CREATING BASIC ANIMATIONS IN MATLAB

Katrina Palmer
Appalachian State University
346 Walker Hall, Boone, NC 28608
palmerk(@appstate.edu

This paper describes how students with little matrix knowledge and no programming or
MATLAB experience created short quicktime videos in 5 days (meeting 1.5 hours a day).
The intent for creating this short module was to include it in a new computational math
course for Applachian State University’s new computational math degree [1], but this
course has been delayed so this module was tested on summer venture students [4].
Summer Ventures students are some of the top achieving high school math and science
students in North Carolina. This module starts with linear transformations, then
introduces MATLAB and for loops to create short animations, then ends with a sample
video.

Introduction to Matices and Linear Transformations

Since basic addition, subtraction, and multiplication of matrices is now taught in high
school [3], we started the module with, “What is a linear transformation?” In order for a
transformation to be linear, two criteria must hold: 1) adding two vectors, then
transforming them produces the same result as first transforming two vectors, then adding
2) multiplying a scalar and a vector, then transforming that new vector produces the same
result as first transforming the vector, then multiplying by the scalar. For example,
consider point A (-2, -1) and point B (3,-4) in Figure 1. We’ll use these two points to see
if the first property holds for reflection across the x-axis. Figure 1 visualizes the algebra
cooresponding to the first criteria.

Adding first, then reflecting we get: (—2,—1) +(3,~4)= (1,~5)&>(1,5)
(=2,—1)— 5 (=2,1)
Reflecting, then adding we get:q (3,—4)—L"(3,4)
(—2,1)+(3,4)=(1,5)

Figure 1: Visual representation that reflection across the x-axis satifies the first criteria of
a linear transformation.

1890f 312

To demonstrate the second criteria, consider the point (-2,-1) and the scalar k.
Multiplying by £, then reflecting we get: k(-2,—1) = (—2k,—k)— L5 (-2k,k)

reflect

Reflecting, then multiplyi ({02 2]
eflecting, then multiplying we get:
¢ prme e s k(=2,1)=(=2k,k)
Since both criteria hold, it would suggest that reflection across the x-axis is a linear

transformation. Note that this is not a proof because it is not generalized, but that is not
the goal of this module.

If these two citeria hold for a transformation, then the transformation is linear and can be

computed by matrix multiplication. The matrix that you multiply by comes from

knowing where (1,0) and (0,1) (the standard basis elements for R*) get transformed. For
reflect

reflection across the x-axis again, (1,0)%(1,0) and (0,1)—=—(0,—1) so the

0

1
matrix is [0 J. The first column is the vector that (1,0) transforms to and the second

column the the vector that (0,1) transforms to. In other words, if you multiply a vector by

0 -1
. 1 03 3
reflected across the x-axis is (3,-4) and = ;

1 0
[J, the resulting vector is the reflection across the x-axis. For example, (3,4)

0 -1)\4) |4

After learning what a linear transformation is, students investigated which of rotation
about the origin, dilation, reflection (across the x-axis, y-axis, and y = x), and translation

are linear transformations, and derived the matrices that represent the lincar
transformations. For example, rotation around the origin is a linear transformation, and

cos@ —sinf

the matrix that rotates a vector 6 degrees about the origin is [] Of the

sin@ cos@

transfomations listed above, all are linear transformation except translations. To see this,
consider the example that translates up 2 and right 3. Checking the first criteria:

Adding first, then translating we get: (1,0)+(0,1) = (1,1)—22¢ 5(4,3)

(1,0) e 5154 5
Translating first, then adding we get: < (0,1)—"“"**—(7,5)

(4,2)+(7,5)=(11,7)
Since (4,3) = (11,7), criteria (1) does not hold, and thus this translation is not a linear
transformation, and therefore translation can’t be modeled by matrix multiplication in

R*. Our goal is to use matrix multiplication for animation, so we need to fix this. The

1900f 312

remedy is to extend into 3-space using homogeous coordinates, that is, a point (x,y) is
rewritten as (x,y,1). Since each point is now written as a 3x1 vector, the transformation
matrix is modified to be a 3x3 matrix instead of a 2x2 matrix by the following extention:

2by2 0

2by2 . .
. .| becomes | \ transformation matrix /| 0
transformation matrix g o i

For example, the transformation matrix to rotate around the origin 6 degrees becomes

cosf —sinf 0
sin@ cos® O0|. This allows for translations to be represented by matrix
0 0 |
1 0 h
multiplication; that is, to translate a point right # and up %, you multiply by |0 1 k& |.
0 0 1

Since rotations around a point (other than the origin) arec not linear transformations
(check this!), we can combine translations with rotation around the origin. For example,
to rotate 6 degrees around the point (2,3), first translate to the origin, then rotate, then
translate back by multiplying on the left by the following matrices:

I 0 2)\fcosf® —sinf 01 0O -2
O I 3| sin@ cos6@ Of|0 I =3
0 0 1 0 0 1){0 0 1

So using composition, we can combine several different transformations to create
animations.

