USING MATHEMATICA TO SOLVE THE LIGHTS OUT GAME

David Nawrocki
Albright College
13th and Bern Streets
Reading, Pennsylvania 19612
dnawrocki@alb.edu

The Lights Out game is an electronic game consisting of a 5 x 5 grid of lighted buttons.
Pressing one button will change the state of that button as well as the state of the
neighboring buttons above and below and to the left and right. The game is begun with
several of the twenty-five buttons light, and the object of the game is to find a sequence
of button presses to turn all the lights off. To begin, we first consider the following
simple Lights Out game consisting of a 2 x 2 grid of lights.

1 2
3 4
Figure 1 2 x 2 Lights Out Game

The buttons 1,2,3 and 4 are either lit or not (on or off) and they are connected as
follows.

* Pressing button | changes its state as well as those of 2 and 3.

* Pressing button 2 changes its state as well as those of 1 and 4.

* Pressing button 3 changes its state as well as those of 1 and 4.

* Pressing button 4 changes its state as well as those of 2 and 3.
Given an initial state of the game in which some lights are on and some are off, the
object of the game is to press a sequence of button to turn off all the lights. For example,
suppose we are given the following initial state of the game as shown in Figure 2.

ON | ON |
ON | OFF
Figure 2 Initial State of the 2 x 2 Lights Out Game

This initial state can be represented by the state vectorb = (1110)7 andthe solution
would be to press button 1 which we represent with the action vector Z = (1000)”.
Here, 1 represents either the state of a button being on or the action of pressing a button
and O represents either the state of a button being off or the action of not pressing a
button.

We can obtain the adjacency matrix A in equation (1) for this game by considering its
connected graph shown in Figure 3.

1840f 312

Q O
1— 2

ol ol
e . |

Figure 3 Connected Graph of the 2 x 2 Lights Out Game
(1
1
A= 1
0

Here, A(3, j) = 1if button 7 is connected to button jand A(4, j) = 0 otherwise.

1
0
X (1)
1

= O =
=== O

Suppose now that all the buttons are initially off and we press button 1. Then buttons
1,2, and 3 will turn on. This can be represented by matrix multiplication as follows.

=5 (2)

O = =
= O
== O =
o= = O
o O O -
O = =

[f we define a simple action to be that of pressing only a single button then we see that,
starting with all the lights initially off, A multiplied by a simple action vector Z gives the
state of the game b. Also, notice the following:

+ Ifa button is off (state 0) and we press it (action 1) then we turn it on

(state 1) so 0+1=1

* Ifa button is on (state 1) and we press it (action 1) then we turn it off

(state 0) so 1+1=0

« Ifa button is off (state 0) and we do not press it (action 0) then it stays off

(state 0) so 0+0=0

* Ifa button is on (state 1) and we do not press it (action 0) then it stays on

(state 1) so 1+0=1.
So we see that for this game we are really performing arithmetic over Zs. Now, suppose
we start with the game initially in the state b= (0000)” (all the lights off) and we press
buttons 1 and 2. If button 1 is pressed first then we arrive at the state A- (100
0)7 = (1110)T. On the other hand, if button 2 were pressed first we would arrive at
the state A-(0100)7 = (1101)". To understand what happens when we press
buttons 1 then 2 in that order, we need to realize that once button 1 is pressed buttons
1,2, and 3 are now in state 1 (on). So, if we evaluate A - (01 OO)T (A times the action
of pressing button 2) whatever states we get for buttons 1, 2, and 3 should be reversed.
Since we are performing addition over Zs this can be accomplished by adding the state
vectors (1110)7 + (1101)T = (0011)7 which is the initial state of the game after

1850f 312

pressing buttons 1 and 2. We now see that starting with the game initially off the action
of pressing buttons 1 then 2 can be evaluated as follows,

(3)

c o o
O O =
= = O O

This also demonstrates the fact that since vector addition is obviously commutative the
order in which the buttons are pressed does not affect the final state of the game.

If our game has an initial state vector b and we want to find a sequence of button presses
represented by the vector Z to turn all the lights off then we need to solve the equation

b+ AZ = 0 for the action vector . Since we are working in Z, we really need to solve
b+ AZ = 0 (mod2) for the vector Z. Adding b to both sides of the previous equation
and noting that 6+b = 0 (mod 2) yields AZ = b (mod 2). Another way to understand
this is to realize that if we start the game with all the lights off (state 5) and we find a
sequence of button presses Z to change the game from state 0 to state bthen the
sequence of button presses Z will also change the game back from state bto state O.
Therefore, solving AZ = b (mod 2) for Z will not only change the game from state 0 to

state E,but it will also allow us to change it from state bback to state 0. For example, if
our simple 2 x 2 game were started with buttons 1, 2 and 3 lit then row reducing the
augmented adjacency matrix over Zs yields

1110\1\ /1000{1
1101 |1} f0100]0 @
1 011 |1 00100
0111JOJ k00010J

This indicates that our solution vector is Z = (1000)” or that we should press button 1
to turn all the lights off.

