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I. INTRODUCTION 

Differential equations (DEs) play a prominent role in today’s industrial setting.  Many physical 

laws describe the rate of change of a quantity with respect to other quantities.  Since “rate of 

change” is simply another phrase for derivative, these physical laws may be written as DEs.  For 

example, Newton’s Second Law of Motion states that the rate of change of momentum of an 

object is equal to the sum of the imposed forces.  Normally this is written as 

,maF m  

where F  represents the total imposed force.  However, if we let x  denote the position of the 

object, then this may be rewritten as 

.xmF &&m  

Hence, Newton’s Second Law of Motion is a second-order ordinary differential equation.  There 

are many applications of DEs.  Growth of microorganisms and Newton’s Law of Cooling are 

examples of ordinary DEs (ODEs), while conservation of mass and the flow of air over a wing 

are examples of partial DEs (PDEs).  Further, predator-prey models and the Navier-Stokes 

equations governing fluid flow are examples of systems of DEs.  Many introductory ODE 

courses are devoted to solution techniques to determine the analytic solution of a given, normally 

linear, ODE.  While these techniques are important, many real-life processes may be modeled 

with systems of DEs.  Further, these systems may be nonlinear.  Nonlinear systems of DEs may 

not have exact solutions.  However, we still desire some type of “solution”.   

 

There are many numerical techniques to obtain an approximation to the solution of a DE or 

system of DEs.  Many scientific packages contain library commands to numerically approximate 

the solution of these.  In particular, MATLAB contains the ode45 command which will 

numerically approximate the solution to a system of ODEs using a medium order method.  Thus, 

the scientific package MATLAB may be used to explore DEs modeling real-world applications 

that are more complicated than the DEs presented in a typical introductory course.  Using 

MATLAB also has the advantage that the internal command guide may be used to create 

graphical user interfaces (GUIs) to help facilitate this exploration.  The GUIs ensure that the 

students are not bogged down with reading and understanding MATLAB code. 

 

In this paper, we will discuss how to use MATLAB to simulate the solution to DEs.  Then 

projects the author has assigned involving real-world applications of DEs will be described.  One 

project models the industrial process of film casting while the other models the conduction of 

heat within a one-dimensional rod.  Similar projects will also be briefly described.  Finally, 

student feedback from the projects will be given. 
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II. SIMULATING SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS IN 

MATLAB 

MATLAB provides many commands to approximate the solution to DEs: ode45, ode15s, and 

ode23 are three examples.  Suppose that the system of ODEs is written in the form 

,,' yfy tf  

where y  represents the vector of dependent variables and f  represents the vector of right-hand-

side functions.  All of the commands (e.g., ode45) require three arguments: 

 a filename which returns the value of the right-hand-side vector f , 

 vector representing the domain of the independent variable t , 

 set of initial conditions. 
 

Consider the DE that models driven, damped spring motion. 

Fxxx F22 x2x&&&  

Figure 1 contains a portion of the MATLAB code used to numerically approximate the solution 

to this DE. 

 
Figure 1: MATLAB code. 

 

Some notes are in order here. 

 The internal commands ode45, ode15s, etc. only accept first-order DEs. 

 Many higher-order DEs may be transformed into systems of first-order DEs. 

 The order of the formal arguments in SpringMass is important. 

 T represents the values of the independent variable t generated by ode45. 

 Each row in X represents the value of X corresponding to the associated time value in T. 

 

Once the solution is obtained, the output may be displayed via the internal command plot; frills 

may be added as needed.  Figure 2 contains the portion of code used to display the 

approximation. 
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Figure 2: MATLAB code used to produce the display of the approximation. 

 

The natural next step is to provide students with this code and ask questions.  For example, one 

could ask students what is the effect of changing the damping coefficient.  In order for the 

students to answer this question, they are required to determine the line(s) in the code where the 

damping coefficient is defined, appropriately change those, and rerun the code.  This process 

demonstrates a drawback to using this approach: it is difficult for the students to read and 

understand code.   

 

One solution to this problem is the use of GUIs.  They provide a means of introducing students 

to scientific packages without entirely involving the students within the code.  Instead of 

expecting students to modify code, they may simply edit text and click a button.  The required 

calculations are then accomplished for the students without being visible.  The MATLAB 

internal command guide is the GUI development interface.  It enables simplified arrangement 

and sizing of GUI components as well as auto-generation of code for these components.  

Examples of GUI components would be push buttons, axes, sliders, pop-up menus, among 

others.  Figure 3 displays an example GUI for the spring-mass system.  

 

  
Figure 3: Example GUI for the spring-mass system. 
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The students may change the quantities by simply typing the new value in the edit text boxes and 

rerun the code by pressing the push button.  With this GUI, it is easier for students to answer 

questions related to changing system parameters.  Now the students may explore the particular 

model by being provided with the GUI and some auxiliary files.   

 

III. PROJECTS 

Students enrolled in an introductory ordinary differential equations course were grouped up and 

given different projects.  Each project involved an industrial process that may be modeled by 

DEs.  The students were asked to understand the process, why it is useful, how the process is 

modeled, and to present their results at a conference.  There were four main thrusts of the 

projects. 

