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ABSTRACT: The sequence recursively defined
byR =1, P =2,and P, =2-P,_ +P,_, for n=3is often called the Pell Sequence or

Fibonacci sequence of order two. In this paper, the TI-89 and MATHEMATICA 8.0
enable one to examine ratios of successive terms, explore divisibility and periodicity,
furnish early prime outputs and provide algebraic proofs of palatable number tricks.

We begin by considering the sequence 1, 2, 5, 12, 29, 70, 169, 408, 985,.... This
sequence is often referred to as the Pell sequence or a Fibonacci sequence of order two.
Observe that the initial two terms are fixed at 1 and 2. After that, each term is the sum of
twice the previous term plus the term two places before it. To cite three early examples,

P=2.P +P_,=2P+P=22+1=4+1=5,
P,=2-P,_ +P,_,=2-P,+P,=2.5+2=10+2=12 and
P=2.P +P_,=2-P+P,=2-1245=24+5=29,

The table below furnishes the initial twenty terms in the sequence:

n. P, : n: P

1 1 11 5741

2 2 12 13860

3 5 13 33461

4 12 14 80782

b 29 15 195025
6 70 16 470832
7 169 17 1136689
8 408 18 : 2744210
9 985 19 6625109
10 2378 20 15994428

Examining the table in some detail for this small data set, one is led to the following
conjectures concerning divisibility in this sequence:

Conjecture 1: Every even numbered term is even.
Conjecture 2: Every fourth term is divisible by both 3 and 4.
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Conjecture 3: Every third term is divisible by 3.
Conjecture 4: Every sixth term is divisible by 7.
Conjecture 5: Every seventh term is divisible by 13.

The proofs of these conjectures are easily resolved via The Principle of Mathematical
Induction. Let us illustrate the proof of Conjecture 3:

Let P(n) be the proposition 5| P,,.

Step 1:Prove P(1) is true (T his is the Basis Case):

5|, < 5|P, 5|5 5=5-1which is true.

Step 2: Assume P (k) is true (This is the Induction Hypothesis):

We assume 5| P,

Step 3: Prove that P(k)=> P(k+1).(This establishes the induction):

We prove 5| B, = 5| Py & 5| P, = 5| P,,;. Usin g the recursion relation

k+1

in our sequence we observe that Py, ;=2-P,, ,+P,, =2-(2-P,+P,)+R,, =

4-P,+2-B,+PF,,,=5F,,,+2-B,. Bythe Induction Hypothesis, 5| B, = 5|2-P,.
In addition, 5|5=5|5-P,,,. Since 5|2-B,, and 5|5-P,,,, = 5|[5- Py, +2 P, © 5| Py &

5| Py, establishing our induction.

Step 4: By The Principle of Mathematical Induction, since the statement is true for n=1, it must

be true for n=1+1=2 n=2+1=3,...ie. Vne N. This completes the proof of our contention.

The TI-89 illustrates a graph, Table, and Trace Values. Divisibility is achieved using the

mod command. Consider the following screen captures in FIGURES 1-16 where the
calculator is placed in SEQUENCE MODE:
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FIGURE 1: The Sequence Input. FIGURE 2: The Sequence Input.
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FIGURE 12 The Mod Key.
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FIGURE 15: The Table Revealed. FIGURE 16: The Table Revealed.

FIGURES 1-2 input the Pell Sequence, FIGURE 3 is the Table Setup, FIGURES 4-6
generate the initial two dozen terms of the sequence, FIGURE 7 is the Standard Viewing
Window for the sequence, FIGURE 8 is the calculator generated graph with the third
term of the sequence displayed (5), FIGURE 9 is the Zoom Fit Option, FIGURE 10 fits
the first ten data points to the adjusted window depicted in FIGURE 11, FIGURE 12
illustrates the mod command, FIGURE 13 is the input to see which terms of the
sequence might by divisible by five, and FIGURES 14-16 give rise to our conjecture that
every third term in the sequence is divisible by five, a fact we proved by mathematical
induction earlier. FIGURES 14-15 also shows the periodicity of the Pell Sequence
modulo 5 (which is of length one dozen) with the sequence of remainders being 1, 2, 0, 2,
4,0,4,3,0,3,1,0,1,2,0,2,4,0,4,3,0,3,3,1,0, ..

Our first table illustrates the initial time the first thirty prime numbers enter the Pell
sequence.

Prime | Term| Output Value
2 P, 2

3 P, 12

5 P, 5

7 P, 70

11 B, 13860

13 P, 169

17 - B, 408
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19 | P, | 15994428

23 | B, |93222358

29 | B |29

31 | B, | 107578520350

37 | P, |6625109

a1 | p, | 2378

43 | B, |24580185800219268

47 | P, |143263821649299118

53 | B, |7645370045

59 | B, |15994428

61 | B, |259717522849

67 | B, |37774750930342781945186500

71 | B, |220167382952941249990598278

73 | B, |21300003689580

79 | P, |3166815962

83 | B, |50305164660422142002238655969020
89 | B, |24580185800219268

97 | B, |835002744095575440

101 | B, |11749380235262596085

103 | B, | 3654502875938

107 | B, | 77308816174220163766296465781233402364740
109 | B, |45058880117184178512984722732832363869422
113 | B, | 18457556052

