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I.   Introduction 

 

As teachers and researchers in mathematics we often need to solve equations. The linear 

and quadratic equations are easy. There are formulas for the cubic and quartic equations, 

though less familiar. There are no general methods to solve the quintic and other higher 

order equations. There are a host of numerical solutions to solve these equations and other 

nonlinear equations as well. The disadvantage is that we need to relearn these methods and 

we need to program these algorithms in our computers before they can be implemented.  

 

But oftentimes, we only need approximate solutions, and we need them fast, without 

recourse to programming the problems into our computers, or running them through our 

spreadsheets. We just need quick, simple, but nontrivial solutions to our equations. Here is 

where the hand-held calculator is most useful. With it, we can approximate roots of 

polynomial and nonpolynomial equations alike, using readily available algorithms derived 

from well-known classical methods. In this talk, we will discuss the bisection algorithm, 

the linear interpolation, Newton’s method, and Horner’s method, time permitting.  The 

error analysis for these methods is also available that we can approximate roots to any 

predetermined level of accuracy.   In this talk we will provide some examples on the use of 

several approximation methods implemented on the hand-held calculator. We will just use 

a simple scientific calculator for calculation. A graphing calculator would be an added 
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bonus for a quicker solution, but not required in the following. We will close the talk with 

some discussion of the rates of convergence and error estimates for each of the methods 

used, and make a passing comment on complex roots, when they exist. 

  

   

II.   Classical methods 

  

A. The bisection method 

 

Let the function  be continuous on an interval containing a and b, a < b, 

and such that  Then, has at least one solution c,  

That is, we know from the intermediate-value theorem that a continuous function has a root 

where the y-value changes sign from a to b; in particular, an odd-order polynomial always 

has at least one real root. 

 

We decide in which half of the interval [a, b] the root lies by computing f at the midpoint of 

the interval, and picking that intermediate point where it differs in sign from either a or b. 

After n iterations, the root c’ is within the interval  , where the error from the exact 

root c is   The number of approximating steps n is taken to be the 

smallest integer that satisfies the inequality: 

  . 

 

Example:  Find the root of    to an accuracy of 0.01. In this example, 

so that a = 1, b = 2, and E = 0.01. Then   The 7 

iterations are: 

  

  

 ] 

  

  

  > 0, . 

 

And ; therefore, c = 1.74, to within 0.01. 
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B. Linear interpolation 

 

Given the same conditions as in A above, if we connect the points  and 

 by a straight line, then the x-intercept of the line is a close approximation to the 

root c of the equation  

 

 

 

 
 

    Figure 1. Linear Interpolation 

 

 

By similar triangles, we find c: 

 

   
 

or,   

 

This linear interpolation is also known as the method of regula falsi (false position), since 

the straight line is not truly the graph of  f(x). The process may be iterated by using c as the 

endpoint of a new interval, where a new line may be drawn and a new x-intercept found. 

Each new interval usually adds a new decimal place to the approximation. 
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Figure 2:  The method of regula falsi 

 

 

Example:  The same example above, accurate to within 0.001. 

Here,  and  Then 

  , ,  

               

; 

     
          

 
 

Since  and , and  

we take our approximate root c = 1.746, correct to within 0.001. 

 

Remark: A straightforward approximation of the root may be obtained by successive 

subdivision of the interval [a, b], but one must be prepared to do a great deal of calculations 

[Sullivan, 2008]. Using the example above,   

Here, with a =1 and b = 2. 

Now, subdivide the interval [1, 2] into 10 equal intervals and calculate f  at each new 

endpoint: 

  

  

             

  

             

             

  

              Stop! The root lies in [1.7, 1.8]. 

 

Subdivide this interval and calculate f: 

             

  

               

  Stop! The root lies in [1.74, 1.75]. 

 

Subdivide this interval again and calculate f: 

  

               

  Stop! The root is 1.746, correct to within 0.001. 
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C. Newton’s method    

 

The two previous methods depended on two values of  f  at two values of  x, and 

these values must be opposite in sign. Newton’s method depends on one value of  f  and one 

value of its derivative  f’ at the same value of  x.       

