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Introduction:

Students often use calculators and computers without understanding how function values
are derived. To illustrate the mathematics behind such approximations, in this paper
algorithms are discussed which approximate values for trigonometric, hyperbolic,
exponential, and logarithmic functions.

Students will be shown how functions such as sin(x), cos(x). tan(x), sin™(x), cos” (x),
tan™'(x), sinh(x), cosh(x), tanh(x), sinh™(x), cosh™(x), tanh'(x), e*, In(x), and a”* are
approximated by the CORDIC (Coordinate Rotation Digital Computer) method. A more
efficient method using minimax polynomials is also given. These algorithms will be
implemented in Flash programs which will simulate a calculator.

The programs in this presentation were written in the ActionScript language of Flash. The
programs were saved in the .swf format and embedded in web pages. Students were not
required to learn how to program in ActionScript-just to be able to alter the code and re-
run the programs. This worked well after walking through a few examples.

CORDIC-Coordinate Rotation Digital Computer
The CORDIC method was invented in 1959 by Jack E. Volder as a faster method to

calculate trigonometric values on early machines which did not have a software
multiplier [1].

By using & = tan"(2"’) i=0,1,2,3,....,41 all angles in the 1% quadrant can be covered
with a maximum error of less than 2.605*10"" = maximum error of sin(x) and cos(x) of

5%10713,

g, =tan"'(27°)=45",  =tan'(27') = 26.565",..., O, =tan"'(27°) = 1.7899" . .
For example:60° =6, +6,-6,+0,-0, -6, +....

Using
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sin(u % v) = sin(u) cos(v) £ cos(u)sin(v)

1
cos(u £ v) = cos(u)cos(v) F sin(u) sin(v) )
which may be written
sin(z £ v) = cos(v)[sin(u) = tan(v) cos(u)] 2
cos(u £ v) = cos(v)[cos(u) F tan(v) sin(u)]
Starting with
. _ 0
sin(u,) =cos(@,) 3)
cos( u,)=cos(&,)
and iterating (2) we get [1]
41
sin(u,,) = H cos(d)s,,
: @
cos(uy,) = ]_[cos(tf?,)q12
=0
Setting
41
§o =Cp = Hcos(ﬁ,) (5)
i=0
s42 and ¢4 which approximate sin(x) and cos(x) respectively with a maximum error of
5%10™ are computed as follows:
Cin =€ — 2- D;s,
(6)
SH—] = S:‘ +2 Dﬁ'c."
where
B 1 if weadd the angle ™
=1 if wesubtract the angle

Having computed sin(x) and cos(x) we can then compute tan(x). (Note: in order to get a
desired degree of accuaracy on tan(x), one needs to compute the necessary accuracy
required for sin(x) and cos(x), which in general will be different, and then run the
algorithm with the required number of iterations. )

Computing sin™(x), cos™(x), tan (x)
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Inverse tangent
Define initial values:
s(in) = tan"'(x)
glas)=1 (8)
= 2 = tan"'(x)
e

in (6) and drive s—0 adding and subtracting the corresponding angles.. This computes
@ = tan”'(x). sin”'(x) and cos™(x) can then be computed from tan™ (x).

Computing sinh(x), cosh(x), and tanh(x)
Find
1. sinh(x) and cosh(x) on [0, 1] —¢"on [0, 1]

. storing ¢'— ¢ and e™ for all x—
3. sinh(x), cosh(x), and tanh(x) for all x

Use
sinh(u + v) = cosh(v)[sinh(«) + tanh(v) cosh(u)] )
cosh(u = v) = cosh(v)[cosh(u) * tanh(v) sinh(u)]

Defining:

0= tanh ' ((—;—)*’) i=l,.2.3...

6, = tanh™ ((%)-‘) =.8042

0, = tanh"((%)'z) = 47775 (10)

0, = tanh™' ((2-)3) =.305454

By using powers of (3/2) instead of 2 we can cover the interval 0 to 1 without having to
use duplicates of any angles.

Where
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72
s, =¢, =] Jeosh(8,) (11)
i=l

sj and ¢; are computed as follows:

CHJ = c,+_6§)7“|l)”%
i (12)
Sr+i = Sl it (".2_)"'"1 Dicﬁ
where
| 1 if weadd the angle (13)
" =1 if wesubtract the angle

s72=sinh(x) and ¢7;=cosh(x) with a maximum error of 3.23*10™" on [0, 1].

The inverse hyperbolic functions can be computed in a similar fashion to the inverse
trigonometric functions described above.

As In(x) =2 tanh ™ (x_i) and a* =e™™ In(x) and powers may now be computed.
x4+

Minimax Polynomials-Much faster approximations when a multiplier is available

Given a function f(x) the nth degree polynomial p(x) which satisfies

min(max | f(x) - p(x) ) (14)

pel, asx<h
is called the n™ order minimax polynomial of f(x) on the interval [a, b].

L
> minimax{sin{x),x=0. . Pi/2,6 [10,0]) .

114 (1000000000186750 + (~0 48080844307 10°5 + (-0 1666666 183567628 + (=0 249222475568 105 + ¢

-0.11989775143 10°
0.008334084753389323 + (-0.14164429551428 107

k. -5 B
+ (-0.0001966903087260213 + (-0 1355176683237023 10 5+(O 3426105525245168 107 —- 0.1919209214135189 10 6” X)X)ZIX)XIXIX)X)
x

Figure 1-Minimax polynomial for sin(x) on [0, n/2] from Maple

Where b(x) is the minimax polynomial computed above, Figure 2 below shows the error
of maximum error of approximation on the interval [0, /2] is approximately 1072,
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(> plot(b(x)-sin(x),x=0..Pi/2);
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Figure 2-Error of the minimax polynomial for sin(x) on [0, 7/2] from Maple

On trials the minimax polynomial computed approximations for sin(x) approximately 30
times as fast as the CORDIC method. (Note: This takes into account the CORDIC
method also computed cos(x) as part of the algorithm.)

Generating Graphs and Rotations using Numerical Approximations

It should be noted that the algorithms illustrated above were accurate to 12 or 13 decimal
places. In terms of graphing on calculators or computers-which are only accurate to the
pixel-far less accuracy is needed and hence fewer iterations and lower order polynomials
may be used to greatly speed up computations.

Conclusions

Our objective was to show students some methods by which calculators and computer
packages can approximate the elementary functions.
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