Our second table furnishes a list of the values of » yielding the prime outputs in the Pell
sequence P, for n<500:

P is prime for n=2, 3, 5,11, 13, 29, 41, 53, 59, 89, 97, 101, 167, 181 and 191.

n: | Prime Output Value P, :
2 |2

3 153

5 129

11 | 5741

13 ] 33461

29 | 44560482149

41 | 1746860020068409
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53 | 68480406462161287469

59 | 13558774610046711780701

89 |4125636888562548868221559797461449

97 |4760981394323203445293052612223893281

101 | 161733217200188571081311986634082331709

167 | 2964793555272799671946653940160950323792169332712780937764687561

181 | 677413820257085084326543915514677342490435733542987756429585398537901

191 | 4556285254333448771505063529048046595645004014152457191808671945330235841

The primality of » is necessary for P, to be prime. The converse is not valid; for 7 is

prime, but P, =169 =13’ and hence composite.

We next consider the ratios of successive terms in the Pell sequence. See FIGURES 17-
19 where one examines the ratio of an even-numbered term to the preceding odd
numbered term and FIGURES 20-22 where we consider the ratio of an odd numbered
term to the preceding even numbered term.
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FIGURE 17 Ratlos of Successive Terms. FIGURE 18: Ratios of Successnve Terms.
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FIGURE 19: Ratios of Successwe Terms. FIGURE 20 Ratlos of Successive Terms.
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FIGURE 21: Ratios of Successive Terms. FIGURE 22: Ratios of Successive Terms.
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The sequence in FIGURES 17-19 is clearly increasing while the sequence in FIGURES
20-22 is clearly decreasing. Both sequences are approaching the same number; namely

1+\/§
2

1++/2. This is the Golden Mean analogue of the number ® = ~1.61803398875 in

the Fibonacci sequence. This Pell sequence constant satisfies the quadratic equation

1+J§
2

x? =2.x+1 in much the same manner that the constant ® = satisfies the

quadratic equation x* = x+1 in dealing with the Fibonacci sequence. While the n-th

J5 2 2

the n-th Pell number P, satisfies the Binet-like formula

P = [5-1\5”(1 +V2) -(1-42) } See FIGURES 23-24:

Fibonacci number F, satisfies the Binet Formula F, = [-I—J [1 + \/5} - (1 - \E] ,
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FIGURE 23: Exphclt Closed Formula. FIGURE 24: Explicit Closed Formula.

Our concluding activities focus on some interesting number tricks associated with this
sequence as well as securing the prime factorizations of the first twenty-five Pell
numbers.

Consider the sum of any four, eight, and twelve consecutive terms in the Pell sequence.
Let the first two terms be x and y respectively. The next terms can be secured by the TI-

89 as in FIGURES 25-27:
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FIGURE 25: The First Seven Terms. FIGURE 26: Terms Elght To Eleven.
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FIGURE 27: The Twelfth Term.

Note that the coefficients of the terms are all Pell numbers. Now the sum of four
consecutive terms is

4.x+8-y

X+y+x+2-y+2-x+5.-y=4-x+8.y. Note that =x+2-y, the third term in the sequence.

The sum of four consecutive terms in the Pell sequence is divisible by four and the
quotient is the third term in the sequence. See FIGURE 28 where the calculator furnishes
a proof:
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FIGURE 28 A Calculator Proof.

Next examine the sum of eight consecutive terms in the sequence and divide the sum by
twenty-four. The quotient is the fifth term in the sequence. See FIGURES 29-30:
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FIGURE 29: A Calculator Proof, FIGURE 30: A Calculator Proof.

Finally the sum of twelve consecutive terms is divisible by 140 and the quotient is the
seventh term in the sequence. See FIGURES 31-34:
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FIGURE 33: A Calculator Proof. FIGURE 34: A Calculator Proof.

We conclude by securing the factorizations of the first twenty-five Pell numbers in
FIGURES 35-49 below:
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FIGURE 35: The Prime Factorizations. FIGURE 36: The Prime Factorizations.
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FIGURE 37: The Prime Factorizations. FIGURE 38 The Prlme Factomzatlons.
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FIGURE 39 The Prime Factorizations. FIGURE 40: The Prime Factorizations.

Conclusion: Fibonacci-like sequences are very amenable for discovering neat insights
that have broadly based appeal. This paper explored some elementary ideas with the
Fibonacci sequence of order two also referred to as the Pell sequence in the literature.
Applications of this sequence abound. One may extend the ideas extrapolated in this
paper by forming new conjectures associated with this and other Fibonacci-like
sequences. For example, Neil J.A. Sloane, the founder of the excellent OEIS (The On-
Line Encyclopedia of Integer Sequences) presents the initial five hundred terms in this
sequence. | have utilized MATHEMATICA 8.0 to secure the prime factorizations of all
but one of the initial three hundred members of this sequence; namely the two hundred
ninety-ninth which is currently in progress. A very neat application to geometry is
manifested in the Pell sequence with regards to right triangles commonly known as
Theon’s Ladder which is the subject of a stimulating article in the College Mathematics
Journal co-authored by a colleague of mine with one of his top students.
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