 

The equation of the tangent line to the curve  at x =  is given by: 

  . 

 

The x-intercept of the tangent line is taken as the approximation to the root  of  

 

  . 

 

Assuming the derivative does not vanish, we may iterate the procedure and get an 

improved approximation: 

   

 
   Figure 3:  Newton’s method 

 

 

Example:  Find one root of    to an accuracy of   

The function has 3 real roots; we will just find that one in the interval [2, 3], that is, we 

know that  f(2) < 0 and  f(3) > 0. Let the initial approximation be   Write the 

iteration formula as , and simplify: 

   

           . 

 

This method has a quadratic convergence, that is, the number of accurate decimals doubles 

at each iteration, so that we only need to iterate 4 times: 

262



 

   

   

   

   

   
 

The approximation is accurate to 8 places for:  

 f(2.23843900) = -0.0000038  and  f(2.23843901) = 0.00000065. 

 

And the solution is, therefore,  which gives an f  closer to 0 than the 

other value. 

 

Remarks:  (i) Although our examples were polynomial equations, all three methods really 

work for both polynomial and nonpolynomial equations. 

(ii) The first two methods require the root to be isolated by a change of sign in f; Newton’s 

method does not need this, but f  must be differentiable. There are other subtle requirements 

for  f  for the method to work, but for most functions encountered, Newton’s method works. 

(iii) The accuracy of the methods discussed can be arbitrarily set and is mostly limited by 

the patience of the worker or the display capacity of the calculator used. 

 

    

III.  Convergence and error 

 

The rates of convergence for the classical methods illustrated above are well-known. For 

the bisection method, the error at the nth step can be no more than  where [a, b] 

is the original interval containing the solution c. The speed of convergence is represented 

by the logarithmic expression for n, the number of steps needed to yield the prescribed 

accuracy. 

 

For the linear interpolation, the rate of convergence is shown to be ‘linear’, that is, the error 

at one step is roughly a constant multiple  (between 0 and 1) of the error at the previous 

step. This is considered slow convergence. In contrast, Newton’s method has a ‘quadratic’ 

rate of convergence, that is, the number of correct number of decimal places doubles at 

each step. This is considered rapid convergence. Error estimates for both the linear 

interpolation and Newton’s method have been found by advanced calculus. Expressions 

for error bounds may be found in the references, as well as other more refined techniques of 

approximating the roots.   

 

. 

 

V. On complex roots 

 

There are a number of standard methods for dealing with equations with complex roots. 

But when the polynomial has exactly one pair of conjugate roots, then the method is 

straightforward. We illustrate with an example [Dobbs and Hanks, 1992]. 
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Example: Find all the roots of  to an 

accuracy of  

For the real roots, by Descartes’ rule of signs, we know that f  has 1 negative root and 1 or 

3 positive roots. Using the derivative of  f, we can show that there is only 1 positive root: 

   

           
 

This expression is always > 0 for x > 0, so that  f  has only 1 positive root. Thus, the degree 

4 polynomial f (x) has 2 real roots (1 negative, 1 positive) and 2 complex (conjugate) roots. 

 

Using any previous method discussed, the real roots are 1.0496 and 0.7345, 

correct to 4 decimal places. To find the complex roots: 

 

   
 

By division,              , 

whose roots are:  

 

Write f  in factored form:  

   
 

where the  are the true roots. Then 

                          
  

or,   

 

Compute   by DeMoivre’s theorem, approximate   and 

get:   

 

with the same error estimate for  

 

  

IV. Conclusion 

 

When we encounter equations whose roots cannot readily be found, numerical methods are 

always available. And when we want fast, reliable, and nontrivial methods, the hand-held 

calculator can be very useful, suitable for polynomial and nonpolynomial equations alike.  

The techniques discussed here are quick and simple, and do not require any programming, 

with a minimum of button pushing. Their rates of convergence are rapid enough, and the 

order of precision can be set to any desired accuracy. Their ready availability is their most 

attractive feature.   
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