13: The Sequence Input. FIGURE 14: The Table Revealed. 

lB. 3. 
11. 1.Hi: B.
rw.'---+.a~,...:--+----1----1 

16. 12. 
In=9. 

FIGURE 15: The Table Revealed. FIGURE 16: The Table Revealed. 

FIGURES 1-2 input the PeB Sequence, FIGURE 3 is the Table Setup, FIGURES 4-6 
generate the initial two dozen terms ofthe sequence, FIGURE 7 is the Standard Viewing 
Window for the sequence, FIGURE 8 is the calculator generated graph with the third 
term of the sequence displayed (5), FIGURE 9 is the Zoom Fit Option, FIGURE 10 fits 
the first ten data points to the adjusted window depicted in FIGU~ 11, FIGURE 12 
illustrates the mod command, FIGURE 13 is the input to see which terms of the 
sequence might by divisible by five, and FIGURES 14-16 give rise to our conjecture that 
every third term in the sequence is divisible by five, a fact we proved by mathematical 
induction earlier. FIGURES 14-15 also shows the periodicity of the PeB Sequence 
modulo 5 (which is of length one dozen) with the sequence of remainders being 1, 2, 0, 2, 
4, 0, 4, 3, 0, 3, 1, 0, 1,2, 0, 2, 4, 0, 4, 3, 0, 3, 3, 1, 0, .... 

Our first table illustrates the initial time the first thirty prime numbers enter the Pell 
sequence. 

Prime Term Output Value 

2 ~ 2 

3 ~ 12 

15 ~ 5 

7 ~ 70 

11 P.2 13860 

13 ~ 169 

17 . Pg 408 
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19 P20 
15994428 

23 ~2 93222358 

29 Ps 29 

31 ~o 107578520350 

37 IT. 6625109 

41 ~o 2378 

43 P44 
24580185800219268 

47 P46 
143263821649299118 

53 P27 
7645370045 

59 P20 
15994428 

61 ~I 259717522849 

67 P68 
37774750930342781945186500 

71 ~o 220167382952941249990598278 

73 ~6 21300003689580 

79 P26 
3166815962 

83 Ps4 50305164660422142002238655969020 
189 ~4 24580185800219268 

97 P48 
835002744095575440 

101 PSI 11749380235262596085 

103 ~4 3654502875938 

107 ~O8 77308816174220163766296465781233402364740 

109 ~IO 45058880117184178512984722732832363869422 

113 P28 
18457556052 

Our second table furnishes a list of the values of n yielding the prime outputs in the Pell 

sequence p" for n:::; 500 : 

p" is prime for n 2,3,5,11,13,29,41,53,59,89,97,101,167,181 and 191. 


n: Prime Output Value p" : 
2 2 
3 5 
5 29 
11 5741 
13 33461 
~560482149 


41 1746860020068409 
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53 68480406462161287469 
59 13558774610046711780701 
89 4125636888562548868221559797461449 
97 4760981394323203445293052612223893281 
101 161733217200188571081311986634082331709 
167 2964793555272799671946653940160950323792169332712780937764687561 

I 181 677413820257085084326543915514677342490435733542987756429585398537901 
191 4556285254333448771505063529048046595645004014152457191808671945330235841 

The primality of n is necessary for ~ to be prime. The converse is not valid; for 7 is 

prime, but ~ =169 =132 and hence composite. 

We next consider the ratios of successive terms in the Pell sequence. See FIGURES 17­
19 where one examines the ratio of an even-numbered term to the preceding odd 
numbered term and FIGURES 20-22 where we consider the ratio of an odd numbered 
term to the preceding even numbered term. 

1:"11'.!II Ft... III F'. J( F~'" .If !.:.s )11 Fji... )1... F A19E!bra Calc Other Pr91'1IO Clean Up 
• 13868 2.4142135516~S7'41 
.89782 2. 414213562ElE"'3346i" 
.~ 2.4142135623E195825 
• 2744218 2.4142135623(1136689 
"M'Zi~"A"g••tn":VJ 

FIGURE 17: Ratios of Successive Terms. FIGURE 18: Ratios of Successive Terms. 

