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Introduction

We present a project that we use in the laboratory component of our second semester
biocalculus course at Benedictine University. Computer technology is used through-
out both semesters of biocalculus. We use a combination of Maple, Excel, and Berke-
ley Madonna in first semester. In the second semester, we add MATLAB. The project
we present here is an investigation of models of logistic growth with harvesting using
Maple. The project presented here is one of eight to ten projects assigned during
the second semester of biocalculus. Other sample activities from both semesters are
available on the author’s web site:

hittp://www.ben. edu/faculty/tcomar/

The Logistic Model: A First Semester Project
Toward the end of the first semester, the students complete a project that addresses

the logistic population model,
dN N
Y (1 - E) , (1)

dt

where 7 is a growth parameter, and K is the carrying capacity of the population,
which is the maximal population size that can be sustained in the environment. The
focus of the discussion is on understanding the interpretation of this differential equa-
tion and how to analyze it graphically. At this stage, students Maple to obtain plots
of solution curves, direction fields, phase planes, and plots of solutions obtained by
Euler’s method. Through the use of phase planes and phase line analysis, students
develop a conceptual and geometric understanding equilibria and basic stability anal-
ysis.

The Logistic Model with Harvesting

In the second semester of the biocalculus course sequence, we revisit the logistic model
and consider what happens when the population undergoes harvesting. The modified
model takes the general form

dN N .
il rN (1 - 7{—) — harvesting rate. (2)
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The project investigates several different basic functions for the harvesting rate. We
use H to denote the harvesting parameter. The units of H depend on the particular
rate function. The studied harvesting rate functions are H (constant rate of harvest-

ing), HN (constant effort harvesting), and (a type II functional response).

N+5
Biological questions that the students investigate are the following: (1) What is the

biological interpretation of each of these three harvesting rate models? (2) Are the
models realistic? If so, under what conditions are they realistic? If not, explain why
not. (3) What model is the most realistic? Two other questions that involve both the
biology and the mathematics are the following: (4) At what levels of harvesting will
the population be sustained? (5) How does the dynamics of the system change when
the harvesting parameter H varies? The first of these two questions can be used using
stability analysis of equilibria. Graphical techniques for this analysis were introduced
through the first semester project. In this second semester project, students learn
an analytical technique for the stability analysis. The second question reinforces the
concept of a parameter introduced earlier in the first semester biocalculus course.
Here, the students will be able to observe that different values of H lead to different
dynamical behavior. Through this second question, students are introduced to ele-
mentary bifurcation analysis.

Investigating The Model with Maple
We now illustrate how we can use Maple to help analyze the model and create useful
figures. We focus our attention on the constant harvesting model, which is given by

%/- - rN<1—%)—H. 3)

Step 1. Open a new Maple worksheet and load the DETools and plots packages with
the commands:
with(DETools ):with(plots):

Step 2. The equilibria are the solutions for N to the equation
dN
= rN(1-¥)-H =0 (4)

To do this in Maple, type the following command:
solve(r * N x (1 - N/K) — H = 0, N);

Maple outputs the two equilibria:
17K+ Vr?K? —4rHK 1vK — Vr?K?2 —4rHK
2 T "2 T

From the above expressions for the equilibria, we can determine that there are two
equilibria if H < rK/4, is one equilibrium if H = rK /4, and are no equilibria if




H >rK/4. Set 7 = 0.1 and K = 100 for the remainder of this activity. In Maple,
enter:

r:=0.1:K:=100:

Step 3. Let f(N) =7N (1 - N/K)— H, and let N* be one of the equilibrium values
of N. The stability criterion states that if f'(N*) <0, then N* is locally stable and
if f'(N*) > 0, then N* is unstable. The criterion does not apply if f'(N*) =0. To
apply the stability criterion, we first compute fI(N):

d N
W(TN(I‘E> ‘H>’
0.1 —0.002N

We now evaluate f'(N) = 0.1 — 0.002N at the equilibrium
N*=(rK + Vr*K? — 4rHK)/(2r):
VIR? —
3ubs(N=%rK+ rI:' drHK

,0.1 — 0.002N);

—0.01v100 — 40H

The case H > 2.5 is the case in which no equilibrium exists. This quantity is zero in
the case that H = 2.5, and hence the stability criterion does not apply. The quantity is
negative if H < 2.5 in which case the equilibrium N* = (rK+VriK? — 4rHK)/(2r).
is locally stable. Note that the two expressions for the equilibria are equal when
H = 2.5. Using similar analysis, the other equilibrium is seen to be unstable of
H < 2.5. The value H = 2.5 is called a bifurcation value because the dynamical
behavior of the system changes as H passes through 2.5.