Introduction to Matlab and for Loops

The students were given a brief introduction to inputing matrices and plotting in
MATLAB, then used exerpts from [2] to practice. To gain more experience with plotting
and transforming, students also worked problems similar to the ones below. These
problems also provide practice with the hold on command which allows for multiple
plots on the same figure.

Problem Write code to: Plot the vertices (0,0), (0,3), (1,4), (4,3), and (4,0), then use
matrices to plot (on the same figure) the reflection across the y-axis, then using matrix
multiplication rotate the points 30 degrees about the origin and plot them (on the same
figure).

1910f 312

Problem Write code to: Plot the vertices (0,0), (0,3), (1,4), (4,3), and (4,0), then plot the
vertices after shrinking them by a factor of .95 and then rotate them 45 degrees counter
clockwise about the origin.

Problem Write code to: Plot the circle with radius (3,4). Then translate the circle right 5
and up 3, and plot the new circle on the same figure.

The students were introduced to for loops using basic examples and problems such as:

Problem Predict the output of the following code, then test it.
Total = 0;
for i = 1:10
Total = Total + i;
end

Problem Describe the output of the following code, then test it.
M=[0 2 2 00; 001 10;111117;
theta = pi/4;

RotM = [cos(theta) -sin(theta);
sin(theta) cos(theta)];
for i = 1:8
M = RotM * M;
plot(M(1,:),M(2,:), 'b*")
end

In order to make a quicktime video from their codes, they need two commands:
getframe and movie2avi, both of which are available in the image processing toolbox.
getframe returns a movie frame, and is a snapshot of the current axes or figure. The
command movie2avi converts the series of saved frames into a movie, and saves it as an
avi (Audio Video Interleave) file which is a format that quicktime can read. Note that if
you are using octave, you could still see the animation in the figures. The advantage to
making it into a quicktime video is that they can keep the videos without needing
MATLAB. Several of the students even emailed their videos to their parents.

Sample Project

Here is the MATLAB code created by one of the students. After running the script below,
type

>> movie2avi(Mov, 'MyMovie.avi’)

at the command line to convert the frames into a video. The first and last frame of the
resulting video named MyMovie is shown in Figure 2. The video can be played at
http://www.mathsci.appstate.edu/~kmp/research/SV1Mov.avi.

M=p[12211;11221; 1 1111];
X=[1221121; 112 2 131 1L 1 2 17J:
rho = pi/8;

figure, plot(M(1l,:), M(2,:),'b="', M(1l,:), M(2,:),'*m'),
axis([-10,10,-10,10]); hold on

1920f 312

plot (X(1,:), X(2,:),"'--g',X(1,:), X(2,:),'xr")
TransOrigin=[1 0 1; 0 1 1; 0 0 17];
TransBack=[1 0 -1; 0 1 -1; 0 0 17];
RotMatrix=[cos(rho) -sin(rho) 0 ;sin(rho) cos(rho) 0; 0 0 1];
DilMatrix=[1.01 0 0;0 1.01 0; 0 O 17;
CompositionMatrix=TransBack*DilMatrix*RotMatrix*TransOrigin;
for i = 1:64

M CompositionMatrix*M;

pause(.08)

plot(M(1l,:),M(2,:),'=.b"' ,M(1,2:),M(2,:), " '*m'),

X = CompositionMatrix*X;

Mov (i) = getframe;

pause(.08)

plot(X(1,:),X(2,:),"'--9',X(1,:),X(2,:),'xr"), hold on
end

fra— 4

by

1 1 1 ! 1 1 1 1 L 1 1 L 1 1

Figure 2: First and last frame from sample student video

Conclusions

In summary, students learned a great deal about matrices, for loops, and MATLAB — all of
which they hadn’t seen before. Even though this was a very short period of time (and the
summer venture students couldn’t have homework), the student response was far better
than I had imagined it would be. Several students wanted to stay later or have access to
the lab to be able to work on their animations. When our computational math class is
finally offered, I plan on incorporating this module to teach them loops and MATLAB as
they will have already had linear algebra.

References:

[1] Department of Mathematical Sciences, Appalachian State University. May 14, 2008
<http://www.mathsci.appstate.edu/Student>

[2] Griffiths, David. An Introduction to Matlab, Version 2.3, University of Dundee,
2005.

[3] National Council for Teachers of Mathematics. May 14, 2008
<http:/www.nctm.org>

[4] Summer Ventures. May 14, 2008 <http:/www, summerventures.org>

1930f 312