We now consider the more complicated Lights Out game consisting of a 5 x 5 grid of
buttons. The connected graph for this game is shown in Figure 4. The 25 x 26
augmented adjacency matrix for the 5 x 5 Lights Out game is constructed in a similar
manner as that given in (4). The Mathematica code used to row reduce the 25 x 26
augmented adjacency matrix over Zsis shown below. The program is executed by
inputting the initial state of the game into the 26" column in the augmented adjacency
matrix and running the program.

1860f 312

ol ol ol ol ol
1j—12—13—14 ——15
Ql Ql ol O ¢l
16 17 18 19 ——20

ol ol ol ol ol
21— 22— 23——24 725

Figure 4 Connected Graph of the 5 x 5 Lights Out game

Mathematica Code Used to Perform Matrix Reduction over Z,
(*AugAdjacency is the 25 x 26 augmented adjacency matrix which is not shown here.*)
A = AugAdjacency;
r=1; (* Fix the current row entry-at 1 *)
¢ = 1; (* Fix the current column entry at 1 *)
found = 0; (* Used to determine is a non - zero entry has been found *)

(* Begin indexing down the rows. *)
For[r=1, r <=25, rt+,
found = 0;
HA[[r, e]] == 1,
found = 1;
(* The following for loops will annihilate all non-zero entries above and below *)
(* the current row and column position. *)
For[i= 1, i<=25, i++,
ITA[[i, c]] == 0| i==r, Continue[];];
For[1=1,j<=28, j++,
temp = A[[4, j]]; (* temp is a temporary holder for the value A[[i, j]] *)
If [temp == 1 && A[[r, j11 == 1, A[[i, j]] = 0;]; (*note the arithmetic mod 2*)
If [temp = =1 && A[[r, j]] == 0, A[[3, jl] = 1:];
If [temp == 0 && A[[r, j]l == 1, All}, j]] = L;];
If [temp == 0 && A[[r, jl1 == 0, A[[i, j]] = 0;];
1; (*end for j*)
] :(*end for 1*)
T *end 46*)
(* If A[[r, c]] = = 0 then we should search for a row below the current one to swap *)
If[A[[r, c]] ==0,
For[i=r+1,1<=25, i++,
HIA[[L, c]] == 1,
found = 1;
(* Swap the rows *)
temp = A[[r]];

1870of 312

Al[r]] = AL
A[[i]] = temp;
(*Annihilate non-zero entries above and below the current row and column*)
For[i2 =1, 12 <= 25, i2++,
I[A[[i2, c]] == 0| i2 = =1, Continue[];];
For[j =1, j <= 26, j++,
temp = A[[i2, j]];
If[temp==1&& A[[r,j]]==1, A
If [temp == 1 && A[[r, j]] == 0, A[[i
If [temp==0 && A[[r,]j]]==1, A
If [temp==0 && A[[r,j]]==0, A
]; (* end for j *)
1;(* end for 12 *)
1; *end if*)
]; (*end fori®)
1;(* end if *)
Ifffound==0,r=r-1];
Iffr == 25 || ¢ == 25, Break[];];
c=c+ 1; (* Increment the current column position *)
1; (* end fort*)
Print[MatrixForm[A]];
For[i=1,1<=25, i++,
IfTA[[1, 26]] == 1, Solution[[i, 1]] = 1]; (* Write column 26 to the solution vector *)
i {* end fori *)
Print{MatrixForm[Solution]];
(* The following is just a nice way of printing out the solution *)
solutionList = {0};
firstOne = 1;
For[i=1,1<=25, i++,
I[A[[i, 26]] == 1 && firstOne = = 0, solutionList = Append[solutionList, i]];
HA[[], 26]] == 1 && firstOne == 1,
solutionList = ReplacePart[solutionList, i, 1]; firstOne = 0;];
1;(* end for 1 *)
Print[solutionList];

REFERENCES

[1] R. Trudeau, Introduction to Graph Theory, Dover Publications Inc. New York,
1994.

[2] R. Gould, Graph Theory, Benjamin-Cummings, New Jersey, 1988

[3] W. Winston, Operations Research, Duxbury Press, California, 1994

188o0f 312