2.41666666661 

2.41428571429 

• 985 2.41421568627488 
15994428 • 57412.41421356237 2.4142136248~2378 

FIGURE 19: Ratios of Successive Terms. FIGURE 20: Ratios of Successive Terms. 

2.4142135624 

2.4142135623 

2.4142135623 • 38613965 
15994428 

38613965/159944286625109/2744210 

FIGURE 21: Ratios of Successive Terms. FIGURE 22: Ratios of Successive Terms. 
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The sequence in FIGURES 17-19 is clearly increasing while the sequence in FIGURES 
20-22 is clearly decreasing. Both sequences are approaching the same number; namely 

1+.J2. This is the Golden Mean analogue of the number <I> =1+J5 ~ 1.61803398875 in 
2 

the Fibonacci sequence. This Pell sequence constant satisfies the quadratic equation 

2x =2· x +1 in much the same manner that the constant <I> =1+J5 satisfies the 
2 

quadratic equation x 2 = x +1 in dealing with the Fibonacci sequence. While the n-th 

Fibonacci number F" satisfies the Bine! F onnuls F, = ( Js )-[[t +2./5 J-[I -2./5 J] , 
the n-th Pell number ~ satisfies the Binet-like formula 

=(2.~)-[(I+.J2f -(I-.J2fl See FIGURES 23-24:Pn 

1/(2*1<2) )*( (1 +1(2) )A3-( (1-1<.. 
,"", "I, ! f 

FIGURE 23: Explicit Closed Formula. 

... »*«11-1<2 »""3-«1-1<2 »""3» 

FIGURE 24: Explicit Closed Formula. 

Our concluding activities focus on some interesting number tricks associated with this 
sequence as well as securing the prime factorizations of the first twenty-five Pell 
numbers. 

Consider the sum of any four, eight, and twelve consecutive terms in the Pell sequence. 
Let the first two terms be x and y respectively. The next terms can be secured by the TI­
89 as in FIGURES 25-27: 

,
.2'(x+2·Y)+Y 2'X+5'~ 

• 2'(169'x +408'y) + 78·x + 169'y I• 2'(2'x + 5'Y) + x + 2'Y 5·x + 12· 408'x + 985'''; 
• 2'(5'x + 12'Y) + 2'x + 5'Y 12·x + 29· • 2·(408·x + 985'y) + 169'x + 488·y i 

• 2 '(12·x + 29·Y) + 5· x +-=..;12=-,.,::;y_-=.29=-'.;.,;X_+...;.7..;;;.O--,,!' 985 . x + 2378 . 
2*ans(1)+ans(2) 2*ans(1)+ans(2) 
foI,. "I I .. ,. "I, 1 

FIGURE 25: The First Seven Terms. FIGURE 26: Terms Eight To Eleven. 

·x 
·Y 
·2·y+x x+2' • 2·(70'x + 169'Y) + 29·x + 78'Y , 

169'x+408'~ 
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2*i:lOS (1 )+aos (2) 
.. ;.~,I,I 

FIGURE 27: The Twelfth Term. 

Note that the coefficients of the terms are all Pell numbers. Now the sum of four 
consecutive terms is 

4·x+8·y
x+ y + x + 2· y+ 2·x+5· y = 4·x +8· y. Note that = x+ 2· y, the third term in the sequence. 

4 
The sum of four consecutive terms in the Pell sequence is divisible by four and the 
quotient is the third term in the sequence. See FIGURE 28 where the calculator furnishes 
a proof: 

·x+\;j+x+2·\;j+2·x+5·", 4·x + a· 
; 4·x+a·y 

x + 2· 
• 4 


FIGURE 28: A Calculator Proof. 


Next examine the sum of eight consecutive terms in the sequence and divide the sum by 
twenty-four. The quotient is the fifth term in the sequence. See FIGURES 29-30: 

·x+',I+x+2'\;j+2'x+5·\;j+5·x+ 12,,,,+ 12~ 
12e·x + 28a· .~--gm----~~.12e'x+288' 

• 128· x + 2a8· \;j 5. + 12. 5·x + 12·; 24 x ; 
)/24mFA-fit":I,..»'" ISEQ 2/" 

FIGURE 29: A Calculator Proof. FIGURE 30: A Calculator Proof. 