Step 4. We now create a dynamic phase portrait so that we can perform phase line
analysis of the differential equation (3) as the parameter H varies. In the Maple
worksheet we proceeds as follows:

Click on the Components tab and then select the Plot component. Now select the
Slider component. Right-click on the plot window and select Component Properties
to verify that it is named “Plot0”. Click on . Right-click on the Slider and check
Component Properties to verify that the slider is named “Slider0”. Update the Slider
values as follows:

Value at Lowest Position 0
Value at Highest Position | 600
Current Position 0

Spacing of Major Tick Marks | 100
Spacing of Minor Tick Marks | 50




Make sure check marks are placed in EACH of the Options. Click on the but-
ton. Delete all of the content preceded by “#” characters. (These are components. )
In between the remaining two lines of code type the following:

HO:=GetProperty(‘SliderO’,‘va.lue’); r:=0.1; K := 100;
SetProperty(‘Plot0’,‘value’,plot(r * N % (1 — N/K) - H0/100,N=0..120,
y=-3..3,labels=[“N",“dN/dt"]));

Click on the Edit window and on the Slider Properties window. You have now
created a slider that varies from 0 to 600.

The value of this slider is stored in the variable HO. We are interested in varying
the parameter H in Equation (3) from 0 to 6. The parameter H is equal to H0/100.
When we vary the slider from 0 to 600, we are really varying H from 0 to 6 as desired.
The slider code we typed will plot the various phase portrait curves in the N %-phase
plane. By dragging the arrow on the Slider, we can observe different phase plots. No-
tice that two equilibria appear when HO < 250 (H < 2.5). In this case, the smaller
equilibrium value is unstable, and the larger equilibrium value is locally stable. When
HO = 250 (H = 2.5), the is one equilibrium that is semistable. No equilibrium exists

when HO < 250 (H > 250). Figure 1 illustrates the case where H0 = 100 (H=1).
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Figure 1: The phase portrait with the slider set to H0 = 100 (H=1)

Step 5. We will now plot the bifurcation diagram for the differential equation with
the parameter H. To make sure that H is treated as a variable by Maple, type:

H:="H':
With the parameter values of 7 and K fixed, enter the following command again:
solve(r * N x (1 - N/K) — H = 0, N);

Maple returns:

50 + 10v/25 — 10H,50 — 10v/25 — 10H
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Each of the solutions is a called a branch curve. In a bifurcation diagram, stable
branches (corresponding to stable equilibria) are plotted as solid curves and unstable
branches (corresponding to unstable equilibria) are plotted as dashed curves. Using
the stability information you have previously found, plot these branches in the HN-
plane, where H varies from —3 to 3 using solid or dashed curves as appropriate. Label
all and classify bifurcation points.

The bifurcation diagram shown in Figure 2 can be created using the command:

display(plot(50.4+10.%(25.-10.¥H)~(1/2), H = -3 .. 3, color = red, labels = [“H”,
“N”]), plot(50.-10.%(25.-10.*H)~(1/2), H = -3 .. 3, color = blue, linestyle = dash))
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Figure 2: The bifurcation diagram with 7 = 0.1 and K = 100
The bifurcation point H = 2.5 is a saddle node bifurcation.

Step 6. To plot several solution curves for this differential equation with H =1 and
7=0.1 and K = 100, we first define the differential in Maple using the command:

LogisticHarv := H — diff (N(t),t) = 0.1 N(t) * (1 — N(t)/100) - H;
We then use the following command to plot several solutions:

DEplot(LogisticHarv(1), N(t),t = 0..40, [[N(0) = 10], [V(0) = 30],
[N(0) = 45], [N (0) = 60], [N(0) = 100]], N = 0..120);

Note that this Maple command automatically provides the slope field as well.
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