 Expose students to a real-world process 

 Expose students to a scientific software package (MATLAB) 

 Demonstrate the need for numerical schemes 

 Gain experience in public speaking via presentation of their results 
 

IV. FILM CASTING 

Today’s society has in great abundance products that are made from polymers: clothing made 

from synthetic fibers, plastic bags, food wrap, and disposable diapers are among the most 

common examples.  It has become imperative for today’s manufacturers to understand the 

processes used to make these products as fully as possible.  The processes involve complex fluid 

flow of a molten polymer, governed by systems of DEs. 

 

Film casting is an industrial process in which fluid (molten polymer) is extruded from a 

rectangular die of thickness 0e  and length 0l , at a temperature 0T , and a velocity 0u .  Please see 

[1], [3], [6], [9] – [12], and [13] for a detailed description of the process.  The fluid is then 

stretched in the air due to the constant pulling force F  of the chill roll, located at a distance of L  

from the die.  The film is then cooled on this chill roll to solidify the fluid.  The film casting 

process is shown in Figure 4. 

 

             
Figure 4: Schematic of the film casting process. 

 

237



The five dependent variables of the flow are length l , velocity u , pulling force F , temperature 

T , and thickness e .  Under certain assumptions, the equations governing this process may be 

given as follows. 

 

This is a system of five first order nonlinear ODEs.  Further, while the initial conditions for 

length, velocity, temperature, and thickness are simply those at the die exit, the initial pulling 

force 0F  is not known a priori.  The numerical technique of shooting is used to determine the 

value of 0F .  As opposed to attempting to solve this system analytically, it would be better to 

numerically approximate the solution using a numerical package (e.g., ode45).   

 

Code was written that will numerically simulate the solution to these equations given a set of 

parameters.  Moreover, a GUI was designed so that students were required to only edit the 

parameters.  Figure 5 displays the GUI provided to the students as well as a typical solution 

profile.  Students were asked to change the set of parameters and to determine the effect the 

change had on the solution.   

 

 
Figure 5: GUI and typical solution profile for the film casting problem. 
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V. HEAT CONDUCTION IN A ONE-DIMENSIONAL ROD 

The manner in which heat is transferred within a one-dimensional rod may be modeled with a 

PDE.  We assume an initial temperature distribution and desire to know how heat is conducted 

within the rod as time evolves.  The PDE that models heat conduction may be given by 
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where k  is the thermal diffusivity (see [8]).  We assume that the initial temperature distribution 

is prescribed and that the temperature at the ends of the rod ( 00x  and Lx L ) are given.  Hence 

the boundary and initial conditions are 
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Since this is a PDE, the suite of ODE solvers in MATLAB are inappropriate.  Hence, we choose 

to numerically approximate the solution to this PDE via the finite difference method (FDM).  See 

[8] for a rough description of the FDM.  The FDM first takes the continuous domain in the xt -

plane and replaces it with a discrete mesh, as shown in Figure 6. 

 

 
Figure 6: Example of a FDM mesh. 

 

Next, the partial derivatives in the PDE itself are replaced with approximately equivalent 
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mj

m

j txuu u , choose to approximate 
t

u

t

u
 with a forward 

difference and 
2

2

t

u

t

2

 with a centered difference, we obtain the following finite difference 

equation. 
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Code was written to solve the finite difference equation and display the results.  Once the code 

was working properly, a GUI was designed to allow students to numerically approximate the 

solution for a given parameter set.  Figure 7 shows the GUI as well as a solution profile for a 

parameter set. 

 
Figure 7: GUI and solution profile for heat conduction in a one-dimensional rod. 

 

Students were asked to change the initial condition and the thermal diffusivity to determine the 

effect on the solution profile. 

 

VI. FIBER SPINNING PROJECTS 

Two projects involved the industrial process of fiber spinning (see [2], [4], [5], [7], and [14])..  In 

this process, an axisymmetric stream of polymer melt is extruded from a spinneret containing 

thousands of capillaries.  The spinneret may be thought of roughly as a shower head.  The 

polymer melt is then drawn continuously by the take-up rolls.  Along the length of the stream, 

there is a region where cooling air is applied.  This process is illustrated in Figure 8. 
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Figure 8: Schematic of the fiber spinning process. 

Depending upon the processing parameters, the polymer may enter a semi-crystalline phase 

where the structure of the molecules of the polymer cannot change.  One project explored fiber 

spinning excluding the semi-crystalline phase, while the other project considered both phases.  

Both processes are governed by systems of nonlinear ordinary differential equations. 

 

VII. WAVE PROPAGATION PROJECT 

The final project explored the propagation of waves on a taut string (see [8]).  This process is 

governed by the following PDE. 
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Here c  represents the propagation speed of the wave.  The following boundary and initial 

conditions are enforced. 
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Figure 9 displays the GUI provided to the students as well as an example solution profile. 

\ 
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Figure 9: GUI and solution profile for wave propagation on a taut string. 

 

Students were asked to change the initial displacement of the string and the propagation speed to 

determine the effect on the solution profile.   

 

VIII.  STUDENT FEEDBACK 

Student response from these projects differed between the objectives of the projects.  Student 

responses were generally positive about exploring real-world applications of DEs and the 

experience gained in public speaking.  However, the responses were generally mediocre for the 

numerical schemes and the exposure to MATLAB.  Many students were surprised that DEs 

modeling real-world applications could not be solved analytically.  Overall, the students gave the 

projects positive reviews and considered them a success. 
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