
Mathematical Modeling for Game Design
Paul Bouthellier and Saeed Dubas

Department of Mathematics and Computer Science

University of Pittsburgh-Titusville

Titusville, PA 16354

FAX: 814-827-5574

dubasis@pitt.edu (Ph: 814-827-5672)

pbouthe@pitt.edu (Ph: 814-827-4432)

In this paper we shall use the package Flash to study the mathematics required to create a

simple shooting game. In each level of the game moving targets are created and then

“hit” by the mouse-which is represented by a crosshair. After all the targets are hit the

next level is loaded in which the targets move faster. The player is given 20 shots in the

first round and 20 additional shots in each additional round. The game is concluded when

the player runs out of shots.

Targets may be created using recursive methods (such as the Koch snowflake in

Geometer’s Sketchpad), “circles” using Bezier curves, or 3-dimensional objects created

by rotating a curve about an axis.

The paths of the objects may be created by using parametric equations, Bezier curves,

interpolation polynomials, vector fields, random variables, and trigonometric functions,

amongst others. The paths may be created in R2 or R3. If creating the paths in 3-

dimensional space one can also discuss the geometry necessary to scale and alter the

apparent speed of the objects.

Students were not required to learn ActionScript, the programming language in Flash-just

to be able to alter the code and re-run the program. After studying a few examples this

proved to be quite easy.

The mathematics used in game design is diverse and extensive. Hence we only can begin

to touch on the subject in this paper. However, the examples given here have proven

useful in classes to illustrate an additional application of mathematics and statistics.

A Simple Game:

Here the objective was to show an application of parametric equations. The parametric

equations are used to move simple circles across the screen. The students can alter the

equations to create different paths. In class, various standard functions y=f(x) can be

translated into parametric equations. A useful exercise is to reverse the process and study

how parametric equations can be written as a standard y=f(x) function.

Figure 1-An Application of Parametric Equations-Moving Objects

In Flash the “circles” are actually approximated by 2nd order Bezier curves. To illustrate

this, the following program, using 8 2nd Bezier curves, was written in ActionScript to

approximate a circle.

onLoad () {

_root.createEmptyMovieClip("tri",1);
var xs, xe, ys, ye, xi, yi, ms, me;
var r=200;
var ix=300;
var iy=300;

var num=8;//If odd can get infinite slopes which can causes problems

_root.tri.duplicateMovieClip("test",2);

with(_root.test) {
lineStyle(1,0xff0000,100);
moveTo(_root.ix+_root.r*Math.cos(Math.PI/(_root.num)),_root.iy+_root.r*Math.sin(Mat
h.PI/(_root.num)));
for (var k=1;k<=_root.num;k++) {
var angkm1=Math.PI/(_root.num)+(k-1)*2*Math.PI/(_root.num);
var angk=Math.PI/(_root.num)+k*2*Math.PI/(_root.num);
_root.ms=-1/Math.tan(angkm1);
_root.me=-1/Math.tan(angk);
_root.xs=_root.ix+_root.r*Math.cos(angkm1);
_root.xe=_root.ix+_root.r*Math.cos(angk);
_root.ys=_root.iy+_root.r*Math.sin(angkm1);
_root.ye=_root.iy+_root.r*Math.sin(angk);
_root.xi=((_root.ye-_root.ys)+(_root.ms*_root.xs-_root.me*_root.xe))/(_root.ms-
_root.me);
_root.yi=_root.ys+_root.ms*(_root.xi-_root.xs);
curveTo(_root.xi,_root.yi,_root.xe,_root.ye);}}}

The resulting “circle” is given below in Figure 2.

Figure 2-A Bezier Approximation of a Circle

One can then discuss the maximum error of approximation of using Bezier curves to

approximate a given circle.

The advantage of modeling objects mathematically (using vector graphics) is illustrated

by the fact that they can be scaled with little loss of accuracy. In Figure 3, the circle on

the left-stored as a bitmap-was scaled-up with a loss of accuracy. The circle on the right

was stored as a vector graphic-Bezier curves-and scaled-up. As the mathematical

equations are easy to scale the result is more accurate.

Figure 3- Raster verses Vector Representation of a Circle

3-dimensional targets for the game-as shown in Figure 4-were then created.

Figure 4- 3-Dimensional Objects Created by Rotating Curves about an Axis

A good start for students in creating mathematical models of objects is to begin with

something that can be created by rotating a curve about an axis. The flying saucers

illustrated in Figure 4 were created by rotating straight lines and a 2nd order Bezier curve

about the y-axis in the art package SwishMax. This is shown in Figure 5.

Figure 5-Rotating Curves about the y-Axis to Create a Flying Saucer

A more elaborate example of mathematical modeling is to use Bezier curves to

mathematically model leaves, as shown in Figure 6. A related example would be to create

a snowfall in 3-space.

Figure 6- Modeling Leaves using Bezier Curves

Another example of modeling a well-known object is shown in Figures 7a-b. The chess

piece was created in SwishMax.

Figure 7a-Bezier Outline of a Chess Piece Figure 7b-Rotating about the y-Axis

Conclusion:

The applications of mathematics and mathematical modeling to game design are

immense. In classes from algebra to graduate courses, mathematical and statistical

concepts can be illustrated and experimented with. The only limitations are time,

imagination, and the availability of the necessary hardware and software.

