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Introduction: The clicking of a Geiger counter measuring radioactive decay (on a time scale short
compared to the half life of the radioactive source) is the standard example of a Poisson process. Good
(albeit more extensive than usual) examples of a typical treatment can be seen in the texts [1,2].
radioactive decay is also commonly alluded to as a source of genuine random numbers: the website
HotBits [3] uses radioactive decay to provide "Genuine random numbers, generated by radioactive decay."
However, students rarely hear or see (much less collect) a real data set from a Poisson Process. This paper
demonstrates a simple experiment to record, extract, and analyze such data using an inexpensive ($15-$30
on Ebay) dosimeter, household radioactive sources, and standard PC software.

The mathematical definition of a Poisson Process is as follows. Write X(¢) for the number of events that
have occurred up to time t and p; (s, ) for the probability that X{(r) = j given that X(s) =/. Note that
pij(s. t)is the probability that the number of events (or in our case clicks) is i —/ in (s, t]. The two
defining conditions for a Poisson Process from [1] are.

1. Events occurring in non-overlapping intervals of time are independent of each other.

2. For a sufficiently small At, there is a constant A such that the probabilities of occurrence of events in
the interval (¢, £ + At] are given as follows
a. pi(t t+A) =1 - LAt + o(At)
b. piii(t, t+ At) = LAt + o(At)
e Yt Pijll, £+ AL) = o(AL)
d. pi(t, t+A)=0 forj<i
The general physical meaning of these conditions are:

1. Events in non-overlapping intervals are independent if on the large scale each individual event is
insignificant and does not trigger (or suppress) other events.

2. The constant rate A satisfying the conditions exists if events do not cluster or avoid each other and the
rate at which individual events occurs is constant. In which case, for small At the following
interpretations hold:

a. The probability no event occurs in (¢,  + At] = | — A AL
b. The probability a single event occurs in (f, / + At] =~ A At,
¢. The probability of multiple events in short time intervals is negligible.

d. The count can not decrease.

The Geiger counter is the most common introductory example because it is familiar (from movies and
Physics courses) and the mathematical characteristics of a Poisson Process can be relatively easily and
convincingly interpreted in the physical setting of slow radioactive decay. Natural radioisotope decay
satisfies the defining conditions for a Poisson Process (to extremely high accuracy) because there are a
very, very large number of identical unstable atoms in even a very small radioactive source. The decay of
any individual atom is independent of the fate of any other atom and moreover natural radio-isotopes have

very long half-lives. For example, one microgram of ThoriumOxide from an old gas mantle has over 0™
identical unstable Thorium atoms cach with a half life of 1.4x 10'° years.

The experiment described is accessible, inexpensive, and safe. A Russian military surplus geiger counter
(dosimeter) can usually be purchased on Ebay for between $15 and $30.  There are a variety of
radioactive sources available . Background levels will typically produce a rather sparse recording but
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older gas lantern mantles (which contain radioactive Thorium), vintage Vaseline Glass (which contains
Uranium), or granite boulders are readily available and will produce a significantly elevated reading. An
audio recording is made of the clicks using a standard microphone and a PC (which brings up the
interesting question "What does random sound like?"), the events (or click times) are easily extracted
using a freeware audio package Audacity [4] to give a data file of event times, this extensive (thousands of
clicks can be easily obtained) data file is imported into Mathematica and analyzed.

The obvious question is how good are our random numbers from a $15 detector? The properties of the
collected time series of clicks is analyzed to see how well it conforms to the assumptions of a Poisson
Process. This analysis and the discussion serves to illustrate the meaning (physical and mathematical) of
the defining characteristics of a Poisson Process. As expected the data collected is clearly a good fit to a
Poisson Process with the only obvious discrepancy being a deficit of extremely short inter-arrival times.
Finally, the physical reason (a comparatively long dead time for the software and inexpensive detector) for
this anomaly is explained.

Data Collection: Data collection is simple. Place the detector and microphone near the source as shown
in Figure 1.

Figure 1: Sound Recording

Record the clicks (a screen shot of the Audacity [4] window with an open recording of some clicks is
shown in Figure 2) the clicks (with minimal background noise) for a few minutes, and save the file in any
standard (for instance .mpg or .wav) audio format. The result should be a clear recording of the Geiger
counter clicks.
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Figure 2: Audacity Recording
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Event Time Extraction: Extracting the event times is simple with Audacity’s built-in silence detector.
Open the recording and select (under edit there is a select all option) the entire track then sclect silence
finder from the analyze menu. If you zoom in your window should be similar to the screenshot in Figure
3. Set the place label slider to zero seconds, set the minimum silence duration down to 0.01seconds (you
may need to type in the box rather than use the slider to set it this low), and experiment with the silence
level setting (as shown in Figure 3 I used 17db but it depends on the recording) to capture all the visible
clicks.
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Figure 3: Audacity Silence Finder

After scanning through the entire recording to verify the accuracy of your silence flags save the labels
using the export labels command under the file menu. Your window should look like Figure 4 with a
visibly accurate labels track directly underncath the visual representation of the audio track. The saved
label file is simply a text file of the times marked by the flags. This file can be readily imported into any
data analysis program.

St thslof

o bamhkes

Figure 4: Saving Labels from Audacity
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Data Analysis: Arrival Rate Conditions: The data file of times was imported into Mathematica and
analyzed. A plot (shown in Figure 5) of the first 10 minutes of the data shows roughly 1100 clicks and
(since it is visibly straight) that the rate of clicks is approximately constant with a linear fit giving the
estimate A = 0.520757 + 0.0007 clicks per second as a 95% confidence interval for the arrival rate. The

extremely small error estimate reflects accuracy (the R value is 0.999454) of the linear fit to the data.
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Figure 5: Event Times vs Count for Ist 10 minutes

The estimate A = 0.520757 is used to generate Figure 7 of comparing the observed frequencies (in samples
of 500 intervals of various lengths 0.01 = At<1) to the probability prediction | — A At specified in

conditions 2a which is the black line on the graph. It is clear that for small At the sampled zero counts (the
bottom category in the stacked bar chart) matches well with the predicted line. It is also clear that the
observed single counts (the second category in the barchart) fill in the gap: this means that the single

counts match well with the predicted A At while the multiple counts (the higher categories in the barchart)

disappear as At gets small. We can see that the measured data matches well with the assumptions 2a, 2b,
2¢, and 2d.
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Figure 6:0Observed Number of Events in a sample of 500 time intervals

Data Analysis: Interarrival Time Distribution: The independence condition and the conditions on the
arrival rate imply that the interarrival times ¢, —¢; (where 4 is the time of the ith click) must have an

exponential distribution with mean 1/A . Figure 7 is a histogram of the recorded interarrival times
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counted into bins of length 0.1 seconds with a superimposed exponential distribution IT e with a count

in the first bin of 3267 except for the significant deficit (indicated by the light rectangle) of short inter-
arrival times in that first bin. This deficit can be easily explained by the data extraction technique used
with a minimum silence length of 0.01 seconds: as a result many short gaps are missed. In fact, all Geiger
detectors have a dead time during which they are recharging a capacitor and can not measure another
event.
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Figure 7:Histogram of recorded Interarrival times

Conclusions: The primary conclusion is that the radioactive decay process recorded is indeed well
approximated by a Poisson Process. The only discrepancy is a deficit of short inter-arrival times which is
casily explained physically. The benefits of using easily accessible real data are numerous: it motivates
students; provides an cndless supply of custom assignments; prompts students to consider extensions;
connects seemingly disparate courses; and convinces students of the applicability of the mathematics they
are learning.
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