Finally the sum of twelve consecutive terms is divisible by 140 and the quotient is the 
seventh term in the sequence. See FIGURES 31-34: 
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",,1 i'I~:!T1 !~:" I~ n".T1 ~"', It F$ )II r,'" ,I.. ~ Algebra Calc Other PrgMIO Clean Up 

• x +.., + x + 2,,,, + 2·x + 5,,,, + 5·x + 12'''' + 12 ~ 
4868 -x + ~888 -.. 

4868·x + ~888'''' 
2~'x + 78· ..• 148 

~••'~E'llj 

4666 -x + ~888-
4868- x + ~8ee-.., 

2~-x + 78­146 
.ans (1 )1'1 . 

FIGURE 31: A Calculator Proof. FIGURE 32: A Calculator Proof . 

4869·x + ~898· 

2~-x+7e-

FIGURE 34: A Calculator Proof. 

•·rIBII__:I9BI__~~~ 
4868·x + ~8ee· 

I 4e6e·x + ~888'\;jI· 148 2~'x+78' 

FIGURE 33: A Calculator Proof. 

We conclude by securing the factorizations of the first twenty-five Pell numbers in 
FIGURES 35-49 below: 

• 1
·2 
• factor(2-2 + 1) 

• factor(2' 5 + 2) 
• factor(2' 22, 3 + 5) 

• factor(2 -2~ + 22 3) 
factor(2*ans(1)+ans(2» 
w, • , ." • 

FIGURE 35: The Prime Factorizations. FIGURE 36: The Prime Factorizations. 

r .. 
oClean Up 

24 ·3·17,57 

• factor(2·2 4 ·3·17-577 + 52'2~'26~) 
137'82~ 

• factor(2'137'82~7 + 2 4 '3'17'577)
2 . 5 . 7 . 1 ~7 ' 1 ~ 

.factor(2·2'5'7'l~7 199+ 137'8297)
37·17995 

factop(2*ans(1)+ans(2» 
", ~ •• j, I , 

factor(2*ans(1)+ans(2» 
til. ~ •• !, .. 

FIGURE 37: The Prime Factorizations. FIGURE 38: The Prime Factorizations. 
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• factor(2-37-179957 + 2-5-7-197-199) 
22_ 3 ­ 19 -29-41-5 

• factor(2-22- 3 ­ 19 -29-41-59 + 37-179957) 
5-13 2 -4569 

• factor(2-5-13 2 -45697 + 22 -3 '19-29-41-5'~ 
2-23-353-5741 

factop(2+ans(1)+ans(2» factop(2*ans(1)+ans(2» 
III., .,1, I , III, ~ •• !, ) ~ 

FIGURE 39: The Prime Factorizations. FIGURE 40: The Prime Factorizations. 

Conclusion: Fibonacci-like sequences are very amenable for discovering neat insights 
that have broadly based appeal. This paper explored some elementary ideas with the 
Fibonacci sequence of order two also referred to as the Pell sequence in the literature. 
Applications of this sequence abound. One may extend the ideas extrapolated in this 
paper by forming new conjectures associated with this and other Fibonacci-like 
sequences. For example, Neil J.A. Sloane, the founder ofthe excellent OEIS (The On­
Line Encyclopedia of Integer Sequences) presents the initial five hundred terms in this 
sequence. I have utilized MATHEMATICA 8.0 to secure the prime factorizations of all 
but one of the initial three hundred members of this sequence; namely the two hundred 
ninety-ninth which is currently in progress. A very neat application to geometry is 
manifested in the Pell sequence with regards to right triangles commonly known as 
Theon's Ladder which is the subject of a stimulating article in the College Mathematics 
Journal co-authored by a colleague ofmine with one of his top students. 

Reference: 

1. 	 Thomas J. Osler (with Shaun Giberson), Extending Theon's Ladder to any Square 
Root, The College Mathematics Journal, 35 (2004), pp. 222-226. 
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